Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

Adaptive Treelet Meshes for Efficient Streak-Surface
Visualization on the GPU

R. Fuchs!, B. Schindler!, R. Carneckyl, J. Waserz, Y. Jangl, and R. Peikert!

'ETH Zurich, Switzerland,

2VRVis Vienna, Austria

Abstract

We describe a novel adaptive mesh representation for streak-surfaces. The surface is represented as a mesh of
small trees of initial depth zero (treelets). This mesh representation allows for efficient integration, refinement,
coarsening and appending of surface patches utilizing the computational capacities of modern GPUs. Integra-
tion, refinement, and rendering are strictly separated into effectively parallelizable substeps of the streak-surface
integration algorithm. We also describe a sampler framework which unifies the handling of different vector field

representations.

1. Introduction

Turbulent fluids are characterized by their nonlinear behav-
ior, resulting in quick mixing of the fluid particles. For ma-
terial surfaces this means a constant streching and warping
of the surface. Accordingly, the discretized representation,
which is used to track the movement of the surface, has to
be refined many times during integration. Streak-surfaces
are a class of especially relevant material surfaces since
they are related to time-dependent topological structures
and can convey important topological information about the
flow [SW10,FBTW10].

The computational model and memory access capabilities
of modern GPUs are still not as flexible as that of a CPU.
One instance of this problem is handling triangle-mesh con-
nectivity changes on the GPU. Since the number of trian-
gles adjacent to a vertex of a triangle mesh is arbitrary, large
differences in the number of computations at individual ver-
tices during parallel processing of the triangle mesh are pos-
sible. Therefore it is very often impossible to prove strong
guarantees regarding the computational cost of an algorithm.
Since triangle meshes are not optimally suited for process-
ing on the GPU, many techniques resort to using uncon-
nected quads or particles for surface representation. How-
ever, the lack of connectivity reduces the usefulness of the
surface representation when it comes to further processing
and analysis (e.g., computing surface curvature or flux). The
central objective of this paper is a streak-surface representa-
tion which can be refined, coarsened and undergo connectiv-

(© The Eurographics Association 2012.

DOI: 10.2312/PE/VMV/VMV12/119-126

ity changes in parallel on the GPU. To achieve this goal we
make the following contributions:

e Streak-surface integration on the GPU featuring arbitrary
levels of refinement based on a novel representation as a
mesh of linked trees of low depth (treelets).

e The streak-surface integration is decomposed into a num-
ber of simple functions which parallelize well. All steps
are of linear computational and memory complexity.

e A sampler framework which separates integration from
data handling.

The evaluation shows that the algorithm scales linearly with
the number of quads in the streak-surface.

2. Related Work

Streak-based visualization techniques are an important link
to experimental flow visualization techniques. Krishnan et
al. [KGJ09] present a high quality, high precision streak-
surface integration algorithm which operates on the CPU
and directly modifies a triangle mesh data structure using
the flexibility of the CPU. This approach can generate high
quality results but would be quite difficult to perform on the
GPU efficiently. An approach to circumvent the difficulties
of maintaining a triangle-mesh data structure is presented
by Schafhitzel [Sch08]. He suggests a point-based approach
where individual particles are integrated and then rendered
by surface splatting. Similarly, Cuntz et al. [CKSWO0S] sug-
gest a particle level set technique to compute streak volumes.
McLoughlin et al. [MLZ10] present a streak-surface tech-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV12/119-126

120 R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization

nique based on a mixed quad- and triangle-mesh where spe-
cial T-junction objects can represent an additional type of
connectivity in the mesh. Wiebel et al. [WTS*07] suggest
extending streaklines by moving the seed point over time.

Many GPU-based approaches apply a trade-off between
memory consumption and speed on one side, and flexibility
on the other. Recently, Biirger et al. [BFTW09] present the
first surface representation suitable for the GPU. This repre-
sentation can handle iterated surface refinement and coars-
ening. It is based on the idea of reserving enough space for
the highest resolution and leaving all memory unused where
such a high resolution is not required. This allows for a cer-
tain degree of refinement at the cost of large proportions
of unused memory in all places where the highest refine-
ment level is not required. To be more precise, the memory
layout requires 3 - s-m - (28 — 1) floating point variables in
memory, where s is the number samples of the seed curve,
R is the level of refinement, and m is the number of inte-
gration steps. We can see that the memory requirement is
independent of which proportion of vertices is actually cre-
ated for the streak-surface. The exponential coefficient will
lead to a large proportion of unused memory when refine-
ment is required only locally. Another trade-off is suggested
by von Funck et al. [vFWTS08] who use a triangular mesh
of fixed topology. This does not allow for refinement, but
uses GPU-memory efficiently. Where the surface curvature
becomes too high, transparency is increased. Ultimately, the
most complex regions become fully transparent and are not
integrated further.

Recently, Weinkauf et al. [WT10] presented a derived
vector field in which streaklines can be computed by stream-
line integration. To create the derived vector field streak-
lines are seeded on a regular grid, sampling the whole 4D
time+space domain densely. Based on this representation,
streak-surfaces can be constructed using a stream-surface
integration algorithm. This saves computational ressources
at the cost of additional memory requirements, which is a
good trade-off on the CPU. For streak-surface integration on
the GPU this approach has several drawbacks: it introduces
sampling artifacts, and is therefore especially unsuited for
scattered SPH data. Furthermore, it samples the data onto a
Cartesian grid, which adds additional data which needs to
be stored. Most importantly, when computing a surface on-
the-fly a the largest proportion of the derived field are not
needed, since it does not contribute to the streak-surface of
interest. For a more in-depth overview of the related work
we suggest the state of the art reports by McLoughlin et
al. [MLP*10] and Pobitzer et al. [PPF*11].

3. Surface Representation

In this paper, the surface is represented by two structures:
first, an array of vertices (i.e., particles), which have posi-
tions in space and time; second, by a mesh of treelets which
stores the topological information about which vertices are

INNER NODE LEAF NODE LEAF ROPE DETAIL

level ropes leaf ropes level ropes
% 1
7
leaf ropes
J5. 4 wY d=3 : =
<« —> <« - <« =
parent “n
A 3
e
L (@) iz (b) l]

Figure 1: Data structure representing leaf nodes and inner
nodes of the treelet. (a) Inner nodes can store pointers to a
parent node, to neighboring nodes on the same refinement
level and pointers to four child nodes. (b) Leaf nodes rep-
resent quads. Level ropes point to one neighboring quad on
each side. (c) There can be more than one neighbor leaf quad
in each direction.
SurfalceTimeIines)

./ S \‘\

: L ' (@)
Surface Connectivity .

level ropes

JAIN—e
I |rcvpfes H
m

Sos 0

U]
L0617 11 0000 b)
GPU Array Representation

Q b3 A B
[o]s]s]o]a]B]c]o]s[13[17[14]13] 1 [16]17]
level ropes

I IZIEI [[[v[o] [efc[] [[o]a]
leaf ropes

I IfAIﬂI [[[e[e] [efcfo] [[ofa]
leas

[] ©

Figure 2: Treelet mesh. (a) Three timelines (orange, green
and blue) of the surface. (b) Hierarchical representation of
the surface. Only leaf ropes which differ from level ropes
are shown. The leaf node ¥ at the vertices 1, 2, 6, 5 is re-
fined once. (c) Representation on the GPU. —1 represents
the NULL pointer, empty fields point to parts of the surface
which are not shown in the illustration.

(© The Eurographics Association 2012.

R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization 121

adjacent to each other. A freelet is a small tree of linked
nodes, which represent different levels of refinement hierar-
chically. The tree structure allows for straightforward local
refinement of an individual node without global modification
of the surface connectivity.

Treelet nodes are initially created as leaf nodes, in which
case they represent individual quads of the surface mesh.
During refinement, a quad is refined into four new quads.
In this case, the leaf node becomes an inner node and the
four new leaf nodes become its children. Each node in a
treelet stores the following connectivity information: four
child pointers, four level ropes, and four leaf ropes. The child
pointers point either to the quad vertices (if the node is a
leaf), or to other nodes (if the node is an inner node). The
level ropes point to neighboring nodes on the same refine-
ment level. Leaf ropes are only used in leaf nodes and point
to neighboring leaves. This is important to avoid searching
for neighboring leaves during updates (e.g., coarsening), as
neighboring leafes might lie on different treelet levels. Fig-
ure 1 shows the different pointers on a single treelet node.

The indices to the children can either point to vertices (if
the node is a leaf) or to other nodes (if the node is an in-
ner node). The level ropes point to neighboring nodes on
the same refinement level. Leaf nodes also store indices of
neighboring leaves. This is important to avoid searching for
neighboring leaves during updates (e.g. coarsening) of the
streak-surface. In Figure 2(a), the adaptive streak-surface
representation is illustrated in more detail. The seed curve,
depicted in orange, is advected twice, creating two additional
timelines, depicted in blue and green. The quad at the ver-
tices 1, 2, 6 and 5 has been refined once to create the new ver-
tices 13 to 17. Figure 2(b) shows a different representation of
the same surface, where the links between quads are repre-
sented better: quads on the same level are linked by pointers
providing connectivity to the mesh. We call these pointers
level ropes since they connect nodes of the same level in the
trees. Corresponding to the child pointers (green) connecting
down the tree, there is also a parent pointer in the opposite
direction. Figure 2(c) shows how the treelets are represented
in linear memory on the GPU.

The GPU memory layout is as follows: we represent ver-
tices as structures of four £1oat values to store the position
in space and the integration time (aka. lifetime) of a particle.
Fetching four float values at the same time is implemented
very efficiently on current GPUs. All vertices are stored in
a consecutive array on the GPU and new vertices are added
to the end of the array using an implementation similar to
std: :vector. The nodes are represented by multiple ar-
rays storing child indices, parent indices, level ropes and leaf
ropes separately. This way we can fetch the properties of a
quad independently. Since the properties of leaf nodes and
inner nodes can be stored in the same data structure they all
reside in a common linear array in GPU memory. On current

(© The Eurographics Association 2012.

GPU architectures each node requires 13 bytes of memory
and each vertex requires 16 bytes of memory.

streak surface leaf ropes
|
I . 1 L
lower -

m
level \
higher P = =
level pammu

i
T T T obstacle equal refinement levels
0 102 (@ (b)

level ropes of inner nodes

level ropes of leaves

Figure 3: Ropes and refinement. (a) The surface is refined
twice. We use a coarse mesh for illustration purposes. (b)
Leaf ropes to neighbors of the same refinement level are
shown in blue. Uni-directional leaf ropes pointing upwards
are shown in magenta at their starting point. Bi-directional
leaf ropes between neighbors of different levels are shown
in red. (c) Level ropes between leaf nodes. (d) Level ropes
between non-leaf nodes.

Figure 3 shows a concrete example of a refined surface
and the ropes providing connectivity in the surface. In Fig-
ure 3(b), we can see the leaf ropes connecting the leaf
nodes of the surface. The blue lines represent leaf ropes
connecting nodes at the same level. Red lines represent leaf
ropes which connect leaf nodes of different refinement lev-
els bi-directionally. The magenta ropes point upwards uni-
directionally from nodes in a deeper level of refinement to-
wards larger nodes of smaller refinement level.

4. Algorithm

In this section we describe the streak-surface integration al-
gorithm. We first explain the steps of the algorithm in general
terms. The following subsections provide additional detail
on how each step modifies the treelet mesh.

Overview The algorithm starts with an initialization phase
during which the seed curve is advected once and the first
row of quads is set up in memory. After that, the algorithm
proceeds in five major steps: integration, refinement, coars-
ening, compaction and rendering. See Figure 4 for an illus-
tration of these steps:

0. During initialization the first row of quads is created.
1. Integration moves all vertices one step and creates one
row of leaf nodes.

122 R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization

seed curve O(S)
| I A W

0. INITIALIZATION

first row of quads

Figure 4: Overview. For each step we note the computa-
tional complexity of the operation in Landau notation. Q is
the number of quads, V the number of vertices, and S the
number of seed points.

2. Refinement creates new nodes by subdividing leaf nodes
which have become too big or where the surface has high
curvature. Where new nodes are created the leaf ropes
and level ropes are updated.

3. Coarsening removes spurious quads or quads which have
moved outside of the data domain. In this process all
ropes linking to these quads are removed. Afterwards, the
invalid quads are removed from memory by compaction.
Spurious quads are small quads at places of low mesh
curvature, where the notion of small depends on user-
specified thresholds.

4. Vertex compaction removes unused vertices and updates
the pointers into the vertices array at the leaf quads.

5. To prepare the streak-surface for rendering, cracks are re-
moved from the mesh by creating a new set of vertices
by projecting t-nodes onto the edge of the adjacent leaf
node. To create a compelling rendering, normals can be
computed based on the treelet representation on the GPU.

In the following we will describe all operations in more de-
tail and explain why they all run in linear time. Since the
number of vertices is strictly bounded by four times the num-
ber of quads, we could in principle describe the complexity
in terms of the number of quads Q. However, during steps
where only vertices are involved, we will state the complex-
ity of operations in relation to the number of vertices V.

Integration During a single integration step all vertices
are advected one time increment through the flow. Vertices
which leave the data domain are flagged as invalid so that
they can be removed at a later point in the algorithm. In
the current framework, we use a fixed step size fourth order
Runge-Kutta scheme (RK4) for advection. After the advec-
tion step, a new row of nodes is appended to the surface.
Since we have to advect all vertices, we can conclude that
the integration step is of linear complexity in the number of
vertices.

Refinement For refinement, we compute criteria as sug-
gested in the literature [BFTW09,KGJ09,MLZ10] based on:
the maximal side length, the area of a node, and on an ap-
proximation of the local curvature. This can be done locally
in constant time per leaf node, since we can use the leaf ropes
from the previous step to find neighboring leaf quads.

In the next step, we create four new quads and five new
vertices for each quad which is marked for refinement. Four
vertices are created at the edge midpoints of the parent quad
and one at the centroid by interpolation. See also Figure 2
for an illustration where vertices 13 to 17 result from a re-
finement step. In this step the ropes between the four new
quads and their parent index are set. What cannot be set are
the ropes to the adjacent quads, since the refinement oper-
ates in parallel and has to be executed independently for each
quad. Since the refinement has to be done independently of
the neighboring quads to avoid race conditions and to pro-
vide optimal performance it is possible that two neighboring

(© The Eurographics Association 2012.

R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization 123

quads are refined concurrently. In this case, two vertices are
created at the same position. After the local refinement is
finished, we connect the newly created leaves. This is done
by following the level ropes of the parents. With the level
ropes connected in the previous step we can find these dou-
ble vertices and set the vertex indices to the smaller one of
the two.

One advantage of using treelets is that this refinement
strategy can create individual samples on timelines which
were previously not available. In comparison the approach of
Burger et al. [BFTWO09], requires memory for the full time-
line for refinement. This is an important advantage, since
local stretching at one point should not lead to non-local ad-
ditional memory requirements. Since all refinement can be
done locally using direct pointers it is of linear complexity
in the number of quads Q.

Coarsening The coarsening step builds on the computation
of the prefix sum for compaction of the vertex and quad ar-
rays. Harris et al. [HSOOQ7] present a fast way to compute a
prefix sum in parallel using CUDA using an additional array.
The prefix sum is an operation on an array in which each el-
ement in the result list is the sum of the elements in the input
list up to its index. Given an array of values [aj,a, . ..a,] the
result is the array [a;,a; +ap,...,a; + -+ ay]. The prefix
sum can be computed in parallel by adding values of increas-
ing distance, distributing the additions equally to all process-
ing units.

For coarsening, we evaluate coarsening criteria for all leaf
quads. Quads which have become too small and quads out-
side the data domain are flagged for removal in an auxiliary
array of integers. There are two ways for a quad to be ac-
tually removed from the array: either all its three siblings
are also flagged for removal or it is already a root quad. The
compaction of the arrays describing the quads is based on the
prefix sum of the flag array. After compaction all pointers
(children, parents, leaf ropes, and level ropes) are updated.
Since all operations which are performed during coarsening
run in linear time, this step is of linear complexity in the
number of quads as a whole.

Vertex Compaction In this step we remove vertices which
are no longer needed. There are two reasons for a vertex to
qualify for removal: either it was created in parallel with an-
other vertex at the same location during refinement, or the
nodes it belonged to were deleted in the coarsening step. To
find unused vertices, we iterate over all quads and deselect
all vertices which are encountered. The vertices which re-
main flagged can be removed using the same strategy as de-
scribed in the previous subsection. Since the vertices move,
it is important to also update the pointers to the vertices in
the leaf quads.

Rendering The rendering step consists of three substeps:
we project copies of the vertices onto the edge of the neigh-

(© The Eurographics Association 2012.

ABC SC TC SPH
vertices (x10%) 24 19 1.0 18
nodes (x10°) 26 25 10 23
max. refinement 17 10 15 12
memory (MB) 257 240 88 188

Table 1: Memory consumption overview. (SC=square cylin-
der, TC=turbulent cylinder)

boring quad, if the neighboring quad is on a higher level us-
ing a second vertex buffer. This can be decided locally based
on the leaf ropes of the neighboring quads. The projection
removes cracks in the surface which can appear at places
where nodes of different level of refinement are located ad-
jacently. This means that the rendered vertices are not nec-
essarily at the same positions as those of the treelet mesh.
In case this deviation becomes too large, the quad will be
refined in the next iteration, so that only small corrections
are required. Vertex normals are computed in parallel by av-
eraging the normals of the surrounding leaf quads. During
rendering, quads are tessellated to simplify shading. Both
normal computation and hole filling run in linear time and
can be performed in parallel per quad.

5. Evaluation

We perform tests on a synthetic case, two data sets sampled
on a Cartesian grid and SPH data. We select seeding posi-
tions which result in interesting surfaces and set the inte-
gration time-step size small enough to obtain stable results.
Table 1 gives an overview of the memory consumption. All
measurements were performed on a 2.8 GHz Core i7 CPU
and a GeForce GTX 470 GPU.

ABC flow The ABC flow is an unstable solution of Euler’s
equation, displaying high-frequency instabilities under per-
turbation [HalO5]. This example is known to exhibit strong
mixing of the fluid. Depending on the specified lifetime, the
required level of refinement can reach very high levels. For
the evaluation we set the lifetime of a vertex to 3 units. The
seed curve is a straight line starting at (0,0,0) and ending at
(1,2,m). Figure 5(a+b) shows the behavior of the algorithm
for the ABC flow for these settings. The number of items in
the node and vertex arrays is represented by the vertical axis
on the left. The axis on the right shows the maximum num-
ber of refinements in the surface. Coarsening, refinement,
and integration are all linear in the number of quads in the
surface. It is interesting to note that the expensive part of
the coarsening seems to be the removal of quads at the front
of the streak-surface where the nodes become invalid when
the vertices have reached the end of their lifetime. This step
would be a candidate for further optimizations in the im-
plementation, but the important point is that all steps are of
linear complexity.

3000000
[ms) (items]
300 2500000

[

"¢ 1500000 | L
, 1000000
500000

=

10 [levels]

0500000 1000000 1500000 2000000 2500000 3000000 [iters] @

350 7 llevels)
imsl A e ——) f
300 1

200

150 1 - integration

TC

©

R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization

2500000 14 levels]
fitems]

1200000
fitems]
1000000

16 [levels]

» SC

10 1500000

2000000

800000 +————]

quads

600000 1000000

400000

200000

(b)

coarsening

—compacton
s0 Wm —rendering

(d)

Figure 5: Performance measurements. (a+b) ABC flow (c+d) Turbulent Cylinder (e+f) Square Cylinder (g+h) SPH dam break.

Figure 6: Streak-surface in the square cylinder data set. The obstacle is shown at 1/3 of its actual height. (1:03) In the beginning
the turbulence is low. (1:33-1:61) Over time turbulence increases, the surface starts bulging and stretching.

Square cylinder The square cylinder data set is the result
of a DNS simulation of the three-dimensional flow around a
rectangular cuboid between parallel walls at Reynolds num-
ber 220 [CSBAOS]. The data is sampled onto a uniform
Cartesian grid with a resolution of 192 x 64 x 48 and a
temporal resolution of 102 steps. The seed curve is from
(—3,0.5,0.25) to (—3,0.5,4.5). Figure 6 shows results for
four time steps. The first image shows how the surface splits
into two parts when it is partially advected outside of the do-
main. The obstacle is displayed at 1/3 of its actual height
to occlude the streak-surface less. In the second timestep we
can see the bulging and folding effects on the streak-surface
as turbulence increases. The third and fourth snapshot show
the development of high-curvature regions and small fea-
tures which require higher refinement levels. Figure 5 (c+d)
presents measurements for the square cylinder data set. The
square cylinder data set contains the tamest velocity field of
all four examples and for the selected seed curve a refine-
ment level of 10 is sufficient.

Turbulent Cylinder The turbulent cylinder data set con-
tains a simulation of flow around a wall-mounted finite cylin-
der at Reynolds number 200. The turbulent cylinder simu-
lation data is courtesy of Frederich [Frel0]. It captures the
motion of large coherent structures behind the cylinder. Im-
portant features are: the separation of flow above the cylinder
and large recirculating regions originating behind the cylin-
der. Figure 7 shows separation and mixing of the flow above
the obstacle. The seed curve is from (—0.75,—1,—1) to
(—0.75,1,—1). We can see how the large coherent structures
emanating from the obstacle pull the streak-surface down,
creating twisted structures in the geometry. The spiralling
motion in the flow requires very high levels of refinement de-
pending on the lifetime of the particles which constitute the
streak-surface. Once a part of the streak-surface is caught
inside one of the vortices it can undergo twisting motion
for prolonged periods of time. This is where the flexible re-
finement capabilities of the presented treelet representation
is most important. In Figure 5(c+d) we show performance
numbers for the turbulent cylinder case.

(© The Eurographics Association 2012.

R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization 125

0 16
refinement Il |

Figure 7: Turbulent Cylinder. The seed is placed above the obstacle. (a) An early timestep for overview. Dashed line shows
viewport of the remaining images. (b) The coherent structures developing behind the cylinder pull the streak-surface down in
a twisting motion. (c-e) The spiralling motion of the coherent structures in the flow twists the streak-surface considerably. (e*)

Lllustration of the smooth shape of the twisted streak-surface.

l a] b

Figure 8: SPH steak-surface. (a) When the water hits the obstacle, the particles diverge rapidly and both the water surface and
the streak-surface develops holes. (b) As the water rushes back, the seed curve is no longer submerged and no new quads are
generated. (c) Later the seed curve is inside the fluid again and a second surface patch is advected.

Dam Break Data Set This data set is an SPH simulation
of a breaking dam [KFV*05]. It has 87 time steps, each
with 670,000 fluid particles using a cubic spline kernel. The
advantage of SPH simulations is that they provide a rela-
tively good approximation of the behavior of free surface
flows, even though SPH does not provide guaranteed error
bounds [Mon94]. This means that, even though this cannot
happen in a perfectly correct simulation, it is possible that
the free surface touches the streak-surface, creating holes
or cutting the surface in multiple parts. Even though this
is in contradiction with the Navier-Stokes equations, this
is the behavior the data represents. The seed curve is from
(1.175,0.1,0.12) to (1.175,0.9,0.12). Figure 8(a) shows
that reconstruction can lead to very small fluid regions. In
Figure 8(b) we can see a wave rolling back towards the seed
curve. As the water level falls below the position of the seed
curve (Figure 8(c)), there are no new particles released and
the streak-surface disconnects from the seed curve. In Fig-
ure 8(d) we see how a second streak-surface patch is re-
leased from the seed curve as the wave front passes. Fig-
ure 9 illustrates the problem of noise reconstruction from

(© The Eurographics Association 2012.

SPH data. The quality of the reconstructed vector field de-
creases rapidly as the kernel sum goes to zero and at highly
turbulent time steps it is possible to get very noisy results
from the reconstruction. Figure 9(a) shows the appearance
of very thin water volumes. In Figure 9(b) we can see a few
slivery surface elements which result from very high veloc-
ity magnitudes in the reconstruction. Figure 5 (g+h) shows
an evaluation of the performance for SPH data. The bulk
of computation time is spent with vertex integration, since
the reconstruction of velocity values is very expensive (Fig-
ure 5(h), green line, right axis). The first spike in surface
complexity happens when the surface gains a lot of elements
during collision of the water with the obstacle and the sub-
sequent splashing motion. The second spike happens when
the water hits the wall on the other side of the domain.

6. Conclusion

In this paper we focus on the efficient and flexible integra-
tion of streak-surfaces on the GPU. The surface representa-
tion is applicable to other types of problems, which require

126 R. Fuchs, B. Schindler, R. Carnecky, J. Waser, Y. Jang & R. Peikert / Adaptive Streak-Surface Visualization

Figure 9: Three timesteps of the breaking dam. The surface
is twisted considerably and high refinement levels (17) are
required.

local adaptivity on the GPU as well, such as morphing or
surface tracking. The additional connection within and be-
tween treelets allow the algorithm to perform all operations
in parallel and locally. There are two main advantages of
the presented surface representation: first, it allows for effi-
cient refinement and coarsening in parallel. Second, it can
represent surfaces which contain holes and break into mul-
tiple patches. As presented the technique does not support
non-isotropic refinement and global remeshing operations.
Future work in this direction would improve the treelet ap-
proach tremendously. Another open question is the active
and efficient prevention of self-intersections of the streak-
surface during integration. Another issue is data streaming
from CPU to GPU memory during integration; using data
sets where at least 3 timesteps fit into GPU memory we
avoided this problem.

References

[BFTW09] BURGER K., FERSTL F., THEISEL H., WESTER-
MANN R.: Interactive streak surface visualization on the GPU.
IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1259-1266. 2,4, 5

[CKSWO08] CunNTz N., KOLB A., STRZODKA R., WEISKOPF

D.: Particle level set advection for the interactive visualization
of unsteady 3D flow. Computer Graphics Forum 27, 3 (2008),
719-726. 1

[CSBAO5] CAMARRI S., SALVETTI M., BUFFONI M.,
A.IoLLO: Simulation of the three dimensional flow around a
square cylinder between parallel walls at moderate Reynolds
numbers. In Proceedings of the XVII Congresso di Meccanica
Teorica ed Applicata (2005). 6

[FBTW10] FERSTL F., BURGER K., THEISEL H., WESTER-
MANN R.: Interactive separating streak surfaces. IEEE Trans-
actions on Visualization and Computer Graphics 16, 6 (2010),
1569-1577. 1

[Frel0] FREDERICH O.: Numerische Simulation und Analyse tur-
bulenter Stromungen am Beispiel der Umstromung eines Zylin-
derstumpfes mit Endscheibe. PhD thesis, TU Berlin, 2010. 6

[HalO5] HALLER G.: An objective definition of a vortex. Journal
of Fluid Mechanics 525 (2005), 1-26. 5

[HSOO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel
prefix sum (scan) with CUDA. In GPU Gems 3, Nguyen H.,
(Ed.). 2007, ch. 39, pp. 851-876. 5

[KFV*05] KLEEFSMAN K. M. T., FEKKEN G., VELDMAN A.
E. P., INANOWSKI B., BUCHER B.: A volume-of-fluid based
simulation method for wave impact problems. Journal of Com-
putational Physics 206, 1 (2005), 363-393. 7

[KGJ09] KRISHNAN H., GARTH C., Joy K.: Time and streak
surfaces for flow visualization in large time-varying data sets.
IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1267-1274. 1, 4

[MLP*10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R.,
PosT F. H., CHEN M.: Over two decades of integration-based,
geometric flow visualization. Computer Graphics Forum 29, 6
(2010), 1807-1829. 2

[MLZ10] MCLOUGHLIN T., LARAMEE R. S., ZHANG E.: Con-
structing streak surfaces for 3D unsteady vector fields. In Pro-
ceedings of the Spring Conference on Computer Graphics 2010
(2010). 1,4

[Mon94] MONAGHAN J. J.: Simulating free surface flows with
SPH. Journal of Computational Physics 110, 2 (1994), 399-406.
7

[PPF*11] POBITZER A., PEIKERT R., FUCHS R., SCHINDLER
B., KUHN A., THEISEL H., MATKOVIC K., HAUSER H.: The
state of the art in topology-based visualization of unsteady flow.
Computer Graphics Forum (accepted for publication) (2011). 2

[Sch08] SCHAFHITZEL T.: Particle tracing methods for visual-
ization and computer graphics. PhD thesis, University Stuttgart,
2008. 1

[SW10] SabpLO F., WEISKOPF D.: Time-dependent 2-D vec-
tor field topology: An approach inspired by lagrangian coherent
structures. Computer Graphics Forum 29, 1 (2010), 88-100. 1

[VFWTS08] VON FUNCK W., WEINKAUF T., THEISEL H., SEI-
DEL H.-P.: Smoke surfaces: An interactive flow visualization
technique inspired by real-world flow experiments. /EEE Trans-
actions on Visualization and Computer Graphics 14, 6 (2008),
1396-1403. 2

[WT10] WEINKAUF T., THEISEL H.: Streak lines as tangent
curves of a derived vector field. IEEE Transactions on Visual-
ization and Computer Graphics 16, 6 (2010), 1225-1234. 2

[WTS*07] WIEBEL A., TRICOCHE X., SCHNEIDER D.,
JANICKE H., SCHEUERMANN G.: Generalized streak lines:
Analysis and visualization of boundary induced vortices. IEEE
Transactions on Visualization and Computer Graphics 13, 6
(2007), 1735-1742. 2

(© The Eurographics Association 2012.

