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Abstract

We propose a fully automatic algorithm for view interpolation of a completely non-rigid dynamic event across both
space and time. The algorithm operates by combining images captured across space to compute voxel models of
the scene shape at each time instant, and images captured across time to compute the “scene flow” between the
voxel models. The scene-flow is the non-rigid 3D motion of every point in the scene. To interpolate in time, the
voxel models are “flowed” using an appropriate multiple of the scene flow and a smooth surface fit to the result.
The novel image is then computed by ray-casting to the surface at the intermediate time instant, following the
scene flow to the neighboring time instants, projecting into the input images at those times, and finally blending
the results. We use our algorithm to create re-timed slow-motion fly-by movies of dynamic real-world events.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Ray-tracing and Virtual Reality

1. Introduction

We propose an algorithm for view interpolation of a dynamic
event across space and time. While there has been a large
amount of research on image-based interpolation of static
scenes across space 3; 5; 9; 12; 13; 15, there has been almost no
research on re-rendering a dynamic event across time. What
work there has been has assumed a restricted motion model.
Either the scene consists of rigidly moving objects 11; 14 or
point features moving along straight lines with constant ve-
locity 22. Our algorithm is applicable to non-rigid events and
uses no scene or object specific models. Our algorithm is
also automatic, requiring no user input.

Figure 1 presents an illustrative example of this task
which we call Spatio-Temporal View Interpolation. The fig-
ure contains 4 images captured by 2 cameras at 2 different
time instants. The images on the left are captured by cam-
era C1, those on the right by camera C2. The bottom 2 im-
ages are captured at the first time instant and the top 2 at
the second. Spatio-temporal view interpolation consists of
combining these 4 views into a novel image of the event
at an arbitrary viewpoint and time. Although we have de-
scribed spatio-temporal view interpolation in terms of 2 im-
ages taken at 2 time instants, our algorithm applies to an ar-
bitrary number of images taken from an arbitrary collection
of cameras spread over an extended period of time.
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Figure 1: Spatio-temporal view interpolation consists of taking a
collection of images of an event captured with multiple cameras at
different times and re-rendering the event at an arbitrary viewpoint
and time. In this illustrative figure, the 2 images on the left are cap-
tured with the same camera at 2 different times, and the 2 images
on the right with a different camera at the same 2 time instants. The
novel image and time are shown as halfway between the cameras
and time instants but are completely arbitrary in our algorithm.

Our algorithm is based on the explicit recovery of 3D
scene properties. We use the voxel coloring algorithm 16 to
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Figure 2: The input to our spatio-temporal view interpolation algorithm is a set of calibrated images at 2 or more consecutive time instants.
From these images, 3D voxel models are computed at each time instant using the voxel coloring algorithm16. After we have computed the 3D
voxel models, we then compute the dense non-rigid 3D motion or “scene flow” between these models using our scene flow algorithm20.

recover a 3D voxel model of the scene at each time instant,
and our 3D scene flow algorithm 20 to recover the 3D non-
rigid motion of the scene between consecutive time instants.
The voxel models and scene flow then become additional in-
puts to our spatio-temporal view interpolation algorithm.

To generate a novel image at an intermediate viewpoint
and time, the 3D voxel models at the neighboring times are
first “flowed” to estimate an interpolated scene shape at that
time. After a smooth surface has been fit to the flowed voxel
model, the novel image is generated by ray casting. Rays
are projected into the scene and intersected with the interpo-
lated scene shape. The points at which these rays intersect
the surface are used to find the corresponding points at the
neighboring times by following the scene flow forwards and
backwards. The geometry of the scene at those times is then
used to project the corresponding points into the input im-
ages. The input images are sampled at the appropriate loca-
tions and the results blended to generate the novel image.

To obtain high image quality results, there are a number
of technical issues that have to be dealt with. First, we re-
quire that the 3D scene flow, and the 3D voxel models it
relates, all be consistent in a way that when the models are
flowed no holes (or other artifacts) are generated. Second, a
surface must be fit to the flowed voxel models to avoid ar-
tifacts introduced by the cubic voxels. Finally, the blend of
the sampled pixels should be chosen to ensure that the algo-
rithm gives exactly the input image when the novel image
parameters (and time) match one of the actual cameras.

The remainder of this paper is organized as follows. We
begin in Section 2 by describing the inputs to our algorithm,
the input images, and the voxel models and scene flow com-
puted from them. We proceed in Section 3 to outline our
spatio-temporal view interpolation algorithm. In Section 4

we describe the 2 ideal properties that the voxel models and
the scene flow should obey. We also demonstrate the effect
that these properties have on the image quality of the in-
terpolated images. In Section 5 we describe how standard
graphics hardware can be used to improve the efficiency of
our algorithm. We present experimental results in Section 6
and end with a conclusion in Section 7.

2. Inputs to the STVI Algorithm

2.1. Explicit 3D Models Vs. Correspondences

To generate novel views we need to know how the pixels in
the input images are geometrically related to each other. In
the various approaches to view interpolation of static scenes
across space there are 2 common ways in which this geo-
metric information is provided. First, there are algorithms
that use implicit geometric information in the form of point
correspondences 3; 15. Second, there are approaches which
use explicit 3D models of the scene 4; 12; 13.

Although either choice is theoretically possible, we de-
cided to base our spatio-temporal view interpolation algo-
rithm on explicit 3D models of the scene. The primary rea-
son for this decision is that we would like our algorithms
to be fully automatic. The correspondences that are used
in implicit rendering algorithms are generally specified by
hand. While hand-marking (sparse) correspondences might
be possible in a pair of images, it becomes an enormous task
when images of a dynamic event are captured over an ex-
tended period of time, and from multiple viewing directions.

The relationship between pixels across time can be de-
scribed by how points in the scene move across time. Since
in general the scene can move in an arbitrarily non-rigid way,
the 3D motion of points is the scene flow 20. We use the com-
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Figure 3: Two enlarged views of the scene flow in Figure2. Notice how the motion of the dancer’s arm is highly non-rigid.

bination of scene shape (represented by 3D voxel models)
and 3D scene flow to relate the pixels in the input images.

2.2. 3D Voxel Models

Denote the time-varying scene St where t = 1; : : : ;T is a set
of time instants. Suppose that the scene is imaged by N fully
calibrated cameras with synchronized shutters. The input to
the algorithm is the set of images It

i captured by cameras
Ci, where i = 1; : : : ;N and t = 1; : : :;T . See Figure 2 for an
example set of input images. We compute a 3D voxel model
of (the surface voxels of) the scene from these images:

St
= fXt

i j i = 1; : : : ;Vtg (1)

for t = 1; : : : ;N and where Xt
i = (xt

i ;y
t
i; z

t
i) is one of the Vt

surface voxels at time t. We compute the set of voxels St

at each time instant t independently using voxel coloring 16.
Figure 2 illustrates the voxel models for t = 1 and t = 2.

2.3. 3D Scene Flow

The scene flow of a voxel describes how it moves across
time. If the 3D voxel Xt

i = (xt
i ;y

t
i; z

t
i) at time t moves to:

Xt
i +Ft

i = (xt
i + f t

i ;y
t
i +gt

i ; z
t
i +ht

i) (2)

at time t + 1 its scene flow at time t is Ft
i = ( f t

i ;g
t
i;h

t
i). We

compute the scene flow Ft
i for every voxel in the model St

at each time instant t using our scene flow algorithm 20. Fig-
ure 2 contains the result of computing the scene flow from

t = 1 to t = 2. Figure 3 also shows two enlarged snapshots of
the computed scene flow for two different viewpoints. Scene
flow is computed as a dense flow field, so there is a distinct
motion vector computed for every single voxel in the scene.
The close-up snapshot shows the highly non-rigid motion of
the voxels as the dancer raises and stretches out her arm.

In summary, the inputs to spatio-temporal view interpola-
tion consist of the images It

i , the cameras Ci, the 3D voxel
models St , and the 3D scene flows Ft

i . See Figure 2 for an
illustration of the inputs and 19 for more details of how the
voxel models and scene flow are computed.

3. Spatio-Temporal View Interpolation

3.1. High-Level Overview of the Algorithm

Suppose we want to generate a novel image I�+ from virtual
camera C+ at time t�, where t � t� � t + 1. The first step
is to “flow” the voxel models St and St+1 using the scene
flow to estimate an interpolated voxel model S�. The second
step consists of fitting a smooth surface to the flowed voxel
model S�. The third step consists of ray-casting across space
and time. For each pixel (u;v) in I�+ a ray is cast into the
scene and intersected with the interpolated scene shape (the
smooth surface). The scene flow is then followed forwards
and backwards in time to the neighboring time instants. The
corresponding points at those times are projected into the in-
put images, the images sampled at the appropriate locations,
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t =1.00 t =1.25 t =1.50 t =1.75 t =2.00

Figure 4: The scene shape can be interpolated between neighboring time instants by flowing the voxels at time t forwards with an appropriate
multiple of the scene flow. Notice how the arm of the dancer flows smoothly upwards and outwards from t = 1:00 to t = 2:00.

and the results blended to give the novel image pixel I�+(u;v).
Our algorithm can therefore be summarized as:

1. Flow the voxel models to estimate S�.
2. Fit a smooth surface to S�.
3. Ray-cast across space and time.

We now describe these 3 steps in detail starting with Step 1.
Since Step 3. is the most important step and can be explained
more easily without the complications of surface fitting, we
describe it next, before explaining how intersecting with a
surface rather than a set of voxels modifies the algorithm.

3.2. Flowing the Voxel Models

The scene shape is described by the voxels St at time t and
the voxels St+1 at time t +1. The motion of the scene is de-
scribed by the scene flow Ft

i for each voxel Xt
i in St . We now

describe how to interpolate the shapes St and St+1 using the
scene flow. By comparison, previous work on shape interpo-
lation is based solely on the shapes themselves rather than
on a flow field connecting them or on interpolating between
manually selected feature points 1; 2; 8; 18. We assume that the
voxels move at constant speed in straight lines and so flow
the voxels with the appropriate multiple of the scene flow.
(In making this constant linear motion assumption we are as-
suming that the motion is temporally “smooth” enough. This
assumption does not impose spatial smoothness or rigidity
on the motion.) If t� is an intermediate time (t � t� � t+1),
we interpolate the shape of the scene at time t� as:

S� = fXt
i +(t�� t)�Ft

i j i = 1; : : : ;Vtg (3)

i.e. we flow the voxels forwards from time t. Figure 4 con-
tains an illustration of voxels being flowed in this way.

Equation (3) defines S� in an asymmetric way; the voxel
model at time t + 1 is not even used. Symmetry and other
desirable properties of the scene flow are discussed in Sec-
tion 4 after we have presented the ray-casting algorithm.

3.3. Ray-Casting Across Space and Time

Once we have interpolated the scene shape we can ray-cast
across space and time to generate the novel image I�+. As il-
lustrated in Figure 5, we shoot a ray out into the scene for
each pixel (u;v) in I�+ at time t� using the known geome-
try of camera C+. We find the intersection of this ray with
the flowed voxel model. Suppose for now that the first voxel
intersected is Xt�

i = Xt
i + (t�� t)�Ft

i . (Note that we will
describe a refinement of this step in Section 3.4.)

We need to find a color for the novel pixel I�+(u;v). We
cannot project the voxel Xt�

i directly into an image because
there are no images at time t�. We can find the corresponding
voxels Xt

i at time t and Xt+1
j = Xt

i +Ft
i at time t + 1, how-

ever. We take these voxels and project them into the images
at time t and t + 1 respectively (using the known geome-
try of the cameras Ci) to get multiple estimates of the color
of I�+(u;v). This projection must respect the visibility of the
voxels Xt

i at time t and Xt+1
j at time t +1 with respect to the

cameras at the respective times. See Section 5.2 for details.

Once the multiple estimates of I�+(u;v) have been ob-
tained, they are blended. Ideally we would like the weighting
function in the blend to satisfy the property that if the novel
camera C+ is one of the input cameras Ci and the time is one
of the time instants t� = t, the algorithm should generate the
input image It

i , exactly. We refer to this requirement as the
same-view-same-image principle.

There are 2 components in the weighting function, space
and time. The temporal aspect is the simpler case. We just
have to ensure that when t� = t the weight of the pixels at
time t is 1 and the weight at time t + 1 is 0. We weight the
pixels at time t by (t+1)� t� and those at time t+1 so that
the total weight is 1; i.e. we weight the later time t�� t.

The spatial component is slightly more complex because
there may be an arbitrary number of cameras. The major
requirement to satisfy the principle, however, is that when
C+ = Ci the weight of the other cameras is zero. One way
this can be achieved is as follows. Let θi(u;v) be the angle
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Figure 5: Ray-casting across space and time. 3a. A ray is shot out into the scene at time t = t� and intersected with the flowed voxel model.
(In Section 3.4 we generalize this to an intersection with a smooth surface fit to the flowed voxels.) 3b. The scene flow is then followed forwards
and backwards in time to the neighboring time instants. 3c. The voxels at these time instants are then projected into the images and the images
sub-sampled at the appropriate locations. 3d. The resulting samples are finally blended to give I�+(u;v).

between the rays from C+ and Ci to the flowed voxel Xt�
i at

time t�. The weight of pixel (u;v) for camera Ci is then:

1=(1� cosθi(u;v))
Vis(t;u;v)

∑
j=1

1=(1� cosθ j(u;v))

(4)

where Vis(t;u;v) is the set of cameras for which the voxel
Xt

i is visible at time t. This function, a variation of view de-
pendent texture mapping 4, ensures that the weight of the
other cameras tends to zero as C+ approaches one of the in-
put cameras. It is also normalized correctly so that the total
weight of all of the visible cameras is 1.0. An equivalent
definition is used for the weights at time t +1. More sophis-
ticated weighting functions could be used that, for example,
take into account how frontal the surface is or attempt to es-
timate the parameters of more complex BRDF functions 17.
The investigation of such approaches is left as future work.

In summary (see also Figure 5), ray-casting across space
and time consists of the following four steps:

3a. Intersect the (u;v) ray with St� to get voxel Xt�
i .

3b. Follow the flows to voxels Xt
i and Xt+1

j .
3c. Project Xt

i & Xt+1
j into the images at times t & t+1.

3d. Blend the estimates as a weighted average.

For simplicity, the description of Steps 3a. and 3b. above is
in terms of voxels. We now describe the details of these steps
when we fit a smooth surface through these voxels.

3.4. Ray-Casting to a Smooth Surface

The ray-casting algorithm described above casts rays from
the novel image onto the model at the novel time t�, finds
the corresponding voxels at time t and time t + 1, and then
projects those points into the images to find a color. How-
ever, the reality is that voxels are just point samples of an
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Figure 6: Ray-casting to a smooth surface. We intersect each cast
ray with a smooth surface interpolated through the voxel centers.
The perturbation to the point of intersection Dt�

i can then be trans-
ferred to the previous and subsequent time instants.

underlying smooth surface. If we just use voxel centers, we
are bound to see cubic voxel artifacts in the final image, at
least unless the voxels are extremely small.

The situation is illustrated in Figure 6. When a ray is cast
from the pixel in the novel image, it intersects one of the
voxels. The algorithm, as described above, simply takes this
point of intersection to the be center of the voxel Xt�

i . If,
instead, we fit a smooth surface to the voxel centers and in-
tersect the cast ray with that surface, we get a slightly per-
turbed point Xt�

i +Dt�
i . Assuming that the scene flow is con-

stant within each voxel, the corresponding point at time t
is Xt

i +Dt�
i . Similarly, the corresponding point at t + 1 is

Xt+1
j +Dt�

i = Xt
i +Ft

i +Dt�
i . If we simply use the centers

of the voxels as the intersection points rather than the modi-
fied points, a collection of rays shot from neighboring pixels
will all end up projecting to the same points in the images,
resulting in obvious box-like artifacts.

Fitting a surface through an arbitrary set of voxel cen-
ters in 3-D is a well studied problem 6; 10. Most algorithms
only operate on regular grids, however. Fitting a 3D sur-
face through the voxel centers of an irregular grid is a much
harder problem. However, the main requirement of the fit
surface in our case is just that it prevents the discrete jump
while moving from one voxel to a neighbor. What is impor-
tant is that the interpolation between the coordinates of the
voxels be smooth. We propose the following simple algo-
rithm to approximate the surface fit.

For each pixel ui in the novel image, the 3D coordinates of
the corresponding voxel at time t, Xt

= (xt
;yt

; zt
) are stored

to give a 2-D array of (x;y; z) values. Figure 7 shows the
typical variation of the x component of Xt with the image
coordinate ui. Because of the discrete nature of the voxels,
this function changes abruptly at the voxel centers, whereas,
we really want it to vary smoothly, say like the dotted line.
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Figure 7: The voxel coordinate changes in an abrupt manner for
each pixel in the novel image. Convolution with a simple Gaussian
kernel centered on each pixel changes its corresponding 3-D coor-
dinate to approximate a smoothly fit surface.

We apply a Gaussian smoothing operator centered at each
pixel (shown for u2, u3, and u4) to the function xt

(u) to get
a new value of xt (and similarly for yt

(u) and zt
(u)). The

smoothed 3D vector function X
t
= (xt

;yt
; zt
) is then used in

place of Xt
= (xt

;yt
; zt
); i.e. the perturbation Dt�

i = X
t
�Xt .

Figure 8 illustrates the importance of surface fitting. Fig-
ure 8(a) shows the voxel model rendered as a collection of
voxels. The voxels are colored with the average of the colors
of the pixels that they project to. Figure 8(b) shows the result
of ray-casting, but just using the voxels. Figure 8(c) shows
the result after intersecting the cast ray with the smooth sur-
face. As can be seen, without the surface fitting step the ren-
dered images contain substantial voxel artifacts.

4. Ideal Properties of the Scene Flow

In Section 3.2 we described how to flow the voxel model
forward to estimate the interpolated voxel model S�. In par-
ticular, Equation (3) defines S� in an asymmetric way; the
voxel model St+1 at time t + 1 is not even used. A related
question is whether the interpolated shape is continuous as
t�! t+1; i.e. in this limit, does S� tend to St+1? Ideally we
want this property to hold, but how do we enforce it?

One suggestion might be that the scene flow should map
one-to-one from St to St+1. Then, the interpolated scene
shape will definitely be continuous. The problem with this
requirement, however, is that it implies that the voxel mod-
els must contain the same number of voxels at times t and
t+1. It is therefore too restrictive to be useful. For example,
it outlaws motions that cause the shape to expand or contract.
The properties that we really need are:

Inclusion: Every voxel at time t should flow to a voxel at
time t +1: i.e. 8t; i X t

i +Ft
i 2 St+1.

Onto: Every voxel at time t+1 should have a voxel at time
t that flows to it: 8t; i; 9 j s:t: Xt

j +Ft
j = Xt+1

i .

These properties imply that the voxel model at time t flowed
forward to time t +1 is exactly the voxel model at t +1:

fXt
i +Ft

i j i = 1; : : : ;Vtg = St+1
: (5)
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(a) Colored Voxel Model (b) Ray-Casting With Cubic Voxels (c) Ray-Casting With Surface Fit

Figure 8: The importance of fitting a smooth surface. (a) The voxel model rendered as a collection of voxels, where the color of each voxel
is the average of the pixels that it projects to. (b) The result of ray-casting without surface fitting, showing that the voxel model is a coarse
approximation. (c) The result of intersecting the cast ray with a surface fit through the voxel centers results in a far better rendering.

This means that the scene shape will be continuous at t + 1
as we flow the voxel model forwards using Equation (3).

4.1. Duplicate Voxels

Is it possible to enforce these 2 conditions without the scene
flow being one-to-one? It may seem impossible because the
second condition seems to imply that the number of voxels
cannot get larger as t increases. It is possible to satisfy both
properties, however, if we introduce what we call duplicate
voxels. Duplicate voxels are additional voxels at time t which
flow to different points at t+1; i.e. we allow 2 voxels Xt

i and
Xt

j (i 6= j) where (xt
i ;y

t
i; z

t
i) = (xt

j;y
t
j; z

t
j) but yet Ft

i 6= Ft
j .

A voxel model is then still just a set of voxels and but can
satisfy the 2 desirable properties above. There may just be a
number of duplicate voxels with different scene flows.

Duplicate voxels also make the formulation more sym-
metric. If the 2 properties inclusion and onto hold, the flow
can be inverted in the following way. For each voxel at the
second time instant there are a number of voxels at the first
time instant that flow to it. For each such voxel we can add
a duplicate voxel at the second time instant with the inverse
of the flow. Since there is always at least one such voxel
(onto) and every voxel flows to some voxel at the second
time (inclusion), when the flow is inverted in this way the
two properties hold for the inverse flow as well.

So, given forwards scene flow where inclusion and onto
hold, we can invert it using duplicate voxels to get a back-
wards scene flow for which the properties hold also. More-
over, the result of flowing the voxel model forwards from
time t to t� with the forwards flow field is the same as flow-
ing the voxel model at time t+1 backwards with the inverse
flow. We can then formulate shape interpolation symmetri-
cally as flowing either forwards and backwards. Whichever
way the flow is performed, the result will be the same.

The scene flow algorithm 20 unfortunately does not guar-
antee either of the 2 desirable properties. Therefore, we take
the scene flow computed with 20 and modify it as little as
possible to to ensure that the 2 properties hold. First, for
each voxel Xt

i we find the closest voxel in St+1 to Xt
i +Ft

i
and change the flow Ft

i so that Xt
i flows there. Second, we

take each voxel Xt+1
i at time t+1 that does not have a voxel

flowing to it and add a duplicate voxel at time t that flows to
it by averaging the flows in neighboring voxels at t +1.

4.2. Results With and Without Duplicate Voxels

The importance of the duplicate voxels is illustrated in Fig-
ure 9. This figure contains 2 rendered views at an intermedi-
ate time, one with duplicate voxels and one without. Without
the duplicate voxels the model at the first time instant does
not flow onto the model at the second time. When the shape
is flowed forwards holes appear in the voxel model (left) and
in the rendered view (right). With the duplicate voxels the
voxel model at the first time does flow onto the model at the
second time and the artifacts disappear.

The need for duplicate voxels to enforce continuity
is illustrated in the movie duplicate_voxels.mpg available
from http://www.ri.cmu.edu/projects/project_464.html. This
movie consists of a sequence of frames generated using our
algorithm to interpolate across time only. (Results interpo-
lating across space are included later.) The movie contains a
side-by-side comparison with and without duplicate voxels.
Without the duplicate voxels (right) the movie is jerky be-
cause the interpolated shape is discontinuous. With the du-
plicate voxels (left) the movie is very smooth.

The best way to observe this effect is to play the movie
several times. The first time concentrate on the left hand side
with the duplicate voxels. The second time concentrate on
the right hand side. Finally, play the movie one last time and
study both sides at the same time for comparison.
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(a) Without Duplicate Voxels

(b) With Duplicate Voxels

Figure 9: A rendered view at an intermediate time, with and with-
out duplicate voxels. Without the duplicate voxels, the model at the
first time does not flow onto the model at the second time. Holes
appear where the missing voxels should be. The artifacts disappear
when the duplicate voxels are added.

5. Optimization Using Graphics Hardware

Spatio-temporal view interpolation involves 2 fairly com-
putationally expensive operations. It is possible to optimize
these using standard graphics hardware as we now discuss.

5.1. Intersection of Ray with Voxel Model

Steps 3a. and 3b. of our algorithm involve casting a ray from
pixel (u;v) in the novel image, finding the voxel Xt�

i that this
ray intersects, and then finding the corresponding voxels Xt

i
and Xt+1

i at the neighboring time instants. Finding the first
point of intersection of a ray with a voxel model is poten-
tially an expensive step, since the naive algorithm involves
an exhaustive search over all voxels. In addition, extra book-
keeping is necessary to determine the corresponding voxels
at times t and t +1 for each flowed voxel Xt�

i .

We implement this step as follows. Each voxel in the
model St is given a unique ID, which is encoded as a unique
(r;g;b) triplet. This voxel model is then flowed as discussed
in Section 3.2 to give the voxel model S� at time t�. This
voxel model S� (see Equation (3)) is then rendered as a col-
lection of little cubes, one for each voxel, colored with that
voxel’s unique ID. In particular, the voxel model S� is ren-
dered from the viewpoint of the novel camera using standard
OpenGL. Lighting is turned off (to retain the base color of
the cubes), and z-buffering turned on, to ensure that only
the closest voxel along the ray corresponding to any pixel
is visible. Immediately after the rendering, the color buffers
are read and saved. Indexing the rendered image at the pixel

(u;v) gives the ID (the (r;g;b) value) of the corresponding
voxel at time t (and hence at time t +1.)

This method of using color to encode a unique ID for each
geometric entity is similar to the item buffer 21 which is used
for visibility computation in ray tracing.

5.2. Determining Visibility of the Cameras

Step 3c. of our algorithm involves projecting Xt
i and Xt+1

j
into the input images. But how do we compute whether the
Xt

i was actually visible in camera Ck?

Again, we use a z-buffer approach similar to the previous
case, except this time, we don’t need to encode any sort of
information in the color buffers (that is, there are no voxel
IDs to resolve). The occlusion test for Camera Ck runs as
follows. Let Rk and tk be the rotation matrix and translation
vector for camera Ck relative to the world coordinate system.
Then, Xt

i is first transformed to camera coordinates:8>><
>>:

x1
x2
x3
x4

9>>=
>>;
=

�
Rk tk
0 1

�
Xt

i : (6)

The image coordinates of the projection u = (u;v) are ob-
tained by multiplying by the 3�4 camera matrix Pk

u = Pkx (7)

The voxel model is then rendered, with the camera trans-
formation matrix set to be exactly that corresponding to the
calibration parameters of camera Ck. After the rendering, the
hardware z-buffer is read. This z-buffer now gives the depth
to the nearest point on the shape for any particular pixel in
the rendered image, and therefore any pixel in the real image
as well, since the viewpoints are identical for both.

In reality, the value of the hardware z-buffer is between
zero and one, since the true depth is transformed by the per-
spective projection that is defined by the near and far clip-
ping planes of the viewing frustum. However, since these
near and far clipping planes are user-specified, the transfor-
mation is easily invertible and the true depth-map can be re-
covered from the value of the z-buffer at any pixel.

Let (u;v) be the image coordinates in image Ik, as com-
puted from Equation (7). The value of the z-buffer at that
pixel, zk(u;v) is compared against the value of x3 (which
is the distance to the voxel X(i; j) from the camera). If
x3 = zk(u;v), then the voxel X(i; j) is visible in the cam-
era. Instead if x3 > zk(u;v) the voxel X(i; j) is occluded by
another part of the scene.

6. Experimental Results

We have applied our spatio-temporal view interpolation al-
gorithm to two highly non-rigid dynamic events: a “Paso
Doble Dance Sequence” and a “Person Lifting Dumbbells.”
These events were both imaged in the CMU 3D Room 7.
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6.1. Sequence 1: Paso Doble Dance Sequence

The first event is a “Paso Doble Dance Sequence”. The im-
ages are those used in the figures throughout this paper. See
Figures 1, 2, 5, 6, and 9. In the sequence, the dancer turns as
she un-crosses her legs and raises her left arm.

The input to the algorithm consists of 15 frames from each
of 17 cameras, in total 255 images. Handmarking point cor-
respondences in 255 images is clearly impossible. Hence it
is important that our algorithm is fully automatic. The input
frames for each of the cameras are captured 1/10 of a sec-
ond apart, so the entire sequence is 1.5 seconds long. The 17
cameras are distributed all around the dancer, with 12 of the
cameras on the sides, and 5 cameras overhead.

Figure 10 shows a collection of frames from a virtual
slow-motion fly-through of this dance sequence. The path of
the camera is initially towards the scene, then rotates around
the dancer, and finally moves away. Watch the floor (which
is fixed) to get a good idea of the camera motion. We interpo-
late 9 times between each neighboring pair of input frames.

The movie dance_flyby.mpg which is available from our
website at http://www.ri.cmu.edu/projects/project_464.html
was created by assembling the spatio-temporal interpolated
images. Also shown is a comparison with what would have
been obtained had we just switched between the closest in-
put images, measured both in space and time. Note that
the movie created in this manner looks like a collection of
snap-shots, whereas the spatio-temporal fly-by is a much
smoother and natural looking re-rendering of the event.

There are some visible artifacts in the fly-by movie,
such as slight blurring, and occasional discontinuities. The
blurring occurs because our shape estimation is imperfect.
Therefore corresponding points from neighboring cameras
are slightly misaligned. The discontinuities are because of
imperfect scene flow - a few voxels have erroneous flows
and flow to the wrong place at the next time instant.

6.2. Sequence 2: Person Lifting Dumbbells

The second event consists of a “Person Lifting Dumbbells”.
The person pushes up a pair of dumbbells from their shoul-
der to full arm extension, and then brings them down again.
The input to the algorithm consists of 9 frames from each of
14 cameras for a total of 126 images. Again, handmarking
point correspondences in so many images would be impos-
sible. Two images at consecutive time steps from each of two
cameras are shown in Figure 11. This figure also contains the
voxel model computed at the first time instant and the scene
flow computed between the those two time steps.

From these input images, voxel models, and scene flows
we used our spatio-temporal view interpolation algorithm
to generate a re-timed slow-motion movie of this sequence.
Again, we interpolated 9 frames between each pair in the
input. To better illustrate the motion, we also left the novel

viewpoint fixed in space. The novel viewpoint doesn’t cor-
respond to any of the camera views and could easily be
changed. Figure 12 shows a number of sample frames
from the re-timed movie dumbbell_slowmo.mpg available
from http://www.ri.cmu.edu/projects/project_464.html. No-
tice the complex non-rigid motion on the shirt as the person
flexes their muscles and the articulated motion of their arms.

Just like for the dance sequence, we also include a side-
by-side comparison with the closest input image. In this
movie, the viewpoint doesn’t change and so the closest im-
age always has the same pose. The closest image in time just
steps through the original sequence from that camera.

6.3. Efficiency of the Algorithm

The computation time of spatio-temporal view interpolation
is linear in the number of pixels in the output image, irre-
spective of the complexity of the model, as for most image
based rendering algorithms. It is also linear in the number of
input images that are used to contribute to each pixel of the
output. In our examples we compute a 640� 480 novel im-
age, using the six closest images (3 closest cameras at each
of 2 time instants). The algorithm takes about 5 seconds to
run for each output frame on an SGI 02, using graphics hard-
ware to compute the ray-voxel intersection and the visibility.
See 19 for more details of the experimental set-up and the ef-
ficiency of the voxel carving and scene flow algorithms.

7. Conclusion

7.1. Summary

We have described “spatio-temporal view interpolation,” an
algorithm for creating virtual images of a non-rigidly vary-
ing dynamic event across both space and time. We have
demonstrated how this algorithm can be used to generate
smooth, slow-motion fly-by movies of the event.

7.2. Future Work

Perhaps the major limitation of our algorithm is that it as-
sumes that the cameras are fully calibrated. One possible di-
rection for future work is to develop a projective version of
the algorithm that can operate with un-calibrated data. An-
other possible extension is to investigate more sophisticated
blending functions that, for example, take into account how
frontal the surface of the scene is 17. More complex BRDF
functions could also be used. Finally, work could be per-
formed to characterize the errors in 3D scene flow and the
effect that they have on the rendered images.
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