
EUROGRAPHICS 2017/ J. J. Bourdin and A. Shesh Education Paper

Generating ASCII-Art: A Nifty Assignment from a
Computer Graphics Programming Course

Eike Falk Anderson1

1The National Centre for Computer Animation, Bournemouth University, UK

Figure 1: Photo to coloured ASCII Art – image conversion by a successful student submission.

Abstract
We present a graphics application programming assignment from an introductory programming course with a computer graph-
ics focus. This assignment involves simple image-processing, asking students to write a conversion program that turns images
into ASCII Art. Assessment of the assignment is simplified through the use of an interactive grading tool.

1. Educational Context

The assignment is used in the introductory computing and program-
ming course "Computing for Graphics" (worth 20 credits, which
translate into 10 ECTS credits in the European Credit Transfer and
Accumulation System). The course runs in the first year of one of
the programmes of our undergraduate framework for computer an-
imation, games and effects [CMA09] at the National Centre for
Computer Animation (NCCA). Students of this BA programme
aim for employment as a TD (Technical Director) for visual effects
and animation or as a technical artist in the games industry.

2. Course Aims and Assessment

This course emphasizes procedural programming (using the C pro-
gramming language), with a focus on important techniques and
concepts that are useful for computer graphics, computer games
and computer animation. At the assessment stage, students are ex-
pected to demonstrate the ability to implement simple CG algo-
rithms using an appropriate graphics API as well as to design and
implement a computer program employing suitable software engi-
neering principles.
The course is assessed through an exam and a coursework assign-
ment (each counting for 50% of the grade), the latter of which typ-

ically takes the form of a short (4-week) project at the end of the
course. This assignment requires the design and implementation of
a computer graphics application supported by a report discussing
its design and implementation to assess the students’ programming
competence at the end of the introductory programming sequence.

3. Coursework Assignment

The assignment assesses software development practice, knowl-
edge of procedural programming concepts as well as understand-
ing of basic 2D computer graphics techniques and algorithms. One
of the project options – ranging from simple pixel paint programs
to image processing tools – is the automatic generation of ASCII
Art [Wik17] from 2D images, such as photographs. There exist
a number of more or less complex approaches for achieving this
[Mik12,XZW10,OR08], but a simple approach is to assign bright-
ness values to character pixel-blocks (automated [Mik12] or manu-
ally [Par11]) and mapping these to image areas (blocks) of similar
brightness.
Our students use Linux workstations employing Makefiles to build
projects created with the Geany (https://www.geany.org)
code editor and the Clang (http://clang.llvm.org) C
compiler. Graphics context, image and font handling is provided
by the SDL2 library (https://www.libsdl.org).

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/eged.20171021

https://www.geany.org
http://clang.llvm.org
https://www.libsdl.org
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20171021


E.F. Anderson / Generating ASCII-Art

3.1. Assignment Brief: ASCII Art Image Conversion

Your task is to write a computer program in C that converts source
image(s) to ASCII art, i.e. a representation of the original image
using ASCII characters only.
The program you create should allow the user to select an image
or a sequence of images (e.g. animation frames) and then process
them (match pixel regions with ASCII characters of comparable
intensity/brightness), saving the results in a format selectable by
the user, which should be either as ASCII text files, an image file
of ASCII characters (with a selectable text and background colour)
or as an image of coloured ASCII characters (using the average
colour of the pixels they replace) on a neutral background. Your
submission needs to include the following:

1. One or more well commented source code files and a Makefile
that will build the program without errors on any machine in the
labs.

2. A PDF user Manual for your application. The User Manual
should explain how to initialise and run your program.

3. A PDF report documenting and explaining your application.
The report should be approximately 6–8 A4 pages of text and
should not exceed 10 A4 pages. The report should contain a
section called “Background” or “Introduction” explaining the
algorithms, techniques, and ideas used in your project. It should
also have a section called “Implementation” explaining the
structure of your program in terms of the implementation of
the algorithms and techniques used, describing flow of control,
and explain the implementation of the most important functions
or procedures. This section should serve to illuminate but not
replicate your code. Finally the report should contain a section
called “Results” which includes images, or references to images
(and video) demonstrating and explaining the results produced
by your program.

4. Appropriate sample results (and source data, such as original
images where this applies), such as animations or images gen-
erated by your program.

3.2. Additional Guidance

In the assignment’s introduction lecture a basic strategy that could
be employed to complete the assignment is outlined:

• First a suitable monospace (fixed-width) font (e.g. Liberation
Mono on Linux) needs to be analysed, e.g. by creating images
of white letters on a black background and sorting them by their
brightness (average pixel colour).

• Then the source image could be divided into pixel groups match-
ing a single character’s size (width/height)for which the average
colour and (converted to grayscale) average brightness is deter-
mined.

• Finally these pixel areas are mapped to the closest matching
ASCII characters and printed as ASCII art.

3.3. Assignment Assessment

The assessment criteria for the assignment that directly relate to the
quality of the source code and usability of the program – including
effective use of functional decomposition, relevant control struc-
tures and data structures – count for 50% of the assignment grade.

Figure 2: Interactive Grading Tool (included with this paper as
supplemental material): Sliders and buttons mapped to the assess-
ment criteria generate detailed feedback that can be copied and
pasted into the coursework feedback forms used in our faculty.

The remaining 50% of the grade are determined by the project re-
port, the ‘visual impact’ of the generated artefacts – based on the
‘Results’ section of the report and/or submitted artefacts generated
by the program – and the source code documentation (provision of
relevant and appropriate comments in the source code). To speed
up the grading process and to ensure that grading and feedback
for large numbers of submissions are consistent, we have created a
web-based grading tool aligned to the assessment criteria that sug-
gests a grade and generates appropriate feedback text (Figure 2).

4. Discussion

The ASCII Art assignment option is suitable for assessing all of the
course aims. It is also very popular, e.g. in the 2014/2015 academic
year it was selected by 88 of a total of 113 students. Of these, more
than 80% passed, with the students who auto-generated the bright-
ness values generally achieving higher grades.

5. Acknowledgements

The teaser image was generated using the assignment submission
by Lucy Devlin. Original image courtesy of Yuri Birte Anderson.

References
[CMA09] COMNINOS P., MCLOUGHLIN L., ANDERSON E. F.: Educat-

ing technophile artists: Experiences from a highly successful computer
animation undergraduate programme. In ACM SIGGRAPH ASIA 2009
Educators Program (2009), pp. 1:1–1:8. 1

[Mik12] MIKOLAY M.: A basic ascii art algorithm, 2012. [accessed
10-January-2017]. URL: http://mattmik.com/articles/
ascii/ascii.html. 1

[OR08] O’GRADY P. D., RICKARD S. T.: Automatic ascii art conversion
of binary images using non-negative constraints. In IET Irish Signals and
Systems Conference (ISSC 2008) (2008), pp. 186–191. 1

[Par11] PARBERRY I.: Ascii art on a pixel shader, 2011. [ac-
cessed 10-January-2017]. URL: http://larc.unt.edu/ian/
art/ascii/shader/. 1

[Wik17] WIKIPEDIA: Ascii art — wikipedia, the free encyclopedia,
2017. [accessed 5-January-2017]. URL: https://en.wikipedia.
org/w/index.php?title=ASCII_art. 1

[XZW10] XU X., ZHANG L., WONG T.-T.: Structure-based ascii art. In
ACM SIGGRAPH 2010 Papers (2010), pp. 52:1–52:10. 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

18

http://mattmik.com/articles/ascii/ascii.html
http://mattmik.com/articles/ascii/ascii.html
http://larc.unt.edu/ian/art/ascii/shader/
http://larc.unt.edu/ian/art/ascii/shader/
https://en.wikipedia.org/w/index.php?title=ASCII_art
https://en.wikipedia.org/w/index.php?title=ASCII_art

