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Abstract

The goal in this dissertation is the efficient synthesis of photorealistic images
on a computer. Currently, by far the most popular approach for photorealistic
image synthesis is path tracing, a Monte Carlo simulation of the integral equations
that describe light transport. We investigate several data-driven approaches for
improving the convergence of path tracing, leveraging increasingly sophisticated
machine-learning models. Our first approach focuses on the specific setting of
“multiple scattering in translucent materials” whereas the following approaches
operate in the more general “path-guiding” framework.

The appearance of bright translucent materials is dominated by light that scatters
beneath the material surface hundreds to thousands of times. We sidestep an
expensive, repeated simulation of such long light paths by precomputing the
large-scale characteristics of material-internal light transport, which we use to
accelerate rendering. Our method employs “white Monte Carlo”, imported from
biomedical optics, to precompute in a single step the exitant radiance on the
surface of large spherical shells that can be filled with a wide variety of translucent
materials. Constructing light paths by utilizing these shells is similarly efficient as
popular diffusion-based approaches while introducing significantly less error. We
combine this technique with prior work on rendering granular materials such that
heterogeneous arrangements of polydisperse grains can be rendered efficiently.

The computational cost of path construction is not the only factor in rendering
efficiency. Equally important is the distribution of constructed paths, because it
determines the stochastic error of the simulation. We present two path-guiding
techniques that aim to improve this distribution by systematically guiding paths
towards scene regions with large energy contribution. To this end, we introduce
a framework that learns a path construction scheme on line during rendering
while optimally balancing the computational rendering and learning cost. In this
framework, we use two novel path-generation models: a performance-optimized
spatio-directional tree (“SD-tree”) and a neural-network-based generative model
that utilizes normalizing flows. Our SD-tree is designed to learn the 5-D light field
in a robust manner, making it suitable for production environments. Our neural
networks, on the other hand, are able to learn the full 7-D integrand of the rendering
equation, leading to higher-quality path guiding, albeit at increased computational
cost. Our neural architecture generalizes beyond light-transport simulation and
permits importance sampling of other high-dimensional integration problems.
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Zusammenfassung

Das Ziel dieser Dissertation ist die effiziente Synthese fotorealistischer Bilder auf ei-
nem Computer. Momentan ist der bei Weitem beliebteste Ansatz für fotorealistische
Bildsynthese Path Tracing, eine Monte-Carlo-Simulation der Integralgleichungen
welche Lichttransport beschreiben. Es werden mehrere datengesteuerte Ansätze
untersucht, die die Konvergenz von Path Tracing verbessern, in welchen zuneh-
mend fortgeschrittenere maschinelle Lernverfahren wirksam angewendet werden.
Der erste Ansatz richtet sich spezifisch auf die “mehrfache Lichtstreuung in durch-
scheinenden Materialien” wohingegen die folgenden Ansätze in der generelleren
“Path Guiding” Rahmenstruktur agieren.

Das Aussehen heller, durchscheinender Materialien besteht hauptsächlich aus
Licht, das hunderte bis tausende Male unter der Materialoberfläche gestreut wird.
Es wird eine teure, wiederholte Simulation von solchen langen Lichtpfaden vermie-
den, indem die grossräumigen Charakteristiken des materialinternen Lichttrans-
ports vorberechnet werden, welche zur Beschleunigung des Renderings verwendet
werden. Diese Methode bedient sich des “weissen Monte Carlo”, welches aus
der biomedizinischen Optik übernommen wurde, um in einem einzelnen Schritt
die Strahldichte zu berechnen, die die Oberfläche von grossen, kugelförmigen
Schalen verlässt, welche mit einer breit gefächerten Menge an durchscheinenden
Materialien gefüllt sein können. Die Konstruktion von Lichtpfaden mit Hilfe dieser
Schalen ist ähnlich effizient wie beliebte Ansätze, die auf der Diffusionstheorie des
Lichtes beruhen, jedoch weitaus akkurater. Dieser Ansatz wird schlussendlich mit
Vorarbeiten zum Rendering körniger Materialien kombiniert, sodass inhomogene
Anordnungen polydisperser Körner effizient gerendert werden können.

Die Berechnungskosten der Konstruktion von Lichtpfaden sind allerdings nicht
der einzige Bestandteil der Renderingeffizienz. Ebenso wichtig ist die Verteilung
der konstruierten Lichtpfade, da diese den stochastischen Fehler der Simulation
bestimmt. Es werden zwei Path-Guiding-Methoden vorgestellt, welche darauf
abzielen, diese Verteilung zu verbessern, indem Lichtpfade systematisch in Rich-
tung von Orten mit hohem Energiebeitrag gelenkt werden. Dazu wird eine Rah-
menstruktur vorgestellt, in welcher ein Lichtpfadkonstruktionsschema mit dem
Rendering mitlaufend maschinell erlernt wird, während die Berechnungskosten
des Renderings und des Lernens optimal ausbalanciert werden. In dieser Rah-
menstruktur werden zwei neue Lichtpfadkonstruktionsmodelle vorgestellt: eine
leistungsoptimierte räumlich und richtungsabhängige Baumstruktur (“SD-tree”)
und ein auf neuronalen Netzwerken basierendes generatives Modell, welches nor-
malisierende Flüsse verwendet. Der SD-tree ist darauf ausgelegt, das 5-D Lichtfeld
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robust zu erlernen, wodurch dieser geeignet für Produktionsumgebungen ist. Die
neuronalen Netzwerke können andererseits den kompletten 7-D Integranden der
Renderinggleichung erlernen, was zu hochwertigerem Path Guiding führt, wenn-
gleich mit erhöhten Berechnungskosten. Die neuronale Architektur generalisiert
über die Lichttransportsimulation hinaus und erlaubt auch die Stichprobenentnah-
me nach Wichtigkeit anderer hochdimensionaler Integrationsprobleme.
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Artist, Johannes Hanika, Marko Dabrocić, Miika Aitala, Nacimus, Olesya Jakob,
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C H A P T E R 1
Introduction

Our goal in this dissertation is the efficient synthesis of photorealistic images
(and by extension: videos) on a computer, a process that is known as “photore-
alistic rendering”. The applications of photorealistic rendering are manifold:
they currently range from animated feature films and live-action visual effects
to product and architectural visualization, all while the video-game industry
demonstrates a rising demand as well.

The problem to be solved in image synthesis can be described in a simple
manner: in a virtual 3-D world, light is emitted by light sources, interacts with mat-
ter, and then strikes a camera. How much light does each pixel of the camera’s
sensor observe? The entire dissertation is devoted to answering this question
computationally as efficiently as possible.

1.1 Problem Definition

To answer the above question with precision, we take a physics-inspired ap-
proach where we model the interactions of light with the virtual world, “light
transport”, in a physically based manner and solve the resulting equations
to compute photorealistic images. Light transport can be defined in several
different ways, the most accurate (currently known to humans) following
the photon wave-particle duality as described by quantum mechanics. Since
quantum and wave effects are often insignificant at human-visible scales, it is
common in the field of computer graphics to follow geometric optics, where
light travels in straight lines and only changes direction as it interacts with
matter. We also follow geometric optics in this dissertation.
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Figure 1.1: Two paths carrying light from a light source (left) to a camera (right). A light path
consists of a number of ordered 3-D vertices, where the ordering determines the direction of light flow
(illustrated as directed edges). The light observed by a camera is the sum of the light contributions
from all (infinitely many) paths that exist. Typical path-tracing algorithms begin at the camera and
trace towards light sources.

In the framework of geometric optics, the total amount of light observed by
a camera pixel is given by the sum of the light carried along every possible
path of lines that connects a light source with the pixel. We illustrate two
examples of such paths in Figure 1.1. Mathematically, summing over the
light contributibutions of each path to a given pixel with coordinates x, y is
concisely expressed by an integral over the space of paths P

Ixy =
∫
P

fxy(x)dΠ(x) , (1.1)

where x = x1 . . . xk is a path consisting of k 3-D vertices, fxy(x) is the light
contribution of the path to the given pixel, and Π is a measure on the space
of paths. We will define the terms in more detail eventually; for now, we will
focus on the aspect that the light reaching each pixel is an integral over paths
at all.

Unfortunately, it is generally impossible to express the integral in closed form
and we must therefore resort to solving the integral numerically. For several
reasons that we will review shortly, the movie and visual effects industry’s
current numerical technique of choice is Monte Carlo integration, where the
integral is approximated by the carefully weighted average contribution of a
finite number N of randomly generated paths

∫
P

fxy(x)dΠ(x) ≈ 1
N

N

∑
i=1

fxy(xi)

qxy(xi)
, (1.2)

where qxy(xi) is the probability density of generating the path xi with respect
to the path measure Π.
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1.2 The Path-Tracing Revolution

This computational approach of generating paths of light and evaluating their
contribution to the rendered image is one of the most popular techniques for
the simulation of light transport.

The most common approach to path generation is an incremental one: vertices
are appended after another by repeated ray-casting operations (towards
randomly chosen directions) until some termination criterion is fulfilled and
the path is considered complete. This kind of approach is well known under
the name “path tracing” and became the movie industry’s standard over
the last decade, a process that is by some referred to as the “path-tracing
revolution” [Keller et al. 2015].

1.2 The Path-Tracing Revolution

At the current point in time, every major movie studio produces feature
films that are either entirely rendered with path tracing or contain special
effects that are. For a long time in the past, however, photorealistic imagery
was instead rendered with simpler, more approximate techniques while
the burden of creating pleasing visuals rested on artists’ abilities to fake
realistic lighting in carefully arranged virtual scenes. Path tracing, which
by construction produces realistically-lit images, promised to alleviate this
burden by allowing artists to focus more on the actual content of their scenes.

However, path tracing was simply too slow to be practical, which was largely
caused by the enormous number of paths that needed to be traced (on the
order of billions per image) to achieve acceptable approximation error. But
despite of this major limitation, movie studios still adopted path tracing
eventually. This major paradigm shift was driven by two factors: the steady
exponential increase in compute power following Moore’s Law [Moore 1965],
which allowed paths to be traced more quickly, and, significant advances in
path-tracing algorithms [Christensen and Jarosz 2016], which reduced the
number of paths that needed to be traced in the first place.

However, despite of the surge in popularity and practicality of path tracing
(or, perhaps, because of it), the demand for more efficient algorithms lives
on. Using the latest GPU technology, path tracing begins to be used even in
the realm of real-time graphics [Burnes 2018], creating renewed interest in
advancing the current state of the art towards the metaphorical “holy-grail”
which is real-time photorealistic rendering.

The contributions in this dissertation—even though they are tailored to off-
line production rendering—were conceived with the goal of eventually con-
tributing to real-time rendering. In the remainder of this chapter, we elaborate
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on the advantages of path tracing over alternative approximate integration
techniques, introduce the role of machine learning in path tracing, list our
contributions to the field, and outline the structure of this dissertation.

1.3 Alternatives to Monte Carlo Integration

In the previous section, we explained how path tracing is a Monte Carlo
approach for estimating the amount of light being recorded in a virtual
camera. What we did not explain is why Monte Carlo would be a desirable
method to use despite of its large computational cost in the first place. After
all, there exist many alternative approximate integration techniques that
could be applied to rendering instead. In the following, we name some
examples and explain how they compare against Monte Carlo to illustrate
their benefits and drawbacks.

Closed-Form Solutions. Rather than employing a numerical integration
technique such as path tracing, one might be tempted to try finding closed-
form solutions to an approximate, simplified setting of the problem. While
this is a popular approach in real-time redering, it is used rarely in produc-
tion rendering due to the (sometimes severe) limitations imposed on the
admissible virtual scenes.

For example, the reflected light off certain surface materials due to polygo-
nally shaped light sources can be computed in closed form [Heitz et al. 2016a].
Despite the great usefulness of this approach in real-time environments such
as video games, true photorealism often demands more sophisticated mate-
rial models that are not supported by this approach.

Another widely used class of analytic approaches are diffusion-based expres-
sions for multiply scattered light in translucent materials [Stam 1995; Jensen
et al. 2001; d’Eon and Irving 2011; d’Eon 2013]. Although such diffusion-
based approaches are sometimes orders of magnitude faster to compute than
path-traced random walks, they require idealizing assumptions about the
underlying surface geometry of the translucent material. For example, the
“dipole” approach treats the underlying material as a semi-infinite slab, which
is an insufficient approximation of, for instance, a human finger. For this
reason, and due to advances in efficient path-traced volume rendering, pro-
duction renderers gradually move away from diffusion towards pure path
tracing [Chiang et al. 2016; Fascione et al. 2018].
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1.3 Alternatives to Monte Carlo Integration

Finite-Element Methods. Perhaps the most straightforward approach to
numeric integration is the discretization of the continuous domain to a fi-
nite set of discrete elements. The solution of the discretized integral—now
a Riemann sum—can then either be found in closed form, or, at the very
least, approximated more efficiently. Finite-element methods unfortunately
come with the drawbacks of finite resolution. The discretization of a contin-
uous integral inherently causes error that only vanishes as the number of
discrete elements approaches infnity, with the consequence that convergence
to the true solution is only possible using an infinite amount of memory and
computational resources. To make matters worse, the performance of many
finite element methods scales much worse than linearly in resolution, leading
to even stronger practical constraints than limited memory alone leads to.
Lastly, high-dimensional integration problems are especially problematic for
some finite-element methods because of the “curse of dimensionality”: the
number of elements required to cover the integration domain with sufficient
density grows exponentially in the number of dimensions.

In spite of these limitations, there have been various applications of finite-
element methods to physically based rendering in the past, most prominently
the “radiosity method” imported from heat-transfer literature by Goral et al.
[1984]. The radiosity method subdivides surfaces of the virtual scene into
a finite number of patches, allowing—under a simplified material model—
to cast the integration problem as linear system of equations. By virtue
of subdividing the virtual scene instead of the entire integration domain,
the radiosity method avoids the curse of dimensionality to an extent: its
discretization covers only the 2-dimensional object surfaces. Unfortunately,
the radiosity method can not easily handle materials with complex reflection
properties, leading to difficulties when applying it to general light transport.

In contrast to finite-element methods, Monte Carlo integration algorithms
work by repeatedly point-sampling the integrand, which requires only a
constant amount of memory (the memory needed for the current sample).
Furthermore, the asymptotic convergence rate of Monte Carlo algorithms
is always guaranteed: the error (here the standard deviation from the true
solution) of a Monte Carlo estimator evolves as O(1/

√
N) in the number of

samples. This convergence rate is independent of the dimensionality of the
integrand, which is a decisive advantage over finite-element approaches in
the domain of light-transport simulation because of the theoretically infinite
dimensionality of paths.

One might think, that the samples of a Monte Carlo path tracer are—like
finite-element techniques—limited to a low-resolution approximation of the
virtual scene to remain efficient. However, this is usually not the case. The
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samples of a path tracer are light paths that are generated via successive
ray-casting operations, the cost of which is only logarithmic in the amount
of scene detail, making memory constraints rather than computational ones
the resolution bottleneck. Modern production scenes are sometimes over a
hundred giga bytes in size [Walt Disney Animation Studios 2016], which are
feasible to path trace because of the logarithmic cost of ray casting. It is worth
noting that more efficient point-sampling techniques than ray-casting exist
(for example rasterization which is frequently used in real-time graphics),
which are, however, not versatile enough to solve the path integral (1.1) in
its general form. Nevertheless, it is often worthwhile to consider hybrid
techniques to gain performance at additional implementation complexity.

1.4 Machine Learning and Path Tracing

The basic path-tracing algorithm is often referred to as “embarrassingly
parallel”, owing to the fact that paths are traced completely independently
from each other. Although this is an advantage for multiprocessor scalability—
each processing unit can trace its own set of paths independently from the
other units—there exists untapped potential in the lack of information sharing
across paths. To name a simple example: if a path with a larger contribution
to the image was randomly generated, then it would be reasonable to assume
that a similarly shaped path also contributes significantly to the image. It
would therefore make sense to locally explore path space around previously
found high-contribution paths.

Past Usage of Machine Learning. The idea of sharing information across
paths is not new; it has been practiced in the rendering community for a long
time. Some of the most popular applications include irradiance caching [Ward
et al. 1988], photon mapping [Jensen 2001], bidirectional path tracing [Lafor-
tune and Willems 1993; Veach and Guibas 1994], Metropolis light trans-
port [Veach and Guibas 1997], and path guiding [Jensen 1995] which has
lately found renewed interest [Vorba et al. 2014; Vorba and Křivánek 2016;
Herholz et al. 2016, 2018; Guo et al. 2018; Dahm and Keller 2017, 2018; Zheng
and Zwicker 2018].

In general, any precomputation that estimates part of the path integral (1.1)
ahead of time in such a way that it can be re-used during rendering, is an
information-sharing technique (although the reverse is not necessarily the
case [Veach and Guibas 1994, 1997]). We argue, that even though computer
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1.5 Original Contributions

graphics researchers typically do not refer to them this way, these precompu-
tation approaches are all, in a way, machine-learning approaches. Although
some may be considered primitive (e.g. tabulation-based approaches based
on weighted histogram density estimation), others use sophisticated opti-
mization machinery (e.g. weighted maximum-a-posteriori mixture of gaus-
sians fitting and non-linear optimization). Inspired by these past successes
of machine learning in rendering—and indeed, also their limitations—we
strive in this dissertation to develop new machine-learning-based rendering
techniques that expand the state of the art.

Deep Learning. During the last couple of years, deep-learning-based tech-
niques became dominant in many fields. Deep learning has emerged as a
state-of-the-art technology in image recognition [Simonyan and Zisserman
2014; He et al. 2016], machine translation [Wu et al. 2016], generative mod-
eling of raw audio and natural images [van den Oord et al. 2016a,b], and
many more fields. However, until recently, deep learning has seen relatively
little usage in light-transport simulation. Although there have been great
results in denoising [Bako et al. 2017; Vogels et al. 2018; Chaitanya et al. 2017;
Lehtinen et al. 2018], there have been only few applications of deep learning
to rendering [Ren et al. 2013; Dahm and Keller 2017; Nalbach et al. 2017]. In
this dissertation, our goal is to take another step towards combining deep
learning with path tracing to reap the benefits of deep learning that were
previously observed in other fields.

1.5 Original Contributions

Motivated by the appeal of the combination of path tracing and machine
learning that was outlined above, we focus our work on precisely this topic.
In particular, we focus on the machine-learning-based acceleration of unidirec-
tional path tracing, where paths originate from the camera and seek out light
sources as is most frequently done in movie production [Fascione et al. 2018].

We investigate several data-driven approaches for improving the conver-
gence of path tracing, leveraging increasingly sophisticated machine-learning
models. In our first project, we focus on the acceleration of a specific aspect of
volumetric path tracing: the rendering of multiple-scattering effects in translu-
cent materials. We then apply our findings to the even narrower context of
rendering granular materials. Next, we investigate improving the efficiency of
more general path-tracing algorithms by proposing a reinforcement-learning-
inspired “path-guiding” framework that is tasked with learning to importance
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sample the path integral. After successfully applying a tabulation-based model
to the problem, we shift our focus to the utilization of neural networks for
the same task, leading to a technique than can learn to importance sample
general high-dimensional target functions.

In the following, we outline our contributions in more detail.

1.5.1 Multiple Scattering in Translucent Materials

We provide a data-driven algorithm for accelerating the rendering of dense
translucent materials such as snow, skin, milk, butter, and many more. Such
materials are expensive to render with path tracing, because their appearance
is dominated by light that scatters many times beneath the material surface—
known as high-order scattering—often leading to excessively long paths
(sometimes hundreds to thousands of vertices). Our work is inspired by
Moon et al. [2007] and Lee and O’Sullivan [2007], who concurrently presented
a tabulation-based technique for side-stepping the expensive simulation
of long light paths. Although their work achieves impressive speed-up
(competitive with popular diffusion approximations), it is applicable only to
homogeneous materials (i.e. with spatially constant appearance properties)
and requires an expensive precomputation for each material to be rendered.
We overcome these limitations by tabulating a large collection of materials
at once using a method called “white Monte Carlo” [Alerstam et al. 2008]
that was discovered in biomedical optics. Our resulting technique reaps
a large portion of the accuracy benefits of the original work [Moon et al.
2007; Lee and O’Sullivan 2007] while only requiring a single, relatively cheap
precomputation independent of the scene to be rendered. By sacrificing some
additional accuracy, our method is able to handle heterogeneous materials,
i.e. those with spatially varying material parameters.

Granular Materials. Furthermore, we apply and evaluate our aforemen-
tioned technique to the specific task of rendering high-order scattering in
granular materials such as sand, snow, and sugar. To this end, we extend
existing mechanisms to accelerate high-order scattering in previous work on
the topic [Meng et al. 2015; Müller 2016]. We additionally propose an auto-
matic combination of existing low-order scattering (short light paths) [Müller
2016] with our high-order acceleration techniques to obtain a parameter-
less algorithm that can efficiently render dynamic, heterogeneous granular
materials.

8
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1.5.2 Path Guiding

In general, Monte Carlo algorithms can be made more efficient by gener-
ating bigger proportions of samples in places where the integrand is large.
Since path tracing is a Monte Carlo algorithm, this translates to the goal of
focusing computational effort towards the construction of those paths that
carry most light. “Path guiding” refers to data-driven approaches to learning
how to direct paths towards high-contribution regions. Perhaps the biggest
advantage of path guiding approaches is that they increase efficiency without
breaking the correctness of the algorithm: a guided path tracer still converges
to the true solution. In this dissertation, we propose two novel path guiding
algorithms.

Practical Path Guiding. Our first algorithm uses a tree data structure
that we specially designed for learning and subsequently sampling the 5-
dimensional light field of the virtual scene on line during rendering. The
algorithm subsequently uses the learned light field to guide paths towards
brightly-lit regions of space during tracing. In our algorithm, we trade off
computational effort between training our data structure and simulating light
paths in a principled manner that minizes the final approximation error. This
approach not only increases the overall efficiency of path tracing, but does
so without introducing an expensive precomputation—due to the on-line
learning—to leave interactive artist workflows intact.

Neural Path Guiding. Our second algorithm borrows several core algorith-
mic components from our first algorithm but utilizes deep neural networks
rather than a tree data structure to learn how to guide paths. The large
modeling capacity of neural networks allows them to not only learn the
5-dimensional light field, but the entire 7-dimensional product of the light
field and the material reflectivity. Path guiding according to this product,
if it was learned perfectly, would be provably optimal, thereby leading to
a theoretical best-case scenario of a constant-time zero-error path tracing al-
gorithm. In practice, the neural networks can not perfectly learn a function
within finite time and memory constraints, but, nonetheless, result in state of
the art quality.

Our algorithm hinges on three key contributions to the sub-field of neural-
network-based generative modeling that is based on so-called “normaliz-
ing flows”. These contributions are independent from path guiding (and
light-transport simulation as a whole) and are generally applicable to high-
dimensional Monte Carlo integration problems. First, we derive a gradient-
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descent-based optimization technique for minimizing the KL and χ2 diver-
gences of the learned distribution using only estimates of an unnormalized
Monte Carlo integrand that were drawn according to an arbitrary probability
distribution. Second, we preprocess the inputs of our neural networks using
a novel one-blob encoding—a generalization of one-hot encoding [Harris and
Harris 2013]—to stimulate localization of computation. Lastly, we introduce
a new class of normalizing flows based on piecewise-polynomial functions
that yield superior performance compared to previously used flows.

1.6 Dissertation Structure

Prerequisites. We assume that the reader is familiar with basic multi-
dimensional calculus, measure theory, and linear algebra. Chapters 2–5
are devoted to introducing all further fundamental theory that is required for
understanding our contributions to light-transport simulation.

Part 1: Fundamentals (Chapters 2–5). Chapter 2 covers basic probability
theory and Chapter 3 introduces Monte Carlo integration, both of which are
fundamental for the understanding of light transport and machine learning.
Chapter 4 then covers the geometric-optics view of light transport, some
existing applications of Monte Carlo simulation to its solution, and mathe-
matical material models that are used in the virtual scenes that we evaluate
our contributions on. Lastly, Chapter 5 introduces a small subset of the field
of machine learning that our contributions build on.

Part 2: Technical Contributions (Chapters 6–8). Chapter 6 covers our
data-driven algorithm for accelerating the simulation of multiple scattering in
heterogeneous translucent materials, and our application of it to the specific
use-case of granular materials. Next, in Chapter 7, we present our path-
guiding algorithm that learns the 5-dimensional light field on line within a
tree data structure. Lastly, in Chapter 8, we describe our neural-network-
based sampling contributions to general Monte Carlo integration, which
we subsequently apply to path guiding by extending our algorithm from
Chapter 7.

Conclusion (Chapter 9). We finally conclude the dissertation in Chapter 9,
where we summarize our results and provide an outlook towards interesting
opportunities for future work in the intersection of light-transport simulation
and machine learning.
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1.7 Published Work

Table 1.1: Publications that some chapters of this dissertation are based on.

Chapter Publication

6
Efficient Rendering of Heterogeneous Polydisperse Granular Media
Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, Jan Novák
ACM Trans. Graph. (Proc. SIGGRAPH Asia), vol. 35, no. 6, pp. 168:1–168:14, Nov 2016

7
Practical Path Guiding for Efficient Light-Transport Simulation
Thomas Müller, Markus Gross, Jan Novák
Computer Graphics Forum (Proc. EGSR), vol. 36, no. 4, pp. 91–100, Jun 2017

8
Neural Importance Sampling
Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, Jan Novák
ACM Trans. Graph. (to appear)

1.7 Published Work

Chapters 6–8 and Appendices B–D are based on previously published
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C H A P T E R 2
Probability Theory

In this chapter we briefly introduce the relevant components of probability
theory that are required for understanding the Monte Carlo and machine-
learning algorithms that we will present in this dissertation.

2.1 Probabilities and Probability Densities

Let X be a “random variable” taking values in a topological space D and let

P(S) = Prob(X ∈ S) (2.1)

be the corresponding probability that the value of X lies in a measurable
subset S ⊆ D; its measure being µ(S). This probability P(S) is formally
called “probability measure” and must satisfy the (intuitive) property of
taking values in [0, 1] ⊆ R and being additive over disjoint sets, i.e.

∀S1, S2 ∈ Σ(D) : S1 ∩ S2 = ∅ =⇒ P(S1 ∪ S2) = P(S1) + P(S2) , (2.2)

where Σ(D) are all Borel sets1 in D.

By taking the Radon-Nikodym derivative of this probability measure we
obtain a so-called “probability density function” (or PDF in short)

p(x) =
dP
dµ

(x) , (2.3)

1The exact definition of Borel sets is not important throughout the remainder of this chapter. For
intuitive understanding, it is sufficient to treat Σ(D) as the set of measurable subsets of D.
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0 1

0

1

2

3

0 1

0

1

(a) Probability density function (b) Cumulative distribution function

Figure 2.1: (a) An exemplar probability density function (PDF) defined over [0, 1] ⊆ R and
(b) its corresponding cumulative distribution function (CDF). The PDF must be non-negative
everywhere and must integrate to 1 over its domain. The CDF—being the indefinite integral of the
PDF over the PDF’s domain—therefore increases monotonically and ranges from 0 to 1.

where x ∈ D. If the PDF is known up-front but its corresponding probability
measure is not, then the probability measure can conversely be obtained by
Lebesgue integration:

Prob(X ∈ S) = P(S) =
∫

S
p(x)dµ(x) . (2.4)

These general definitions over measurable sets rather than subsets of RD are
necessary, because we will later deal with probability distributions over very
particular sets, such as the surfaces in a virtual 3-D scene.

To make the general concepts easier to grasp intuitively, let us briefly look
at the special case where D is the real number line. Then, the probability
measure P is nothing other than the “cumulative distribution function” (or
CDF in short)

P(x) = Prob(X ≤ x) = Prob
(

X ∈ (−∞, x]
)

, (2.5)

where notation is slightly abused by giving P real-valued input rather than
an interval on the number line. The PDF is then

p(x) =
dP(x)

dx
, (2.6)

where the regular derivative (as opposed to Radon-Nikodym) suffices, and
the probability of X lying in any given interval [a, b] ⊆ R is again obtained
by the integral

Prob(a ≤ X ≤ b) =
∫ b

a
p(x)dx = P(b)− P(a) . (2.7)

Figure 2.1 illustrates an exemplar PDF and CDF pair for a random variable
over [0, 1] ⊆ R.
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2.1.1 Joint, Marginal and Conditional Probability Density

Suppose the domain of a random variable is the Cartesian product of mul-
tiple sets. Without loss of generality, we only treat the case of the two-fold
Cartesian product, i.e. D = D1 × D2; the higher-order product case can
be obtained by induction. The random variable can then be split accord-
ing to the dimensions of D: let X take values of D1 and Y values of D2.

p(x, y)

p(x)

p(y)

Figure 2.2: 2-d PDF.

In this case, the probability measure from
before corresponds to the integral over
the so-called “joint probability density”
p(x, y) of x and y:

P(S) =
∫

S
p(x, y)dµ1(x)dµ2(y) . (2.8)

If one of the random variables (e.g. Y) is
fixed, then the PDF of the other random
variable (in this case X) is the “conditional
probability density” p(x|y):

p(x|y) = p(x, y)
p(y)

, (2.9)

where p(y) is the “marginal probability
density”

p(y) =
∫
D1

p(x, y)dµ1(x) , (2.10)

which corresponds to an aggregate of the joint probability density over all
possible values of x. Of course, p(x, y) can also be marginalized over y (or
any other axis for higher-dimensional distributions), yielding

p(x) =
∫
D2

p(x, y)dµ2(y) . (2.11)

We illustrate the relationship between the joint and its corresponding
marginal probability densities for an exemplar PDF in Figure 2.2. While
marginal densities correspond to integrals along the dimensions that are
marginalized out, conditional densities correspond to slices through the joint
density that are re-normalized to become valid lower-dimensional PDFs
themselves.

Using the definition of the conditional, it is often useful to write the joint as

p(x, y) = p(x|y)p(y) = p(y|x)p(x) . (2.12)
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Rearrangement of the above formula yields an identity that is widely known
as Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y)

. (2.13)

2.2 Emergent Properties of Random Variables

There exist a number of useful identities on random variables that character-
ize their overall statistical behavior in certain ways.

2.2.1 Expectation

In this section, let D be the set of vectors of a vector space over R. The
“expected value” (or expectation) of a random variable X living inD is defined
as

E[X] =
∫
D

xp(x)dµ(x) . (2.14)

The intuition behind it is to capture the mean of an infinitely large number
of realizations of X. This intuition is formalized by the strong law of large
numbers

Prob

(
lim

N→∞

1
N

N

∑
i=1

Xi = E[X]

)
= 1 , (2.15)

where Xi are independent and identically distributed random variables fol-
lowing the same distribution as X.

The expectation is linear for arbitrary random variables X and Y, i.e.

E[X + Y] = E[X] + E[Y] (2.16)
E[aX] = aE[X] , (2.17)

where a is a constant.

It is also possible to compute partial expectations of multi-dimensional ran-
dom variables, integrating out only some of the dimensions. Using the same
definition of X and Y as in Section 2.1.1, the “conditional expectation” of a
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function f (X, Y) on Y is itself a random variable (a function of Y) which is
defined as

E
[

f (X, Y)|Y
]
=
∫
D1

f (x, Y)p(x|Y)dµ1(x) (2.18)

=

∫
D1

f (x, Y)p(x, Y)dµ1(x)∫
D1

p(x, Y)dµ1(x)
. (2.19)

In the following, we will sometimes denote E
[

f (X, Y)|Y
]

as EX
[

f (X, Y)
]

to capture the dimensions that are being integrated out. Note, how the
regular expectation is recovered by consecutively applying the conditional
expectation:

E
[

f (X, Y)
]
= EX

[
EY
[

f (X, Y)
]]

. (2.20)

2.2.2 Variance

The variance V[X] of a random variable X ∈ R is defined as the expected
squared difference of X from its expected value2:

V[X] = E
[(

X−E[X]
)2
]

. (2.21)

Unlike the expectation, the variance is not linear, but has several interesting
properties nonetheless. For independent random variables X and Y, the vari-
ance separates under addition. Furthermore, constant scalars can be moved
out by squaring them:

V[X + Y] = V[X] + V[Y] (2.22)

V[aX] = a2V[X] . (2.23)

These identities allow rewriting the definition of the variance to another form
that is often useful to work with

V[X] = E
[(

X−E[X]
)2
]

= E
[

X2 − 2X E[X] + E[X]2
]

= E[X2]−E
[
2X E[X]

]
+ E[X]2

= E[X2]− 2 E[X]E[X] + E[X]2

= E[X2]−E[X]2 . (2.24)

2Variance is sometimes defined over vector-valued domains, in which case either the variance of
individual vector components or of the vector length is meant.
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Similar to the expectation, variance can also be defined conditionally. The
conditional variance of a function f (X, Y) on Y is itself a random variable
(a function of Y) which is defined in terms of the conditional expectation
analogously to regular variance:

V
[

f (X, Y)|Y
]
= E

[
f (X, Y)2|Y

]
−E

[
f (X, Y)|Y

]2 , (2.25)

or in different notation

VX
[

f (X, Y)
]
= EX

[
f (X, Y)2]−EX

[
f (X, Y)

]2 . (2.26)

The overall variance can be expressed in terms of conditional variances and
expectations. Denoting Z = f (X, Y) for brevity, the following identities hold:

V[Z] = E[Z2]−E[Z]2

= EX

[
EY[Z2]

]
−EX

[
EY[Z]

]2

= EX

[
EY[Z2]−EY[Z]

2
]
+ EX

[
EY[Z]

2
]
−EX

[
EY[Z]

]2

= EX

[
VY[Z]

]
+ VX

[
EY[Z]

]
(2.27)

= EY

[
VX[Z]

]
+ VY

[
EX[Z]

]
. (2.28)

2.2.3 Covariance and Correlation

Covariance and correlation are useful for quantifying the dependence be-
tween random variables. Analogously to Section 2.1.1, suppose the domain
of random variables has the form D = R2. The “covariance” between a pair
of random variables (X, Y) ∈ R2 is defined as

cov(X, Y) = E
[(

X−E[X]
)(

Y−E[Y]
)]

. (2.29)

Intuitively, the covariance captures the degree to which X and Y vary in
tandem. A positive value means, that values of X tend to be accompanied
with values of the same sign of Y. A negative value has the same property,
only with flipped signs. Independent X and Y must have cov(X, Y) = 0,
but note that the reverse is not necessarily true. This is the case, because
the covariance only captures linear relationships between X and Y, but not
higher-order ones. It is worth noting that the covariance of a random variable
with itself reduces to the variance

cov(X, X) = E
[(

X−E[X]
)2
]
= V[X] . (2.30)
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Table 2.1: Various popular f -divergences.

Name f (t) D f (p ‖ q)

KL-divergence t log t
∫
D p(x) log p(x)

q(x) dµ(x)

Pearson χ2-divergence t2 − 1
∫
D

p(x)2

q(x) dµ(x)− 1

Total variation distance (L1 norm) |t− 1|/2
∫
D

1
2 |p(x)− q(x)|dµ(x)

Hellinger distance
(√

t− 1
)2 ∫

D

(√
p(x)−

√
q(x)

)2
dµ(x)

The covariance can therefore also be viewed as a generalization of variance.

Another property of covariance is that it not only captures the degree to which
X and Y vary in tandem, but also the individual magnitudes of variation of
X and Y. This leads to possible values of the covariance along the entire real
number line (−∞, ∞), which is often undesirable. When only the relationship
between X and Y is of interest, but not their individual variation, it is useful
to scale covariance to the interval [−1, 1], producing “correlation”:

corr(X, Y) =
cov(X, Y)√
V[X]V[Y]

. (2.31)

In practice, correlation is a useful indicator of a hidden causal relationship
between X and Y, but caution must be taken: although causation implies
correlation, the reverse is not necessarily true. To give a real-world example:
even though a cloudy sky and rain are correlated, rain does not cause cloudy
skies.

2.3 Divergences

Often it is useful to quantify the amount by which two probability distribu-
tions differ from each other. “Divergences” are a class of functions that do
precisely this. They take two probability distributions as input and return a
real output, where larger output values correspond to a bigger differences
and a zero output corresponds to both probability distributions being equal.

More formally, let P, Q ∈ S be two probability measures with common
support D, a divergence D(P ‖Q) is defined to satisfy

D(P ‖Q) ≥ 0 ∀P, Q ∈ S (2.32)
D(P ‖Q) = 0 if and only if P = Q . (2.33)
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Perhaps the most commonly used type of divergence are f -divergences,
which are defined in terms of the expected odds-ratio P/Q weighted by a
convex function f satisfying f (1) = 0:

D f (P ‖Q) =
∫
D

f
(

dP
dQ

)
dQ . (2.34)

The constraints on f ensure that D f satisfies the above requirements for
being a valid divergence. We can also express the f -divergence in terms of
probability densities

D f (p ‖ q) =
∫
D

f
(

p(x)
q(x)

)
q(x)dµ(x) . (2.35)

Table 2.1 lists several commonly used f -divergences.

2.4 Distribution Models

So far, we defined probability distributions very generally. However, in
practice we are often confronted with (or desire) simple distributions that
have known convenient properties. Many such distributions were discovered
in the history of statistics; far too many to cover here. We therefore limit
ourselves to the “uniform” and the “normal” distribution as we will make
use of both throughout this dissertation.

2.4.1 Uniform Distribution

The “uniform distribution” is arguably the simplest distribution model. A
random variable X ∼ U (a, b) (read X distributed uniformly in [a, b]) with
a, b ∈ R; a < b has piecewise-constant PDF and piecewise-linear CDF

p(x) =

{
1

b−a if x ∈ [a, b]
0 otherwise,

P(x) =


0 if x ∈ x < a
x−a
b−a if x ∈ [a, b]
1 otherwise.

(2.36)

The uniform distribution nicely generalizes across multiple dimensions: the
D-dimensional uniform distribution corresponds to a constant probability
density within the prescribed hypervolume and zero probability density
everywhere else. To give a uniformly distributed 2-dimensional example,
X, Y ∼ U (aX, bX, aY, bY) has marginal distributions X ∼ U (aX, bX) and Y ∼
U (aY, bY) with a joint density of p(X)p(Y) (i.e. X and Y are independent).
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2.4.2 Normal Distribution

The “normal distribution” is another important model as it naturally arises
in several places of probability theory. It is also sometimes referred to as
“Gaussian” distribution, named after Carl Friedrich Gauss.

The PDF and CDF of a normal-distributed random variable X ∼ N (µ, σ)
with prescribed mean and standard deviation µ, σ ∈ R are

p(x) =
1

σ
√

2π
exp

[(
−x− µ

σ
√

2

)2
]

, P(x) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]
, (2.37)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−t2

dt , (2.38)

which has no closed-form expression in terms of elementary functions. In
practice, numerical approximation of erf(x) are used.

Like the uniform distribution, the normal distribution generalizes to higher
dimensions, in which case it is also referred to as “multivariate normal distri-
bution”. In this dissertation, we refer to 1-dimensional (univariate) and higher
dimensional (multivariate) normal distributions simply as “normal distribu-
tion” for convenience. The multivariate normal distribution X ∼ N (µ, Σ) is
parameterized by vector-valued mean µ ∈ RD and matrix-valued covariance
Σ ∈ RD×D:

p(x) =
1

det(Σ)
√
(2π)2

exp
[

1
2
(x− µ)TΣ−1(x− µ)

]
. (2.39)

Each entry in the covariance matrix Σij is the covariance between the i-th and
the j-th dimension. Since covariance is symmetric, Σ must also be symmetric
w.r.t. its diagonal. Furthermore, because the elements on the diagonal Σii
are the variances along the i-th dimensions (covariance with themselves),
they must be non-negative. Lastly, the covariance matrix must be positive
definite3.

The normal distribution has a number of remarkable properties that makes
it convenient to use in practice. Interesting for us is that various operations
on normally distributed random variables X ∼ N (µ, Σ) produce yet another
normally distributed random variable X′ ∼ N (µ′, Σ′) with easily computable
µ′ and Σ′. These operations include

3If we allow degenerate covariance matrices (i.e. Dirac-delta PDFs), this constraint is lifted to
positive semi-definiteness.
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• marginalization,

• conditioning,

• the density product,

• the sum of random variables (even when they are correlated), and

• affine transformations.

Furthermore, the KL-divergence between two normal distributions can be
computed in closed form. Modeling a distribution as normal therefore per-
mits a number of cheap, exact operations that would otherwise either be
approximate and expensive, or would require specialized parameterizations.
This is especially convenient in the field of Bayesian statistics on which many
machine-learning techniques are built on.

Another occurance of the normal distribution is in the central limit theorem:
the mean of N independent, equally distributed random variables tends
to be normally distributed as N → ∞, regardless of the distribution of the
individual random variables. This theorem is useful in the context of Monte
Carlo integration, where integrals are approximated by such sums of N
independent random variables. It is therefore reasonable to assume that
Monte Carlo estimators with large sample counts are approximately Gaussian,
which opens the door for a number of analyses and algorithms.

2.5 Converting Probability Densities

2.5.1 Converting Between Measures

It is often useful to express a probability density function in a different mea-
sure. Suppose we would like to express a probability density p(x) = dP

dµ (x)
not with respect to measure µ, but with respect to µ′ instead. Expanding the
definition of the desired probability density p′(x) we arrive at the relation

p′(x) =
dP
dµ′

(x) =
dP
dµ

dµ

dµ′
(x) = p(x)

dµ

dµ′
(x) , (2.40)

which will become useful in the next section.

2.5.2 Converting Between Parameterizations

Another operation that is important in practice is changing the parameteriza-
tion of a probability density p(x). In this section we investigate changing the
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parameterization of x via bijective and absolutely continuous transformations
h : S1 → S2; S1, S2 ⊆ D with x ∈ S1 and z = h(x) ∈ S2. The transformation
h induces a new probability measure

Ph(S) = P
(
h−1(S)

)
; S ⊆ S2 , (2.41)

the density of which ph(z) we are interested in knowing. Expanding the
definition of Ph(S) we get

Ph(S) = P
(
h−1(S)

)
=
∫

h−1(S)
p(x)dµ(x)

=
∫

S
p
(
h−1(z)

)
d(h−1 ◦ µ)(z)

=
∫

S
p
(
h−1(z)

) d(h−1 ◦ µ)

dµ
(z)dµ(z) , (2.42)

and therefore

ph(z) = p
(
h−1(z)

) d(h−1 ◦ µ)

dµ
(z) . (2.43)

In the special case of D = RD, this identity becomes the well known change-
of-variable formula

ph(z) = p
(
h−1(z)

) ∣∣∣∣det
(

∂h−1(z)
∂zT

)∣∣∣∣ , (2.44)

often expressed in terms of x

ph(z) = ph
(
h(x)

)
= p(x)

∣∣∣∣det
(

∂h(x)
∂xT

)∣∣∣∣−1

, (2.45)

where ∂h(x)
∂xT is the Jacobian matrix of h:

∂h(x)
∂xT =


∂h1(x)

∂x1
· · · ∂h1(x)

∂xD
... . . . ...

∂hD(x)
∂x1

· · · ∂hD(x)
∂xD

 . (2.46)

Intuitively, due to the absolute continuity of h, the Jacobian matrix describes
the local behavior of h perfectly via a linear approximation. Its absolute
determinant then captures by how much the D-dimensional hypervolume is
scaled. Since p(x) is in units of inverse D-dimensional hypervolume, it needs
to be scaled by the reciprocal of the above scale factor.
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2.6 Sampling from Probability Density Functions

It is often useful to generate data points that follow a certain prescribed PDF.
For many seemingly simple PDFs, this operation is surprisingly challeng-
ing. In this section, we describe a few techniques that are frequently used
in practice and discuss their individual benefits and drawbacks; Table 2.2
summarizes these. All the following techniques are based on an underlying
“source of randomness” that permits drawing samples from the canonical
uniform distribution X ∼ U (0, 1). Usually, this source of randomness is
implemented directly on top of a pseudo-random number generator; the
Mersenne Twister [Matsumoto and Nishimura 1998] and, more lately, the
PCG family [O’Neill 2014] are popular choices due to their high performance
and reasonable statistical qualities.

2.6.1 The Inversion Method

The inversion method is applicable to PDFs that are defined on the real
number line R. It can also be used on PDFs that are defined on subsets of R,
i.e. S ∈ R, by expressing such PDFs over the entirety of R and setting their
value to zero wherever they were originally not defined, i.e. x ∈ (R−S) =⇒
p(x) = 0.

The inversion method works as follows: given a desired PDF p(x), compute
its CDF P(x) via integration

P(x) =
∫ x

−∞
p(t)dt , (2.47)

then invert the CDF to obtain x = P−1(ξ). Passing a uniformly distributed
ξ ∼ U (0, 1) (which can be obtained from (pseudo)random number generators
as mentioned before) into X = P−1(ξ) then produces X that are distributed
proportional to the prescribed p(x).

Using the formulas from Section 2.5, it is simple to show that the above
steps—the inversion method—indeed produce X ∼ p(x). Let ξ ∼ U (0, 1)
and x = h(ξ) = P−1(ξ), then

ph(x) = pU (ξ)
∣∣∣∣∂h(ξ)

∂ξ

∣∣∣∣−1

= 1
∣∣∣∣∂P(x)

∂x

∣∣∣∣ = ∂P(x)
∂x

= p(x) . (2.48)

Although the inversion method is an invaluable tool for sampling from
desired PDFs, it is only useful in a limited number of settings. For the
inversion method to be useful, it must be possible to evaluate the inverse
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CDF P−1. In most cases, this amounts to being able to—either numerically or
analytically—integrate and invert the desired density p(x), which for many
densities is not easy.

To given an example: evaluating the inverse CDF of the normal distribution
involves evaluating the inverse error function, which can not be done in
closed form. Although numeric approximations of the inverse error function
exist, alternative techniques for sampling from the normal distribution—such
as the Box-Muller transform [Box and Muller 1958]—are often preferred.

Another limitation of the inversion method is that it only works for 1-
dimensional PDFs. This does not mean, however, that the inversion method
is useless for higher-dimensional PDFs. If a higher-dimensional PDF can
be conveniently expressed as the product of 1-dimensional conditional PDFs,
then the inversion method can be applied to sample from each of the con-
ditional PDFs in sequence. For example, consider x = (x1 . . . xD) ∈ RD

with the goal of sampling from p(x). Then, if p(x) can be expressed as
p(x1)p(x2|x1) · · · p(xD|xD−1 . . . x1), the inversion method can be used to sam-
ple p(x1), then p(x2|x1), and so on.

Example Use Case: Uniform Distribution. A simple application of the
inversion method is the sampling of the uniform distribution over arbitrary
intervals [a, b]. Using the inverse of the uniform CDF (2.36) directly results in
X = ξ(b− a) + a. Since the multi-dimensional uniform PDF is by definition
the product of 1-dimensional uniform PDFs, one can sample from it by
independently sampling its individual dimensions according to the same
formula.

2.6.2 Rejection Sampling

“Rejection sampling” hinges on the observation that it is possible to transform
existing samples from one PDF p̂(x) to a smaller number of samples that
follow another PDF p(x) by probabilistically discarding some of them. The
discarded samples are referred to as “rejected” whereas all other samples are
“accepted”.

If the goal is to produce samples according to a given PDF p(x), then p̂(x)
must be proportional to a majorant f̂ (x) that bounds p(x) from above.

p̂ ∝ f̂ , (2.49)

f̂ (x) ≥ p(x) , ∀x ∈ D . (2.50)
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Algorithm 2.1: Rejection-sampling. Samples from p(x) by probabilistically accepting
and rejecting samples from a tractable p̂(x) ∝ f̂ (x).

1 function rejectionSample(p, p̂, f̂):
2 repeat
3 x ← sample( p̂ ) // Generate proposal x
4 ρ← p(x)/ f̂ (x) // Compute acceptance probability

5 ξ ← sample(U (0, 1) )
6 until ξ < ρ

7 return x // Accept

The rejection-sampling algorithm to draw from X ∼ p then works as follows:
draw x from X ∼ p̂ and evaluate ρ(x) = p(x)/ f̂ (x); with probability ρ(x)
return x; otherwise repeat. This algorithm is formalized in Algorithm 2.1.

The correctness of the algorithm can be proven by evaluating the probability
density of accepted samples. Since all accepted samples are drawn indepen-
dently from the same distribution (regardless of how many rejected samples
they are preceeded by), we only have to show p̂(x | x accepted) = p(x).

Proof.

p̂(x | x accepted) =
p̂(x)ρ(x)∫

D p̂(x)ρ(x)dµ(x)
(def. of conditional)

=
p̂(x)
f̂ (x)

· p(x)∫
D p(x) p̂(x)/ f̂ (x)dµ(x)

(def. of ρ)

= c · p(x)∫
D c · p(x)dµ(x)

( p̂ ∝ f̂ )

= p(x)

It is often simple to find a convenient majorant f̂ (x) and respective sam-
pleable p̂(x) for a given p(x). In particular, when D is bounded (e.g. a finite
interval on R), then uniform f̂ (x) is often a reasonable choice. However, the
runtime of the rejection sampling algorithm heavily depends on the tightness
of f̂ (x). If f̂ (x) is too loose, then rejection sampling can be arbitrarily slow
due to a small ρ(x) causing most samples to be rejected.

To make matters worse, many use cases that require random sample genera-
tion require a predictable number of consumed (pseudo)random numbers,
which rejection sampling inherently can not guarantee due to probabilistic
rejections. Examples of applications that require a predictable number of con-
sumed samples are mission-critical software with tight run-time bounds and
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Table 2.2: Tradeoffs between sampling strategies. Although the Metropolis-Hastings algorithm
can be used to sample from any PDF, the resulting samples are (often highly) correlated and require
a burn-in period to diminish bias. When this is undesirable, rejection sampling and the inversion
method are attractive alternatives.

Name Admissible PDFs Independent Bounded cost

Markov chain All X
Rejection sampling Bounded by sampleable majorant X
Inversion method Product of 1-dimensional condi-

tionals with tractable inverse CDF
X X

quasi-Monte Carlo algorithms. Nonetheless, rejection sampling is a valuable
tool with pareto-optimal tradeoffs in many situations.

2.6.3 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [Hastings 1970] can be utilized to sample
from almost any desired PDF. Remarkably, this is possible, even if the desired
PDF is only known in unnormalized form (i.e. up to an arbitrary constant
factor). Metropolis-Hastings is built on so-called “Markov chains”.

x1

0.2
0.4

0.4

x2

0.3

0.3

0.4

x3

0.5

0.3
0.2

Figure 2.3: 3-state Markov chain.

Markov Chains. Markov chains are
defined by a set of states D, a current
state x ∈ D, and a transition proba-
bility measure P(S|x) that determines
the probability of the current state ad-
vancing to any other state. In Markov
chains, the transition probability only
depends on the current state4 x; we
illustrate an example in Figure 2.3,
where the numbers indicate the tran-
sition probability from every state to
every other state. We are interested in
a specific kind of Markov chains: those
that are “ergodic”. Ergodic Markov
chains never get “stuck” in any particular state (i.e. every state must be
reachable from any other state with finite probability in a finite number of

4Some Markov-chain definitions also allow P(S|x) to depend on the number of state transitions
that happened in the past. We are only interested in Markov chains that are independent of this
number, which are referred to as “stationary” Markov chains in that context.
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Algorithm 2.2: Metropolis-Hastings. Samples from p(x) ∝ f (x) by mutating the
previous sample x and probabilistically accepting or rejecting the result.

1 function metropolisHastingsSample( f , p̂, x):
2 x′ ← sample( p̂( · |x) ) // Generate proposal x′ by mutating x

3 ρ← min
(

1, f (x′) p̂(x|x′)
f (x) p̂(x′|x)

)
// Compute acceptance probability

4 ξ ← sample(U (0, 1) )
5 if ξ < ρ then
6 return x′ // Accept

7 else
8 return x // Reject

transitions) and (informally) are free from deterministic cyclic behavior. We
are interested in one particular useful property of ergodic Markov chains:
the marginal probability distribution of the state of an ergodic Markov chain
converges to a unique distribution that is independent from the initial state
and only depends on the transition probability measure. This distribution is
called the Markov chain’s “stationary distribution”.

Metropolis-Hastings. The Metropolis-Hastings algorithm [Hastings 1970]
is a recipe for simulating a Markov chain that has a stationary distribution
with desired PDF p(x) that is only known up to a constant of proportionality
f (x) ∝ p(x). The algorithm works by repeatedly mutating the current state
x to obtain x′ and probabilistically replacing x with x′ (called “acceptance”);
see Algorithm 2.2. Mutations are performed according to a “proposal PDF”
p̂(x′|x) that can be sampled from and may (but need not) depend on x. The
sequence of generated x’s, when using the acceptance probability

ρ(x′, x) = min
(

1,
f (x′) p̂(x|x′)
f (x) p̂(x′|x)

)
, (2.51)

has the desired stationary PDF p(x).

Unfortunately, despite of the applicability of Metropolis-Hastings to a wide
range of functions, there are a number of disadvantages associated with the
algorithm. First, even though the underlying Markov chain has the desired
stationary PDF p(x), the actual distribution of states only converges to the
stationary PDF as the sample count approaches infinity and is therefore al-
ways slightly incorrect. In the application that interests us, Monte Carlo
integration for light-transport simulation, this limitation can thankfully be
overcome by careful sample weighting [Veach and Guibas 1997]. The second
limitation is, however, more problematic for us: the samples produced by
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2.6 Sampling from Probability Density Functions

the Metropolis-Hastings algorithm are positively correlated with each other.
This is an undesirable property, because many applications, including Monte
Carlo integration, have a preference for independent (or negatively corre-
lated) samples that cover the domain more uniformly. Although the positive
correlation of Metropolis-Hastings can be reduced by choosing p̂(x′|x) that
approximates p(x′) as much as possible, doing so in an effective manner is a
challenging open research problem.
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C H A P T E R 3
Monte Carlo Integration

Monte Carlo integration is useful in any application that requires the evalu-
ation of integrals for which closed-form solutions either do not exist or are
difficult to obtain. In this dissertation, our goal is the efficient synthesis of
photorealistic images by means of solving the path integral. To this end,
Monte Carlo integration is our method of choice. In this chapter, we provide
a brief overview over the practice of Monte Carlo integration. Although
we focus on the aspects of the technique that will become relevant later in
this dissertation, we attempt to explain in more generality whenever it is
reasonable.

3.1 Origin of Monte Carlo

The Monte Carlo method was originally conceived to solve a problem not so
different from light transport: neutron transport. In the 20th century, physi-
cists working on the hydrogen bomb in Los Alamos were unable to predict
the propagation of neutrons with traditional analytical methods. Stanisław
Ulam, one of these physicists, was inspired to approach the problem numeri-
cally via repeated random sampling by the then recently completed ENIAC
computer. In 1946, Ulam proposed this idea to his colleague John von Neu-
mann, which led to the development of the Monte Carlo method [Metropolis
1987]. The name “Monte Carlo” was coined by Nicholas C. Metropolis, who
co-published the first declassified document on the method [Metropolis and
Ulam 1949], after Ulam’s Uncle’s habit to gamble in the Monacan city “Monte
Carlo”.
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Interestingly, physicist Enrico Fermi independently discovered the Monte
Carlo method around 15 years earlier, which he used to astonish his
then-colleagues with unbelievably accurate predictions of experimental re-
sults [Metropolis 1987]. However, at that point in time, he elected not to
publish the technique.

3.2 Definition and Basic Properties

Given an integral over domain D with measure µ

F =
∫
D

f (x)dµ(x) , (3.1)

the idea of Monte Carlo integration is to express the integral as an expectation
over some probability density q(x)

F =
∫
D

f (x)
q(x)

q(x)dµ(x) = E

[
f (X)

q(X)

]
, (3.2)

which is valid if q(x) is non-zero wherever f (x) is non-zero, i.e. f (x) 6= 0 =⇒
q(x) > 0, ∀x ∈ D. The expectation and therefore the integral can then be
estimated as a sum of random variables, which itself is a random variable

F = E

[
f (X)

q(X)

]
≈ 1

N

N

∑
i=1

f (Xi)

q(Xi)
= 〈F〉N , (3.3)

where X1, . . . , XN ∈ D are independent and distributed identically propor-
tional to q(x). The strong law of large numbers tell us, that 〈F〉N converges
to F as N approaches infinity. We call the random variable 〈F〉N a “Monte
Carlo estimator” of F and any particular realization of the random variable a
“Monte Carlo estimate”. We further define 〈F〉 = 〈F〉1 = f (X)

q(X)
as the “primal

Monte Carlo estimator”, which is notationally convenient in derivations that
do not depend on N.

Variance of Monte Carlo Estimators. The variance of any Monte Carlo
estimator is proportional to 1/N, regardless of the choice of f (x) or q(x).1

1Certain pathological Monte Carlo estimators admit infinite variance, in which case it is indepen-
dent of the number of samples N. In this dissertation, we ignore the existence of such estimators
and always assume finite variance.
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Proof.

V
[
〈F〉N

]
= V

[
1
N

N

∑
i=1

f (Xi)

p(Xi)

]
(definition)

=
1

N2 V

[
N

∑
i=1

f (Xi)

p(Xi)

]
(property of variance)

=
1

N2

N

∑
i=1

V

[
f (Xi)

p(Xi)

]
(X1, . . . , XN independent)

=
1
N

V
[
〈F〉
]

(X, . . . , XN same distribution)

This means: to half the variance of a given Monte Carlo estimator—also
known as “mean squared error” (MSE) if the estimator is unbiased—the
number of random samples N needs to be doubled. Similarly, to half the

“standard deviation”
√

V
[
〈F〉N

]
—the “root mean squared error” (RMSE)

if the estimator is unbiased—the number of random samples N must be
quadrupled. This convergence rate of O(1/

√
N) is commonly considered to

be both a blessing and a curse at the same time. It is a blessing, because,
unlike many numerical quadrature rules, it does not suffer from the curse of
dimensionality. That is, the convergence rate is the same, regardless of the
dimensionality ofD. We will see later, that computing light transport involves
solving a recursive integral, making the problem infinitely-dimensional in
its most general form. Therefore, a reasonable convergence rate for large
numbers of dimensions is certainly desired.

The convergence rate is also widely considered to be a curse, because it is
relatively slow. The variance being proportional to 1/N means, that if the
variance of the primal Monte Carlo estimator 〈F〉 is large, then to achieve
a desired variance for which we consider the Monte Carlo estimate to be
“accurate”, a large number of samples N needs to be drawn (proportional to
V
[
〈F〉
]
), and therefore the total computation time—being proportional to the

number of samples N—is equally large.

This leads to the question whether the variance can be reduced by other
means than simply drawing a larger number of samples. This is indeed
possible; in the following section, we explore several approaches to do so.

3.3 Variance Reduction

This section provides a brief overview over Monte Carlo variance-reduction
techniques that are used and/or discussed within this dissertation. In partic-
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ular, we will discuss analytic integration, importance sampling, and control
variates.

There exist several other variance-reduction techniques that we omit for
brevity. For a more thorough introduction to variance-reduction techniques
we refer the interested reader to Eric Veach’s excellent thesis [Veach 1997].

3.3.1 Use of Expectation

Perhaps the most straightforward approach to reducing variance is the ex-
plicit integration over some dimensions of the integration domain and then
performing Monte Carlo integration only over the remaining dimensions.
For example, consider the following Monte Carlo estimator of an integral
over the domain D = R2:

〈F〉 = f (X, Y)
q(X, Y)

. (3.4)

Integrating over some dimensions of the domain in both the numerator and
the denominator (for example along Y) yields another Monte Carlo estimator
of the same integral: it is the conditional expectation of the original estimator
with respect to the integrated-out dimensions

〈F〉′ =
∫

R
f (X, y)dy∫

R
q(X, y)dy

=
∫

R

f (X, y)
q(X, y)

q(y|X)dy = EY

[
f (X, Y)
q(X, Y)

]
. (3.5)

The new Monte Carlo estimator 〈F〉′ therefore has the same expectation as
〈F〉 (i.e. preserves unbiasedness) but has lower variance, because variation
caused by some random variables (in this case Y) has been integrated out.

This intuitive notion has been formalized in a series of works by Rao, Black-
well, and Kolmogorov as the Rao–Blackwell–Kolmogorov theorem. The use
of expectation is therefore also often referred to as Rao–Blackwellization.

3.3.2 Importance Sampling

Importance sampling is one of the most well known variance reduction
techniques that exist. The key insight is, that the variance of 〈F〉N heavily
depends on the choice of q(x). The closer the shape of q(x) follows the
shape of normalized f (x) (which is p(x) = f (x)/F), the lower the variance
becomes. Conversely, if q(x) deviates from the shape of p(x), then variance
increases. In the limiting case of q(x) = p(x), ∀x ∈ D the variance becomes
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zero, i.e. the Monte Carlo estimator produces the correct answer with a single
sample:

〈F〉 = f (X)

p(X)
=

f (X)

f (X)/F
= F . (3.6)

Unfortunately, knowing p(x) requires knowledge of the integral F which
we are trying to solve in the first place, so we can not use p(x) directly in
practice. However, it is often possible to reduce variance by sampling from a
distribution that either approximates the shape of p(x) in general, or matches
it well only in some regions of the integration domain D.

More precisely, given some sampling density q(x), the variance can be ex-
pressed as a function of p(x) and q(x):

V[〈F〉] = E

[
f (X)2

q(X)2

]
−E

[
f (X)

q(X)

]2

=
∫
D

f (x)
f (x)
q(x)

dµ(x)− F2

= F2
(∫
D

p(x)
p(x)
q(x)

dµ(x)− 1
)

. (3.7)

This formula not only illustrates once more that V[〈F〉] approaches zero as
q(x) approaches p(x), but it also highlights the failure case: whenever q(x)
approaches zero in a region where p(x) 6= 0, the variance tends to infinity. In
this context it helps to think of the integral in the parentheses as either the
expected ratio p(X)/q(X) for X ∼ p or, alternatively, as the expected squared
ratio p(X)2/q(X)2 for X ∼ q.

In summary, variance can be reduced by drawing Monte Carlo samples from
a probability density q(x) that is as proportional as possible to the integrand
f (x).

3.3.3 Quantifying the Quality of a Sampling Distribution

In Section 2.3 we briefly introduced the concept of “divergences” for quanti-
fying the difference between a given pair of probability distributions. Since
for all divergences D(p ‖ q) = 0 if and only if p = q, a divergence of zero is
both a necessary and sufficient condition for q being optimal for importance
sampling, i.e. resulting in a variance of zero.

However, beyond this basic property it can be desirable for D(p ‖ q) to quan-
tify the “efficiency” of the Monte Carlo estimator 〈F〉. One particularly
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interesting f -divergence in this context is the Kullback-Leibler (KL) diver-
gence:

DKL(p ‖ q) =
∫
D

p(x) log
p(x)
q(x)

dµ(x) . (3.8)

It is also known as the “relative entropy” between p and q, since it can be
written as the difference between the cross entropy H(p, q) and the entropy
E(p)∫

D
p(x) log

p(x)
q(x)

dx = −
∫
D

p(x) log q(x)dx︸ ︷︷ ︸
Cross entropy

+
∫
D

p(x) log p(x)dx︸ ︷︷ ︸
Negative entropy

= H(p, q)− E(p) . (3.9)

Information-theoretically, the KL-divergence therefore measures the wasted
amount of information when sub-optimally encoding samples from p with the
optimal encoding of q. While this view is very abstract in the context of Monte
Carlo estimation, one can also analyze the terms from a numerical standpoint:
the ratio p(x)/q(x) ensures, that the divergence approaches infinity as q(x)
approaches zero where p(x) 6= 0, corresponding to the behavior of the
variance of a Monte Carlo estimator of F that is importance sampled by q(x).
The logarithm around the ratio can be viewed as making the divergence more
numerically stable by suppressing values close to infinity or zero. These
properties make the KL-divergence interesting for measuring how “good”
any given q is for importance sampling in a Monte Carlo context.

Anothing interesting divergence in the context of Monte Carlo integration is
the Pearson χ2-divergence

Dχ2(p ‖ q) =
∫
D

p(x)2

q(x)
dµ(x)− 1 , (3.10)

which is proportional to the variance of 〈F〉 by a factor of 1
F2 (see Equation 3.7).

One might think that this close correspondence to the variance makes the
χ2-divergence the obvious divergence of choice for measuring the quality of
q, but when estimating the χ2-divergence in practice (there typically exists
no closed-form), numerical instabilities may arise due to the squared ratio
p(x)2/q(x)2. This makes the robust usage of the χ2-divergence in practical
algorithms difficult, especially when it drives a machine-learning optimiza-
tion objective. In fact, we found the KL-divergence to yield superior usability
in all our experiments (see Chapter 8).
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3.3.4 Multiple Importance Sampling

Often times, a collection of candidate densities qi(x), i ∈N exists, where each
candidate is a good choice for importance sampling a different, potentially over-
lapping region of the integration domainD. In other words, multiple densities
may exist, each producing Monte Carlo estimators with low variance in some
parts of D and (potentially) high variance in others. “Multiple importance
sampling” is a recipe for combining the strengths of these densities qi(x)
to achieve provably low variance in those regions where at least one of the
densities results in low variance.

To motivate the benefits of multiple importance sampling, let us first consider
the naı̈ve approach of simply averaging multiple independent Monte Carlo
estimators 〈F〉iN , i ∈N, each using the corresponding density qi(x) for impor-
tance sampling. Given several uncorrelated random variables, the variance
of their sum is equal to the sum of their variances, and thus

V

[
1
M

M

∑
i=1
〈F〉iN

]
=

M

∑
i=1

V

[
1
M
〈F〉iN

]
≥ 1

M
V
[
〈F〉ı̂N

]
= V

[
〈F〉ı̂MN

]
, (3.11)

where 〈F〉ı̂N is the estimator corresponding to the density that produces
the lowest variance. This formula says, that combining M strategies never
produces lower variance than choosing the most optimal of the strategies and
instead investing the same total sample count MN into it. In other words:
given a fixed total number of samples, a linear combination of estimators can
never outperform the best available one, even if that overall “best” available
estimator performs much worse in some regions of the integration domain
than the other estimators.

To get around this limitation, the key idea behind multiple importance sam-
pling is to combine the individual sample estimates themselves rather than their
means [Veach and Guibas 1995]. Consider the general case of linearly com-
bining the samples of M strategies

〈F〉MN =
N

∑
i=1

M

∑
j=1

wj(Xi,j)
f (Xi,j)

qj(Xi,j)
(3.12)

via sample- and strategy dependent weights wj(x). This estimator is unbiased
under the mild conditions that the weights sum up to 1 whenever f (x) is
non-zero

M

∑
j=1

wj(x) = 1, ∀x ∈ {x ∈ D | f (x) 6= 0} (3.13)
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and the weight of strategy j is zero if the PDF of said strategy is zero

wj(x) = 0, ∀x ∈ {x ∈ D | qj(x) = 0} . (3.14)

Given these conditions, unbiasedness follows.

Proof.

E[〈F〉MN ] =
M

∑
j=1

E

[
1
N

N

∑
i=1

wj(Xi,j)
f (Xi,j)

qj(Xi,j)

]

=
M

∑
j=1

∫
D

wj(x)
f (x)
qj(x)

qj(x)dµ(x)

=
M

∑
j=1

∫
D

wj(x) f (x)dµ(x)

=
∫
D

M

∑
j=1

wj(x) f (x)dµ(x)

=
∫
D

f (x)dµ(x)

In the multiple-importance-sampling framework one particular choice of
weights stands out: the so-called balance heuristic.

wj(x) =
qj(x)

∑M
i=1 qi(x)

. (3.15)

It performs provably well in the sense that any other combination strategy
can not significantly reduce the variance further: let 〈F̂〉MN be a multiple-
importance-sampling estimator that uses the balance heuristic and let 〈F〉MN
be any other multiple-importance-sampling estimator, then

V[〈F̂〉MN ]−V[〈F〉MN ] ≤ M− 1
MN

F2 . (3.16)

For a proof and more thorough treatment of multiple importance sampling,
we refer to the paper by Veach and Guibas [1995].

3.3.5 Control Variates

The framework of control variates requires approximating f (x) with a func-
tion g(x) with a known integral G =

∫
D g(x)dµ(x). The integral F we would
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like to solve for can then be rewritten as

F = G + F− G (3.17)

= G +
∫
D

f (x)dµ(x)−
∫
D

g(x)dµ(x) (3.18)

= G +
∫
D

f (x)− g(x)dµ(x) , (3.19)

and Monte Carlo integration can be performed only on the difference f (x)−
g(x) rather than f (x) alone. Just like importance sampling, we can easily
show that g(x) = f (x), ∀x ∈ D results in a zero-variance estimator

V

[
f (X)− g(X)

q(X)

]
= V

[
f (X)− f (X)

q(X)

]
= V[0] = 0 . (3.20)

Let us investigate in more detail how the variance relates to the choice of
g(x):

V

[
f (X)− g(X)

q(X)

]
= E

[(
f (X)− g(X)

)2

q(X)2

]
−E

[
f (X)− g(X)

q(X)

]2

(3.21)

=
∫
D

(
f (x)− g(x)

)2

q(x)
dµ(x)− (F− G)2 . (3.22)

The first important insight is, that the method of control variates is orthogonal
to that of importance sampling. Regardless of the choice of g(x), one can still
reduce the variance arbitrarily much by choosing q(x) to be as proportional
to the integrand (in this case f (x)− g(x)) as possible.

However, secondly, the variance depends on the mean squared difference
(weighted by 1/q(x)) between f (x) and g(x). Note, though, that f (x) does
not necessarily have to equal g(x) for the variance to reach zero; it is sufficient
for
(

f (x)− g(x)
)2/q(x) to be a constant.

This nicely illustrates how the variance characteristics of the method of control
variates differ from those of importance sampling. While importance sam-
pling reduces variance by sampling as proportional as possible to f (x), control
variates reduce variance when using a function g(x) with a known integral
G, which is as close as possible to f (x) in a weighted-least-squares sense.

3.3.6 Viewing Variance Reduction as a Smoothing Operation

Let us interpret a Monte Carlo estimator 〈F〉 of F not as a random variable
but as a deterministic function of x

〈F〉(x) = G +
f (x)− g(x)

q(x)
. (3.23)
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It is then worthwhile to view the application of control variates and (multiple)
importance sampling as picking g(x) and q(x) such that 〈F〉(x) becomes
maximally smooth (i.e. constant). Indeed, minimizing V[〈F〉(X)] is nothing
more than a formalization of smoothing 〈F〉(x).

Although this view may seem trivial at first, it becomes interesting in certain
situations. In particular, consider the case, where the random variable X ∼ q
is a function of another random variable Z ∼ p, where X = x(Z). This setup
may seem contrived at first glance, but it occurs frequently in practice when
using one of the techniques described in Section 2.6 to sample from a desired
PDF q(x).

For example: when using the inversion method. Let Z ∼ U (0, 1) be uniformly
distributed and x(Z) = Q−1(Z) be the inverse CDF of q(x). Then, let us
rewrite the integral F in terms of z

F = E
[
〈F〉(X)

]
= E

[
〈F〉(x(Z))

]
= G +

∫
Dz

(
f
(
x(z)

)
− g
(
x(z)

)) p(z)
q
(
x(z)

) dµ(z)

= G +
∫
Dz

fz(z)dµ(z) . (3.24)

Assuming that g(x) and q(x) were chosen such that they reduce the vari-
ance of 〈F〉(x), the above formula is a reformulation of the original inte-
grand in a smoother parameterization fz(z). One possible application of
this view is the recursive usage of variance reduction techniques on estimat-
ing

∫
Dz

fz(z)dµ(z) in addition to the ones that were originally applied to∫
D f (x)dµ(x).

3.4 Properties of Estimators

Any statistical estimator—not just a Monte Carlo estimator—has certain
properties that may or may not be desirable. In this section we describe two
particular properties that are widely regarded as desirable in Monte Carlo
integration: consistency and unbiasedness.

3.4.1 Consistency

A consistent estimator converges to the correct answer as the number of
samples approaches infinity. Let EN be an N-sample estimator of some true
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value E, then EN is consistent if and only if it approaches E as N approaches
infinity

lim
N→∞

Prob
(
|EN − E| > ε

)
= 0 . (3.25)

In the case of the Monte Carlo estimators we discussed before, the weak law
of large numbers guarantees consistency out-of-the-box.

However, in practice it is often desirable to approximate F with a simpler-
to-solve integral F′, for instance, when applying level-of-detail approaches
to computer graphics problems. In this case, a Monte Carlo estimator of F′

would be consistent w.r.t. F′, but not with respect to F.

3.4.2 Unbiasedness

The bias of an estimator EN is the deviation of its expectation E[EN] from the
true value E:

Bias[EN] = E[EN]− E . (3.26)

It can be understood as systematic error that does not vanish when averaging
multiple independent estimates. In the particular example that we gave in
the preceeding section, the bias of estimator 〈F′〉 when using it to estimate F
would be the difference between F′ and F

Bias[〈F′〉] = E[〈F′〉]− F = F′ − F , (3.27)

that is, the approximation error of F′ versus F.

An estimator is called unbiased if its bias is zero, i.e. its expectation matches the
true value. This leads to an interesting connection between unbiasedness and
consistency: the bias of any consistent estimator must vanish as N approaches
infinity. However, the reverse is not always true. An unbiased estimator is
not necessarily consistent, because unbiasedness does not guarantee, that the
estimator converges in probability to any value at all as N approaches infinity.
In the case of Monte Carlo estimators, convergence is guaranteed due to the
strong law of large numbers and unbiasedness does imply consistency.

3.5 Nested Integrals

It is sometimes required to solve not a single integral but a nested sequence
of integrals. Such nested integrals are common when solving transport
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problems of the kind that we are interested in. Suppose we have D =
D1 ×D2 × · · · × Dn and nested integrals over D1, . . . ,Dn of the form

F =
∫
D1

t1(x1) + f1(x1)
∫
D2

t2(x1, x2) + f2(x1, x2)
∫
D3

. . . dµ(x3)dµ(x2)dµ(x1)

=
∫
D

n

∑
i=1

(
ti(x1, . . . , xi)

i−1

∏
j=1

f j(x1, . . . , xj)

)
n

∏
i=1

dµ(xi) . (3.28)

We can estimate these nested integrals using a single Monte Carlo estimator

〈F〉 =
∑n

i=1 ti(X1, . . . , Xi)∏i−1
j=1 f j(X1, . . . , Xj)

q(X1, . . . , Xn)
. (3.29)

via the use of expectation (Section 3.3.1), we can replace this Monte Carlo
estimator with a lower-variance estimator—a product-sum of nested 1-D
Monte Carlo estimators—converging to the same value

〈F〉′ =
n

∑
i=1

ti(X1, . . . , Xi)∏i−1
j=1 f j(X1, . . . , Xj)

q(X1, . . . , Xi)

=
n

∑
i=1

ti(X1, . . . , Xi)

q(Xi|X1, . . . , Xi−1)

i−1

∏
j=1

f j(X1, . . . , Xj)

q(Xj|X1, . . . , Xj−1)

=
n

∑
i=1
〈Ti〉

i−1

∏
j=1
〈Fj〉 =

n

∑
i=1
〈Ti〉 〈Pi〉 =

n

∑
i=1
〈Si〉 , (3.30)

where we defined 〈Pi〉 = ∏i−1
j=1 〈Fj〉 and 〈Si〉 = 〈Ti〉 〈Pi〉. Note that the compu-

tational cost of evaluating 〈F〉′ is linear in n (as opposed to quadratic) because
each 〈Si〉 shares its prefix of 〈Fj〉’s with all other 〈Si〉.

Special care must be taken when choosing the sample count of the individual
estimators to avoid a prohibitively expensive exponential growth in compu-
tational cost: due to the nesting, if N samples were used in each estimator
〈Ti〉 and 〈Fi〉, then the total sample count would be O(Nn).

Unfortunately, there is no single optimal allocation of samples to the nested
estimates; the optimal allocation heavily depends on the nested integrands
and the quality of their individual corresponding variance-reduction tech-
niques. In practice, a common approach is simply to use primal estimators
everywhere, except for the outermost estimator 〈F〉′.
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3.5.1 Russian Roulette

Consider the case where there are infinitely many nested integrals, i.e. n→ ∞,
leading to

〈F〉′ =
∞

∑
i=1
〈Si〉 . (3.31)

This situation may seem contrived at first glance, but it actually occurs fre-
quently in practice. The specific application we are interested in is solving
Fredholm integral equations of the second kind, which describe the equilib-
rium solutions of transport problems, including light transport.

Evaluating this Monte Carlo estimator requires an infinite amount of compu-
tation due to its infinitely many terms. However, using a technique called
“russian roulette”, it is possible to modify the above Monte Carlo estimator to
achieve finite run time at the cost of additional variance without introducing
bias.

The key idea is to replace each Monte Carlo estimator 〈Si〉 with another one
that is zero with some probability b < 1 and 〈Si〉/(1− b) otherwise2. This
can be expressed by introducing a uniformly distributed random variable
ξ ∼ U (0, 1):

〈Si〉′ =
{

0 if ξ < b
〈Si〉
1−b otherwise.

. (3.32)

It is easy to show that if 〈Si〉 is an unbiased estimator, then 〈Si〉′ is unbiased
as well:

Proof.

E
[
〈Si〉′

]
= E

[
Eξ

[
〈Si〉′

]]
(conditional expectation)

= E

[
b · 0 + (1− b)

〈Si〉
1− b

]
(definition of 〈Si〉′)

= Si (〈Si〉 unbiased)

2This is essentially the reverse of variance reduction by the use of expection (Section 3.3.1).
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We can also quantify the increased variance of 〈Si〉′ when compared to 〈Si〉:

V
[
〈Si〉′

]
= E

[
Eξ

[
〈Si〉′

2]]− S2
i

= E

[
b · 02 + (1− b)

(
〈Si〉

1− b

)2
]
− S2

i

=
1

1− b
E
[
〈Si〉2

]
− S2

i

=
b

1− b
E
[
〈Si〉2

]
+ V

[
〈Si〉

]
. (3.33)

The russian-roulette approach to making the infinite sum 〈F〉′ = ∑∞
i=1 〈Si〉

tractable is then to replace all 〈Si〉with corresponding 〈Si〉′ with appropriately
chosen termination probabilities bi that approach 1 sufficiently quickly.

In the absence of perfect information, the goal of obtaining russian-roulette
probabilities bi that optimally balance variance and computational cost is
a difficult problem, although there exist data-driven approaches that learn
approximately optimal russian-roulette probabilities [Vorba and Křivánek
2016]. Alternatively, a popular heuristic is choosing bi = 1−∏i−1

j=1 〈Fi〉, but its
efficiency heavily depends on the characteristics of the individual estimators.

3.6 Overview of Advanced Techniques

Although, due to the limited scope of this dissertation, we can not cover
every variant of Monte Carlo integration that was published in the past, we
list several advanced techniques that we consider to be of high interest for
our use case of path-traced Monte Carlo light-transport simulation.

3.6.1 Quasi Monte Carlo

Perhaps surprisingly, the error of Monte Carlo estimators can converge to
zero even when driven by deterministic sequences of samples, rather than
random sequences. These types of deterministic estimators are referred to as
“quasi-Monte Carlo” estimators. Even though quasi-Monte Carlo estimators
are inherently biased due to their determinism, when they are carefully
designed they can converge at faster asymptotic rates than random Monte
Carlo estimators. In this dissertation, we focus on image synthesis using
random Monte Carlo estimators, which in some cases can be extended to the
quasi-Monte Carlo setting with little effort if required.
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Quasi Monte Carlo is quite popular in path tracing: most renderers support it
in some form. We refer the interested reader to the summary of quasi-Monte
Carlo methods for image synthesis by Keller [2013].

3.6.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) techniques draw samples from an un-
normalized target PDF f (x) = c · p(x) using an underlying Markov chain,
for example by using the Metropolis-Hastings algorithm (see Section 2.6.3
for a definition of Markov chains and the Metropolis-Hastings algorithm).
Since, unlike traditional importance-sampling PDFs, the stationary PDF of a
Markov chain can not be readily evaluated, the class of integrals that can be
estimated using MCMC are limited to those of the form

H =
∫
D

h(x)p(x)dµ(x) = E
[
h(X)

]
, (3.34)

because their corresponding Monte Carlo estimator

〈H〉N =
1
N

N

∑
i=1

h(Xi) (3.35)

does not require evaluating p(x). In other words: MCMC is applicable for
estimating expectations over probability densities that are available only in
unnormalized form.

Note, that if p(x) is available in normalized form, that is, the Markov chain is
used purely to draw samples from p(x) and not to avoid normalization, then
MCMC is also applicable in the general integration setting.

3.6.3 Adaptive Monte Carlo

The idea behind adaptive Monte Carlo is to gradually refine importance-
sampling distributions based on the outcome of previously drawn Monte
Carlo samples.

Sequential Monte Carlo. The need for adaptation initially arose in the
context of dynamic systems where the integrand itself continually changes
and therefore requires constantly updated sampling distributions. This led
to “sequential Monte Carlo” [Liu and Chen 1998], also known as “particle
filters” [Del Moral 1996].
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Population Monte Carlo. More interesting to us, however, is the case of
static integrands. Building on the observation of Chopin [2002] that sequential
Monte Carlo becomes an iterated importance-sampling scheme in the static
setting, Cappé et al. [2004] propose “population Monte Carlo” (PMC), which,
like particle filters, simulates a finite number of particles to approximate
the importance-sampling distribution. Several variations of PMC exist, for
example M-PMC [Cappé et al. 2008] which models the importance-sampling
distribution as a mixture of gaussians that are centered around the simulated
particle positions.

Particle-less Methods. In parallel to the development of the above particle-
based approaches, several attempts have been made to learning and refining
importance-sampling distributions that are represented in different ways,
such as piecewise-constant functions [Jensen 1995; Lafortune and Willems
1995], mixture models that resemble M-PMC [Hey and Purgathofer 2002;
Vorba et al. 2014], and, lately, neural networks [Dahm and Keller 2017; Zheng
and Zwicker 2018].

Our work in this dissertation falls into this category. We present adap-
tive Monte Carlo methods that use piecewise-constant functions in Chap-
ters 6 and 7, and neural networks in Chapter 8.
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C H A P T E R 4
Light Transport in Computer Graphics

The complex appearance of images of the real world stems from the fact that
light interacts with different materials in a wide variety of ways, resulting
in a multitude of interesting visual phenomena. Light consists of discrete
packages of energy that propagate through space as a particle and as a wave
at the same time. These energy packages—photons—interact with matter
and get absorbed or reflected, only to interact again with the next body of
matter they encounter.

Due to the complexity of simulating the full underlying physics of light
as dictated by quantum mechanics, computer graphics literature usually
follows the simplified setting of geometric optics, where the energy of light
is continuous, and where light travels through vacuum in straight lines as
opposed to waves. This simplified setting is usually a good approximation
of the true nature of light at human scales, and it is therefore most often
sufficient for producing photorealistic results1.

In this chapter, we will therefore provide a brief introduction to the geometric-
optics-view that underlies computer graphics.

For a detailed survey of the various possible models for light transport
and their relation to other fields (e.g. neutron transport, heat transfer, and
acoustics), we refer the interested reader to the the introductory chapter of
Veach’s dissertation [Veach 1997].

1There are exceptions to this rule which—while being interesting—are out of the scope of this
dissertation.
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Table 4.1: Light-transport-related quantities, sets, measures, elements, and transport kernels.

Symbol Name Description

Φ (Radiant) Flux Power carried by light [W = J s−1].
E Irradiance Incident power per unit area [W m−2].
R Radiosity Exitant power per unit area [W m−2].
I Intensity Power per unit solid angle [W sr−1].
L Radiance Power per unit projected area per solid angle

[W m−2 sr−1]. Subscripts Li, Lo, and Le denote inci-
dent, outgoing, and emitted radiance, respectively. Other
suffixes may be used to further differentiate.

W Importance Unitless sensor response per unit projected area per solid
angle [m−2 sr−1].

σs Scattering coeff. Number density of scattering particles on a line [m−1].
σa Absorbtion coeff. Number density of absorbing particles on a line [m−1].

σt = σs + σa Extinction coeff. Number density of participating particles on a line [m−1].
α = σs/σt Albedo Fraction of scattering vs. total number of interactions. In-

formally: color of material.

M Space 3D space in which light transport is simulated.
∂V ⊆ M Surface 2D surface positions that participate in light transport.
V =M− ∂V Volume Space that does not lie on a surface. May or may not

participate in light transport.
Pk =Mk Path space Space of light paths with length k.
P =

⋃∞
k=2 Pk Path space Space of light paths of all lengths.
S2 Unit sphere Set of unit-length 3D vectors.

A
(
∂V ′
)

Area Surface area measure of a subset ∂V ′ ⊆ ∂V .
V
(
V ′
)

Volume Volume measure of a subset V ′ ⊆ V .
M
(
M′) Volume or area Volume or area measure of a subsetM′ ⊆ V orM′ ⊆ ∂V .

Π
(
P ′) Product Product measure defined as

∫
P ′ ∏

k
i=1 dM(xi) for

x1 . . . xk = x ∈ P ′ ⊆ P .
Ω
(
S2′) Solid-angle Solid angle measure of a subset S2′ ⊆ S2.

x ∈ M Position 3D vector. Subscripts xi and xo denote association with
incident and outgoing radiance, respectively.

x ∈ P Light path Light path consisting of any number of vertices ≥ 2.
ω ∈ S2 Direction Unit 3D vector. Subscripts ωi and ωo denote association

with incident and outgoing radiance, respectively.

f� Scattering function Relates incident radiance to scattered (outgoing) radiance.
In this dissertation: bidirectional scattering distribution
function fs (BSDF; Section 4.6), phase function fp (Sec-
tion 4.7), grain scattering distribution function fg (GSDF,
Section 6.3), shell transport function fstf (STF, Section 6.2).

τ(x1↔x2) Transmittance Fraction of unscattered light on a line between x1 and x2.
G(x1↔x2) Geometry term Radiance change due to geometry between x1 and x2.
E(x1↔x2) Edge throughput Product of transmittance and the geometry term.

T(x) Path throughput Fractional radiance carried by a given light path x.
f (x) Path contribution Radiance measured by a sensor through x.
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4.1 Physical Quantities

We begin by introducing the physical quantities that underlie light transport.
Those quantities are defined in terms of spatial and directional coordinates,
which we define as follows; all notation in this chapter is summarized in
Table 4.1.

LetM = R3 be the set of all valid 3-dimensional positions. In this disserta-
tion, whenever we refer to a position x ∈ Mwe use the symbol x. Light-matter
interactions on 2-dimensional surfaces embedded in 3-dimensional space are
treated differently from volumetric interactions, which leads us to partition
M into the set of surface positions ∂V ⊆ M and the complementary set of
volume positions V =M− ∂V .

Let S2 ⊂ R3 be the set of 3-dimensional unit-length vectors, i.e. the set of
vectors on the unit sphere. In this dissertation, we refer to directions ω ∈ S2

using the symbol ω. Whenever we model light-particle interactions, we refer
to directions of incident light as ωi and directions of outgoing light as ωo,
where, by convention, both ωi and ωo point away from the scattering event2.

4.1.1 Flux

“Radiant flux” or just “flux”, denoted Φ, is the power carried by light. It
describes an amount of energy Q being carried by light per unit time and
therefore has units of watts [W = J s−1]:

Φ(t) =
dQ(t)

dt
. (4.1)

An example for flux is the number of photons hitting a solar panel per second,
multiplied by the energy carried by each photon.

In practice we are most often concerned with the steady-state solution of
light-transport and we therefore omit the time dimension from the following
derivations. Time-dependent effects on the human scale, such as motion
blur, are usually treated as orthogonal to light-transport in the sense that
they are approximated as a linear average of the steady-state light-transport
over the effect duration. This approximation is valid when the time scales

2In our illustrations, such as in Figure 4.1, the direction of arrows follows the direction of light
to aid in intuitive understanding. As a consequence, the direction of incident illumination is
shown as −ωi (labeled as such), whereas the direction of outgoing illumination is shown as ωo.
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of interest are much longer than the time that light requires to propagate
between objects3.

Flux can be differentiated according to the wavelength of light, yielding
spectral flux [W = J s−1 nm−1]:

Φ′(t, λ) =
dQ(t, λ)

dt dλ
. (4.2)

Since our goal is to produce photorealistic images, it is important to model
color and therefore the wavelength of light. Most light-transport phenomena,
however, are independent from the wavelength of light, which allows us to
omit it in the following derivations and definitions. A rendering system that
solves the equations of light transport can then simply run a monochromatic
(wavelength independent) algorithm on multiple wavelengths independently
to produce a colored image.

It is worth noting, that there are some visual phenomena where the above
approximation breaks down. Flourescence in particular, where photons of
one wavelength are absorbed and re-emitted at another wavelength, plays a
role in the appearance of many human-scale objects and requires modeling
of the interaction between spectral flux at different wavelengths. In this
dissertation, however, we ignore this effect.

In the following, our goal will be to mathematically model the transport of
flux throughout space and its interactions with materials. To do this, we
must be able to formulate the spatio-directional distribution of flux, which
requires the usage of its spatial, directional, and spatio-directional derivatives.
These derivatives have established names and definitions in geometric-optics
literature, which we will introduce next.

4.1.2 Irradiance and Radiosity

“Irradiance”, denoted E, is the surface area density of flux. It is therefore
measured in units of watts per square meter [W m−2], which are obtained by
differentiating flux with respect to the surface-area measure A:

E(x) =
dΦ(x)
dA(x)

. (4.3)

To give an example: if flux corresponds to the number of photons hitting a
solar panel per second, then irradiance corresponds to the number of photons

3There actually exists work that investigates the propagation of light at small time scales [Jarabo
et al. 2014].
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dA
dA>ω

γ

dA
dA>ω

−ω

(a) Foreshortening (b) Differential geometry

Figure 4.1: Parallel rays of light that arrive at a surface at an angle γ are spread by a factor of
cos γ, called the “foreshortening term” (a). This spread of energy yields the differential relationship
dA>ω(x) = dA(x) | cos γ| found in the definition of radiance (b).

hitting a differential surface patch of the solar panel, divided by the size of
the differential patch.

By convention, irradiance only refers to energy arriving at a surface. The
complementary quantity (with the same units) referring to energy leaving a
surface is called “radiosity”, denoted B.

4.1.3 Intensity

It is also interesting to consider the directional density of flux. This quantity—
flux per solid angle—is called “intensity” I and has units of watts per stera-
dian [W sr−1]. We obtain intensity by differentiating flux with respect to the
solid-angle measure Ω:

I(ω) =
dΦ(ω)

dΩ(ω)
. (4.4)

4.1.4 Radiance

“Radiance”, denoted L, is defined as flux per solid angle and per area, resulting
in units of watts per square meter per solid angle [W m−2 sr−1]. Radiance is
obtained by differentiating flux with respect to the solid-angle measure Ω

and projected area measure A>ω

L(x, ω) =
d2Φ(x, ω)

dΩ(ω)dA>ω(x)
, (4.5)
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where the projected area measure A>ω is defined as the surface area measure
A projected onto a plane perpendicular to ω

dA>ω(x) = dA(x) |N(x) ·ω| = dA(x) | cos γ| , (4.6)

which we illustrate in Figure 4.1. The term cos γ = N(x) · ω is called the
“foreshortening term”, referring to its correspondence to the stretching of
light across slanted surfaces.

The choice of differentiating flux with respect to A>ω rather than A may seem
arbitrary at first, but there is a good reason for it: due to the differentiation
with respect to an area that is perpendicular to the propagation direction ω,
radiance is independent from the orientation of the surface that it originated
from, which paves the way for modeling radiance-volume and radiance-
surface interactions in the future.

Radiance has a core property that makes it convenient for modeling light
transport: it remains constant along straight lines through vacuum. This prop-
erty allows for an intuitive interpretation of radiance propagation through
space as rays of light, which we will make use of in the following.

4.2 The Measurement Equation

Before we begin modeling the transport of light, we first define how light
is observed. In the real world, us humans perceive light in the form of pho-
tons with varying wavelength (color) entering our eyes and stimulating the
photoreceptive cells on our retinas. Photography devices are nothing else
than machines that mimic the characteristics of human perception: instead of
recording photons via cell stimulation, analog cameras record images on a
sheet of transparent film coated with a material that darkens as it is exposed
to light, and digital cameras employ microscopic sensors that convert incident
photons into electricity.

In the virtual world, no such physical mechanisms for sensing light are
required. Instead of having to carefully craft a physical object that responds
to incident light in a convenient manner, we can simply model the sensitivity
of a virtual sensor as a function. Suppose there is incident radiance Li(x, ωi)
at a position on the sensor x ∈ I ⊆ M (or in the sensor; nothing prevents
I from being a volume rather than a surface) from direction ωi ∈ S2, then
let the “importance” W(x, ωi) be the differential response of the sensor per
incident radiance:

W(x, ωi) =
d2S(x, ωi)

d2Φi(x, ωi)
=

d2S(x, ωi)

Li(x, ωi)dΩ(ωi)dM>ω (x)
, (4.7)
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where M>ω (I) is either the projected surface area measure or the volume
measure, depending on whether I ⊆ ∂V or I ⊆ V :

M>ω (I) =
{

A>ω(I) if I ⊆ ∂V
V(I) otherwise

⇐⇒ dM>ω (x) =

{
dA>ω(x) if x ∈ ∂V
dV(x) otherwise.

(4.8)

For notational convenience, we define W(x, ωi) not only over x ∈ I , but over
all positions in space, setting its value to 0 whenever x /∈ I .

Following from the definition of importance, its units are [S/W], where S
(the sensor response) is a placeholder for any quantity of our choosing. If the
sensor models a digital camera, then its response S might be voltage; if the
sensor models an analog film, then S could represent darkening of the film.
In our idealized virtual world, we make S unitless and leave its eventual
interpretation to the user.

The measurement equation captures the total amount of measurement over
the sensor domain

I =
∫
M

∫
S2

Li(x, ωi)W(x, ωi)dΩ(ωi)dM(x) . (4.9)

Note that this equation produces a scalar value, which makes it—by itself—an
unsuitable model for the light captured by a physical camera or by a human
eye. It can, however, be used to model the light captured by a single pixel
or a single cell on a human eye’s retina. Because the regular-grid structure of
the pixels in a camera is more convenient than the irregular arrangement of
photoreceptive cells in a human eye, we model virtual sensors after cameras
in this dissertation. We define a virtual image as a set of measurements
Ixy, x ∈ {1, . . . , m}, y ∈ {1, . . . , n}, each of which corresponds to the light
observed by a pixel in the y-th row and the x-th column of a virtual camera
with a resolution of m× n pixels:

Ixy =
∫
M

∫
S2

Li(x, ωi)Wxy(x, ωi)dΩ(ωi)dM(x) . (4.10)

In order to synthesize a virtual image, our goal is to numerically solve the
measurement integral via Monte Carlo integration. In order to do so, we must
be able to quantify incident radiance Li(x, ωi), which depends on the geome-
try of the virtual scene, on the placement of virtual emitters (light sources),
and on the interactions between the emitted light and the aforementioned
geometry. In the remainder of this chapter, we provide a brief overview of
the predominant models of Li(x, ωi) in graphics literature and techniques to
compute them.
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Surface and Volume Light Transport. Researchers developed mathemati-
cal models of light-matter interactions that can be broadly divided into two
categories: light-surface interactions and light-volume interactions (hence
the distinction between ∂V and V). From a purely physical standpoint, both
models are fundamentally the same; translucent and opaque matter is made
out of the same fundamental particles, after all. It is, however, mathemati-
cally convenient to model interactions of light with optically dense matter on
idealized, infinitely thin surfaces rather than volumetrically.

Since this dissertation contains contributions to volume rendering (Chapter 6)
as well as surface rendering (Chapters 7 and 8), we introduce both models,
including their combination, within this chapter. We begin with surface
light transport in Section 4.3, then proceed to volumetric light transport in
Section 4.4, and eventually combine both.

4.3 Surface Light Transport

Recall, that in order to solve the measurement equation (4.9) we require a
mathematical formulation of the incident light Li(x, ωi) for a given position
and direction, where, for now, we will constrain ourselves to positions on
surfaces, i.e. x ∈ ∂V . We further assume that the space between surfaces V
is empty (i.e. a vacuum) and does not interact with light. It follows, that
radiance is conserved along straight lines. To make use of this fact, let
us define the ray-tracing operator r(x, ω) that finds the first ray-surface
intersection along the ray prescribed by x + t ·ω with t ∈ (0, ∞):

r(x, ω) = x + t̂ ·ω

t̂ = inf
{

t ∈ (0, ∞)
∣∣∣ (x + t ·ω) ∈ ∂V

}
, (4.11)

where, for simplicity, we assume that t̂ always exists4. Using the ray-tracing
operator and the conserversion of radiance along straight lines, we get the
relationship

Li(x, ωi) = Lo
(
r(x, ωi),−ωi

)
, (4.12)

where Lo(x, ωo) is defined to be the outgoing radiance at x towards ωo, i.e.
radiance leaving a surface at x. It is important to note, that here we are
making the implicit assumption that the speed of light is infinite. If it was

4By convention, the infimum of the empty set is ∞. To avoid having to deal with t̂ = ∞, let us
simply assume there exists a (arbitrarily big) finitely sized sphere encompassing the virtual
scene.
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not (as in reality), then the above equation would include an additional time
variable that captures the delay between light departing at x and arriving
at r(x, ω). There is, however, a reasonable justification to be made for the
infinite speed-of-light assumption: us humans rarely perceive light in-flight,
but rather only after it (very rapidly) reached an equilibrium state. The
above equation—without a time variable—helps us capture precisely this
equilibrium.

4.3.1 The Rendering Equation

We can now express incident light at one location Li(x, ωi) in terms of out-
going light at another location Lo(x′, ωo), where, in this case ωo = −ωi. This
allows us to express a virtual image not in terms of the light arriving at a
virtual camera, but in terms of the light leaving those points x′ = r(x, ωi) in
the virtual scene that the virtual camera observes.

Ixy =
∫
I

∫
S2

Li(x, ωi)Wxy(x, ωi)dΩ(ωi)dM(x)

=
∫
I

∫
S2

Lo(x′, ωo)Wxy(x, ωi)dΩ(ωi)dM(x) . (4.13)

The outgoing light Lo(x, ωo) consists of two components: emitted light
Le(x, ωo) and scattered light Ls(x, ωo)

Lo(x, ωo) = Le(x, ωo) + Ls(x, ωo) . (4.14)

Although there are many physically plausible models for emission Le(x, ωo)
(e.g. combustion, flourescence, and chemiluminescence to name a few), in
computer graphics we typically bake Le(x, ωo) into virtual scenes as a ma-
terial parameter. Scattered light Ls(x, ωo), on the other hand, is a function
of incident light Li(x, ωi) and the surface properties that define the fraction
of the incident light that is scattered from any given incident direction ωi
towards the outgoing direction of interest ωo.

The Scattering Equation. The scattering equation is a cornerstone of phys-
ically based rendering. It formalizes the aforementioned interaction between
incident and scattered radiance at any given surface location x:

Ls(x, ωo) =
∫
S2

Li(x, ωi) fs(x, ωi→ωo) | cos γi|dΩ(ωi) . (4.15)

The scattering equation contains an new term, fs(x, ωi→ωo), the so-called
“bidirectional scattering distribution function” (BSDF). It describes the amount
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of incident radiance from ωi that is scattered towards ωo (hence the arrow
notation). The BSDF is surface-material specific, effectively capturing the
material’s appearance at x. We will expand on the BSDF later in Section 4.6
and we will for now continue with our pursuit of expanding the measurement
equation.

The Rendering Equation. Inserting the scattering equation (4.15) into
Equation 4.14 yields the famous rendering equation [Kajiya 1986]

Lo(x, ωo) = Le(x, ωo) +
∫
S2

Li(x, ωi) fs(x, ωi→ωo) | cos γi|dΩ(ωi) . (4.16)

Using the relationship in Equation 4.12, we can rewrite the rendering equation
as a self-recursive Fredholm integral equation of the second kind

Li(x, ωi) =
4.12

Lo(x′, ωo)

=
4.16

Le(x′, ωo) +
∫
S2

Li(x′, ω′i) fs(x′, ω′i→ωo) | cos γ′i|dΩ(ω′i) . (4.17)

Each recursive integral over Li(x′, ω′i) corresponds to scattering of light. The
Le(x′, ωo) terms within each recursive integral capture the emitted light at x′

that is propagated towards the outermost x through all layers of recursion.

As it turns out, applying Monte Carlo integration (3.3) to the recursive ren-
dering equation directly results in the unidirectional path-tracing algorithm
that we introduced in the beginning of this dissertation. We will explain
this in more detail later, in Section 4.5, and focus, for now, on incorporating
volumetric light transport into the rendering equation.

4.4 Volumetric Light Transport

Until here, we investigated light-transport simulation in the presence of only
idealized light-surface interactions. However, light interacts not only with
surfaces—i.e. (almost) infinitely dense matter—but also with sparser volu-
metric arrangements of particles. In rendering literature, we refer to such
volumetrically scattering media that participate in light transport as “partici-
pating media”. Light transport within participating media is characterized
by two largely separate properties:

1. the arrangement and density of scatterers (i.e. small particles inter-
acting with light), governing spatial propagation of light, and
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−ωi

x
ωo

x

(a) Absorbtion (b) Emission

−ωi

x
ωo

x

(c) Out-scattering (d) In-scattering

Figure 4.2: The radiative transfer equation consists of four additive terms: absorbtion (a), emis-
sion (b), out-scattering (c), and in-scattering (d). Absorbtion and out-scattering are always nega-
tive, i.e. they remove radiance from a ray of light, whereas their respective counterparts emission
and in-scattering are positive, thereby introducing radiance.

2. the characteristics of light-particle interactions themselves, governing
directional propagation of light and energy dissipation.

Due to difficulties associated with modeling the aforementioned properties
in full generality, we focus on the framework of “radiative transfer” [Chan-
drasekar 1960], where particles are assumed to be infinitesimally small and
arranged independently (i.e. there is no mutual correlation in the position of
particles). The following sections will introduce the basic mathematics that
describe radiative transfer.

4.4.1 Radiative Transfer

Recall, that in purely surface-based light transport, incident radiance Li(x, ωi)
at some surface position x ∈ ∂V is related to outgoing radiance at another
surface position x′ = r(x, ωi) via the ray-tracing operator (Equation 4.11)

Li(x, ωi) = Lo(x′,−ωi) .

This relationship hinges on the assumption that radiance is invariant as it
traverses the space between surfaces, which is not the case in the presence of
participating media: in such media, radiance may vary along straight lines.
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In the absence of surfaces (i.e. sharp discontinuies), however, we can postulate
that radiance only varies continuously. The notion of continuous variation
is captured by the property that incident and outgoing radiance at the same
position are equal, i.e. there are no discontinuities

Li(x,−ωo) = Lo(x, ωo) , ∀x ∈ V . (4.18)

Due to this equivalence of incident and outgoing radiance, we will refer to
radiance in volumes simply as L(x, ω) = Lo(x, ωo), where ω = ωo.

The continuous change in radiance as the volume V between surfaces ∂V is
traversed is then characterized by the differential “radiative transfer equa-
tion” (RTE) [Chandrasekar 1960]

(ω · ∇)L(x, ω) = (ω · ∇)
(

Le(x, ω) + Lin(x, ω) + Lout(x, ω) + La(x, ω)
)

, (4.19)

where we use

(ω · ∇)L(x, ω) =
dL(x + ω · t, ω)

dt
(4.20)

around t = 0 for notational convenience. Notice, that due to this additional
derivative, the expression (ω · ∇)L(x, ω) has units of [W m−3 sr−1]. We refer
to it as “volumetric radiance” due to its volume (rather than surface area)
density.

The RTE consists of four additive components: “emission” Le, “in-
scattering” Lin, “out-scattering” Lout, and “absorbtion” La. We explain
all of these components in the following paragraphs and illustrate them in
Figure 4.2.

Emission. Some participating media emit light, leading to the emission
term (ω · ∇)Le(x, ω) in the RTE. Emission can be caused by various physical
phenomena, such as combustion (e.g. fire), ionization (e.g. auroras), and
chemiluminescence (i.e. chemical reactions). Due to the large number of
possible emission sources we choose the most convenient path of leaving the
term up to the virtual scene description, just like surface emission.

In-Scattering. The in-scattering term is conceptually similar to the scatter-
ing equation (4.15): it captures the aggregate amount of scattered radiance
into direction ω, summed over all possible incident directions ωi.

(ω · ∇)Lin(x, ω) = σs(x)
∫
S2

L(x,−ωi) fp(x, ωi→ω)dΩ(ωi) . (4.21)
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Here, the “scattering coefficient” σs(x) [m−1] is the 1-dimensional number
density of scattering particles (i.e. number of particles per meter) along direc-
tion ω at x; it determines how frequently a ray of light scatters while travers-
ing a participating medium. The so-called “phase function” fp(x, ωi→ω)
is comparable to the BSDF as it relates incident radiance from one direction
ωi to scattered outgoing radiance towards another direction ω. As with the
BSDF, we will formally define the phase function and present several physi-
cally plausible models later on in Section 4.7 and we will focus, for now, on
expanding the measurement equation.

Out-Scattering. The out-scattering term is conceptually similar to the in-
scattering term. Just like light can be scattered into ω from any other direction,
light that is already traveling towards ω can also be scattered away. This effect
is captured by the out-scattering term

(ω · ∇)Lout(x, ω) = −σs(x)L(x, ω) , (4.22)

which—like in-scattering—must also proportional to the density of scatterers
σs(x).

Absorbtion. The last component of the RTE describes absorbed radiance:

(ω · ∇)La(x, ω) = −σa(x)L(x, ω) . (4.23)

In this term, the “absorbtion coefficient” σa(x) [m−1] has a similar role
as the scattering coefficient σs(x) has in out-scattering: it describes the 1-
dimensional number-density of absorbing particles. Any light that hits an
absorbing particle is lost, and therefore the change in radiance due to absorb-
tion La(x, ω) is proportional to the density of absorbing particles σa(x).

Combining all these terms into a single equation, yields the RTE

(ω · ∇)L(x, ω) = (ω · ∇)Le(x, ω)

+ σs(x)
∫
S2

L(x,−ωi) fp(x, ωi→ω)dΩ(ωi)

− σs(x)L(x, ω)

− σa(x)L(x, ω) . (4.24)

4.4.2 Extinction and Albedo

Due to the similar structure of absorbtion and out-scattering, the absorbtion
coefficient σa(x) and scattering coefficient σs(x) are often combined into a
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single “extinction coefficient” σt(x) = σa(x) + σs(x) [m−1], that describes the
1-dimensional number-density of all light-particle interactions. Rewriting the
RTE using σt(x) results in

(ω · ∇)L(x, ω) = (ω · ∇)Le(x, ω)

+ σs(x)
∫
S2

L(x,−ωi) fp(x, ωi→ω)dΩ(ωi)

− σt(x)L(x, ω) . (4.25)

We will refer to the term (ω · ∇)Lext(x, ω) = σt(x)L(x, ω) as “extinction
term”. Up until here, we described radiative transfer under the assumption
that the participating medium consists of two types of infinitesimal parti-
cles: scatterers and absorbers with corresponding densities σs(x) and σa(x).
However, the combination of scattering and absorbtion into the extinction
coefficient σt(x) gives rise to an alternative interpretation: a medium con-
sisting of only one kind of particle with density σt(x) that scatters a fraction
α(x) = σs(x)/σt(x) of radiance and absorbs the remaining fraction 1− α(x).
In this context, α is referred to as the “albedo” of the participating medium.
This interpretation is particularly interesting because it connects the phase
function with the BSDF. The BSDF has its “albedo” (i.e. its integral over the
projected solid sphere) baked in, while the phase function is normalized to
integrate to 1 over the solid sphere. In this sense, the product of the albedo
and the phase function—i.e. α(x) fp(x, ωi→ωo)—corresponds more directly
to the BSDF fs(x, ωi→ωo) than the phase function alone does.

Both views, i.e. scattering and absorbtion vs. extinction and albedo, typically
lead to equivalent light transport, but depending on the situation can each
be mathematically simpler or harder to work with. In this dissertation we
parameterize participating media in terms of albedo and extinction, referring
to the tuple (α, σt, fp) as “RTE parameters”.

4.4.3 Integral Form of the Radiative Transfer Equation

Similar to the rendering equation, we would like to derive incident radiance
Li(x, ωi) as a function of outgoing radiance Lo(x′, ωo) at position x′ = r(x, ω)
and towards direction ωo = −ωi. To this end, we integrate the RTE from x′ to
x along ωo. Since any radiance introduced by the terms Le and Lin on the way
from x′ to x is diminished by the extinction term Lext along the remainder of
the way towards x, it is helpful to pre-integrate the fractional loss of radiance
due to Lext.
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Setting all other terms of the RTE to zero, we obtain

(ω · ∇)L(x, ω) = −(ω · ∇)Lext(x, ω) = −σt(x)L(x, ω) , (4.26)

which is an ordinary differential equation with solution

L(x, ω) = τ(x↔x′)L(x′, ω) , (4.27)

τ(x↔x′) = e−
∫ d

0 σt(xt)dt , (4.28)

where d = ‖x− x′‖ and xt = x + ω · t. The factor τ(x↔x′) which is called
“transmittance”, is the fraction of radiance originating from x towards ω that
arrives at x′. Using τ(x↔x′), we obtain the entire RTE integral

L(x, ω) =
∫ ∞

0
τ(x↔xt)

(
(ω · ∇)Le(xt, ω) + (ω · ∇)Lin(xt, ω)

)
dt , (4.29)

where we integrate towards infinity because arbitrarily distant positions may
still contribute small amounts of radiance in the absence of occluding surfaces.
Replacing (ω · ∇)Lin(xt, ω) with its definition and back-substituting L with
Li and Lo, it becomes clear that the RTE—like the rendering equation—is
self-recursive

Li(x, ωi) =
4.18

Lo(x, ωo)

=
4.29

∫ ∞

0
τ(x↔xt)

(
(ωo · ∇)Le(xt, ωo)

+ σs(xt)
∫
S2

Li(xt, ω′i) fp(xt, ω′i→ωo)dΩ(ω′i)
)

dt . (4.30)

We would like to note, that the RTE as presented above is limited to infinitesi-
mal scatterers that are spatially distributed in an independent manner, leading
to transmittance that is exponential (Equation 4.28). As soon as scatterer
positions are permitted to correlate, the solution in Equation 4.27 may be
non-exponential. In this dissertation, we only consider exponential trans-
mittance and we therefore refer the interested reader to recent research on
non-exponential light transport [d’Eon 2018; Bitterli et al. 2018] for more
information.

4.4.4 Combining the RTE with the Rendering Equation

To model a combination of volumetric and surface-based light trans-
port, we combine the RTE with the rendering equation into the “vol-
ume rendering equation”. This combinations requires surprisingly little
effort. The key insight that is needed, is that within a scene that con-
tains surfaces and participating media, the incident radiance Li(x, ωi) is
the sum of volumetrically transported radiance and surface-transported
radiance, both arriving at x from ωi. We illustrate this in Figure 4.3.
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Li(x, ωi)

x

(ω · ∇)Lo(xt, ωo)

xt

Lo(x′, ωo)

x′

Figure 4.3: Terms of the volume rendering equation.

When building this sum,
we must account for sur-
face occlusion within the
RTE and for volume at-
tenuation in the render-
ing equation. In this dis-
sertation, we refer to the
combination of the RTE
and the rendering equa-
tion as the “volume ren-
dering equation”.

The volume-attenuation-aware rendering equation simply has an additional
transmittance factor

L∂V
i (x, ωi) = τ(x↔x′)

(
Le(x′, ωo) + Ls(x′, ωo)

)
, (4.31)

and the surface-occlusion-aware RTE integrates volumetric transport only up
to the nearest surface intersection rather than to infinity

LVi (x, ωi) =
∫ t̂

0
τ(x↔xt)

(
(ωo · ∇)Le(xt, ωo) + (ωo · ∇)Lin(xt, ωo)

)
dt . (4.32)

The sum Li(x, ωi) = L∂V
i (x, ωi) + LVi (x, ωi) then leads to the combined equa-

tion

Li(x, ωi) =
∫ t̂

0
τ(x↔xt)

(
(ωo · ∇)Le(xt, ωo) + (ωo · ∇)Lin(xt, ωo)

)
dt

+ τ(x↔x′)
(

Le(x′, ωo) + Lo(x′, ωo)
)

.
(4.33)

Since both additive components of the volume rendering equation are self-
recursive, the volume rendering equation itself is, too

Li(x, ωi) =
∫ t̂

0
τ(x↔xt)

(
(ωo · ∇)Le(xt, ωo)

+σs(xt)
∫
S2

Li(xt, ω′i) fp(xt, ω′i→ωo)dΩ(ω′i)
)

dt︸ ︷︷ ︸
Volumetric light transport

+ τ(x↔x′)
(

Le(x′, ωo)

+
∫
S2

Li(x′, ω′i) fs(x′, ω′i→ωo) | cos γ′i|dΩ(ω′i)
)

︸ ︷︷ ︸
Surface light transport

. (4.34)

Next, we will discuss the application of Monte Carlo integration so solve the
volume rendering equation.
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4.5 Path Tracing

To render an image, we estimate the measurement equation for every pixel
Ixy via Monte Carlo (3.3)

〈Ixy〉 =
Li(x, ωi)Wxy(x, ωi)

q(x, ωi)
. (4.35)

Since the incident radiance at the sensor Li(x, ωi) is given by the (volume)
rendering equation, we recursively apply Monte Carlo to the nested integrals
while preventing infinite recursion with russian roulette (Section 3.5.1).

4.5.1 Surface Path Tracing

Applying Monte Carlo (Equation 3.3) naı̈vely to the surface rendering equa-
tion (4.17) yields the estimator

〈
Li(x, ωi)

〉
= Le(x′, ωo) +

Li(x′, ω′i) fs(x′, ω′i→ωo) | cos γ′i|
q(ω′i | x′, ωo)

. (4.36)

Recursively applying Monte Carlo recursively to the nested Li terms directly
corresponds to the unidirectional path tracing algorithm that we briefly intro-
duced in the beginning of this dissertation: each nested Monte Carlo estimator
obtains the next path vertex x′ via the ray tracing operator and subsequently
samples a random direction ω′i to continue the path in. Furthermore, each
nested Monte Carlo estimator also evaluates Le(x′, ωo) and records its value,
weighted by the product of the weights fs(x′,ω′i→ωo) | cos γ′i |

q(ω′i | x′,ωo)
for all preceeding

vertices.

4.5.2 Volume Path Tracing.

The same approach as above leads to a purely volumetric path tracer when
applied to the RTE as opposed to the rendering equation

〈
Li(x, ωi)

〉
=

τ(x↔xt)

q(t|x, ω)

(
(ωo · ∇)Le(xt, ωo) +

Li(xt, ω′i) σs(xt) fp(xt, ω′i→ωo)

q(ω′i | t, x, ω)

)
.

(4.37)

In contrast to the surface path tracer from above, the next path vertex (in
this case xt) is not obtained via ray tracing any surface geometry, but instead
by randomly sampling a distance t. The path therefore traverses the scene
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volume by interleaving distance sampling and directional sampling. Ad-
ditionally, when computing the fraction of (ωo · ∇)Le(xt, ωo) that reaches
the camera, the necessary weight now also includes a transmittance factor
τ(x↔xt)
q(t|x,ω)

.

4.5.3 Unified Path Tracing

Naı̈vely applying Monte Carlo to the volume rendering equation results in〈
Li(x, ωi)

〉
=
〈

L∂V
i (x, ωi)

〉
+
〈

LVi (x, ωi)
〉

, (4.38)〈
L∂V

i (x, ωi)
〉
= τ(x↔x′)

(
Le(x′, ωo) +

Li(x′, ω′′i ) fs(x′, ω′′i →ωo) | cos γ′′i |
q(ω′′i | x′, ωo)

)
,

(4.39)〈
LVi (x, ωi)

〉
=

τ(x↔xt)

q(t|x, ω)

(
(ωo · ∇)Le(xt, ωo) +

Li(xt, ω′i) σs(xt) fp(xt, ω′i→ωo)

q(ω′i | t, x, ω)

)
,

(4.40)

where the same modifications were made as when unifying the surface
rendering equation and the RTE: t now lies in the range (0, t̂) as opposed
to (0, ∞), and the surface rendering equation is scaled by transmittance
τ(x↔x′).

Although this estimator is valid, it corresponds to a path tracer where at
every scattering interaction, two samples are taken: one that estimates surface
scattering and one that estimates volume scattering. This, unfortunately,
leads to geometric cost in the path length due to a doubling of Monte Carlo
estimators at every scattering interaction. In practice, this problem is avoided
by randomly choosing between one of the two branches according to a
probability τ ∈ [0, 1]

〈
Li(x, ωi)

〉
=

{〈
L∂V

i (x, ωi)
〉/

τ if ξ < τ〈
LVi (x, ωi)

〉/
(1− τ) otherwise.

(4.41)

The probability τ ∈ [0, 1] effectively controls the ratio between volume scat-
tering and surface scattering. It is common to use τ =

∫ ∞
t̂ τ(x↔xt)dt as it

conveniently coincides with importance sampling τ(x↔xt) with t ∈ (0, ∞).

4.5.4 The Path Integral

The previous sections showed that surface and volume light transport is
characterized by infinitely many recursively nested integrals over the finite-
dimensional directional (and in the case of volumes, also the spatial) domain.
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Each nested integral captures the scattering characteristics of radiance for a
given incident direction and position in space. Even though the recursion
is infinite, each nested integral contributes a certain finite amount of radi-
ance to the measurement equation due to its Le term. By separating light
transport into the additive Le terms in each of the nested integrals (i.e. into
the contributions of k-vertex paths for each k) analogously to Section 3.5 on
nested integrals, the rendering equation can be expressed as a single integral
over the infinite-dimensional domain of light paths. This form of the rendering
equation is referred to as the “path integral” [Veach 1997].

Definition. Let Pk =Mk , ∀k ∈ {2, 3, . . . ∞} be the set of light paths with k
vertices. A light path x1 . . . xk = xk ∈ Pk consists of k vertex positions xi ∈ M.
The set of all light paths is then P =

⋃∞
k=2 Pk, where individual light paths

with arbitrary numbers of vertices are denoted x ∈ P .

In order to perform differential calculus on P , we define the “product mea-
sure” Π(P ′) , P ′ ⊆ P in terms of its differential:

P ′ =
∞⋃

k=2

P ′k , (4.42)

Π(P ′) =
∞

∑
k=2

Π(P ′k) , (4.43)

dΠ(xk) =
k

∏
i=1

dM(xi) . (4.44)

The product measure is the product of differential area or volume dM(xi)
(depending on whether xi ∈ ∂V or xi ∈ V) around each vertex xi of the path x

M(M′) =

{
A(M′) ifM′ ⊆ ∂V
V(M′) otherwise

⇐⇒ dM(x) =

{
dA(x) if x ∈ ∂V
dV(x) otherwise.

(4.45)

We further define familiar functions in terms of their corresponding path
vertices, rather than position-direction pairs:

ωij =
xj − xi

‖xj − xi‖
(4.46)

Wxy(xi→xj) = Wxy(xj, ωji) (4.47)

L(xi→xj) = L(xi, ωij) (4.48)

f (xi→xj→xk) = f (xj, ωji→ωjk) , (4.49)
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x1

x2

x3

x4

x5
E(x1↔x2 ) E(x2↔

x3) E(x3↔x4 ) E(x4↔
x5)

Le(x1→x2)
fs(· · · )

σs(x3) fp(· · · )

fs(· · · )
Wxy(x4→x5)

Figure 4.4: Illustration of the terms of the path integral. The contribution of a k-vertex light
path is the product of emitted light Le(x1→x2), the edge throughputs E(xi↔xi+1), the scattering
kernels f (xi−1→xi→xi+1), and sensor importance Wxy(xk−1→xk).

where the arrow denotes the direction of radiance propagation. Lastly, we
define volume-surface-independent emission

Le(xi→xj) =

{
Le(xi→xj) if xj ∈ ∂V

(ωij · ∇)Le(xi→xj) otherwise,
(4.50)

scattering

f (xi→xj→xk) =

{
fs(xi→xj→xk) if x ∈ ∂V

σs(xk) fp(xi→xj→xk) otherwise,
. (4.51)

and propagation

E(xi↔xj) = τ(xi↔xj) G(xi↔xj) (4.52)

G(xi↔xj) =
D(xi, ωij) D(xj, ωji)

‖xi − xj‖2 , (4.53)

D(x, ω) =

{
|N(x) ·ω| if x ∈ ∂V
1 otherwise.

(4.54)

We can then express the measurement equation as the “path integral” over P

Ixy =
∫
P

fxy(x)dΠ(x)

fxy(x) = Le(x1→x2) T(x)Wxy(xk−1→xk)

T(x) = E(x1↔x2)
k−1

∏
i=2

T(xi−1, xi, xi+1)E(xi↔xi+1) ,

(4.55)

(4.56)

(4.57)

with the integrand fxy(x) being the “path contribution function” and T(x)
the “path throughput” of x. We illustrate the terms of the path integral in
Figure 4.4 and we provide a full derivation of it in Section A.1.
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Path Integral Monte Carlo. Due to its closed form, the path-integral for-
mulation permits the application of certain general-purpose Monte Carlo
integration techniques that would otherwise be difficult to reason about.
More specifically, due to the integration over the path variable x it becomes
clear, that any kind of path sampling technique—not just unidirectional path
tracing as derived before—can be used for solving the (volumetric) rendering
equation with Monte Carlo.

This theoretical insight facilitated the development of several advanced ren-
dering techniques, such as bidirectional path tracing [Lafortune and Willems
1993, 1996; Veach and Guibas 1994] and Metropolis light transport [Veach
and Guibas 1997]. Although in this dissertation we do not make explicit
use of the path integral formulation, it is useful for reasoning about the ef-
ficiency of traditional path tracing algorithms and for understanding the
primary-sample-space formulation we will introduce next.

4.5.5 Primary-Sample Space

When implementing a Monte Carlo integration scheme on a computer, it
is a fundamental requirement to computationally draw random samples
from a variety of importance-sampling distributions. Such sampling routines
are based on a number of techniques, including the inversion method (Sec-
tion 2.6.1) and rejection sampling (Section 2.6.2). All these techniques are
based in some way or another on a deterministic mapping from a fundamen-
tal source of randomness to the desired distribution. Usually, this source of
randomness is implemented as the canonical uniform distribution U (0, 1)
directly on top of an underlying pseudo-random number generator; the
Mersenne Twister [Matsumoto and Nishimura 1998] and, more lately, the
PCG family [O’Neill 2014] are popular choices in renderers due to their high
performance and good statistical qualities.

It follows then, that a randomly generated light path is the result of a deter-
ministic mapping ρ(z) : U→ P , where U is the D-dimensional hypercube
U = [0, 1]D with D being sufficiently big, and z ∼ U (U)

x = ρ(z) . (4.58)

The elements of the vector z are called “primary samples” and U is called
“primary sample space”.

Notice, that this deterministic map is nothing more than the particular path-
tracing algorithm that happens to be implemented. Any algorithm that
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Figure 4.5: The BSDF comes in many different shapes and forms. We illustrate three examples:
diffuse materials (a) scatter light more-or-less uniformly into all direction (e.g. wall paint), glossy
materials (b) tend to scatter light into a narrow forward-facing cone (e.g. rough metal), and specular
materials (c) perfectly preserve the light’s angle with the surface normal (Dirac-delta function,
illustrated by the light-blue arrow; e.g. smooth metal).

operates in primary sample space therefore abstracts away the implementa-
tion details of the underlying path-tracing algorithm as a black-box function.
This is a tremendous advantage over more traditional algorithms in terms of
implementation complexity and code reuse, because a primary-sample-space
algorithm works out of the box with any existing path tracer.

The most popular approach that operates in primary sample space is primary-
sample-space Metropolis light transport (PSSMLT) [Kelemen et al. 2002]
which mutates the primary samples z, as opposed to path-space Metropolis
light transport [Veach and Guibas 1997] which directly mutates the path
x. PSSMLT is known for its ease of implementation, which made it the
foundation of several advanced algorithms in the following years [Kitaoka et
al. 2009; Hachisuka and Jensen 2011; Hachisuka et al. 2014; Li et al. 2015; Šik
et al. 2016; Otsu et al. 2017; Bitterli et al. 2017].

Later, in Chapter 8, we will utilize deep neural networks to learn importance
sampling in primary sample space. Concurrently with our work, Guo et al.
[2018] and Zheng and Zwicker [2018] also investigated this avenue.

4.6 The Bidirectional Scattering Distribution Function

The “bidirectional scattering distribution function” (BSDF) describes how in-
cident light is scattered by a surface material. Incident radiance from a single
incident direction is typically scattered into multiple outgoing directions. For
some materials such as glass and shiny metal the set of outgoing directions is
small, whereas for other materials such as milk, wood, and stone, almost all
outgoing directions are possible.
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The BSDF is such a fundamental component of computer graphics that we
will provide not only its definition, but also several analytic, semi-analytic,
and data-driven models that correspond to various well known real-world
materials.

4.6.1 Definition

The mathematical definition of the BSDF can be directly derived from the
scattering equation (4.15):

Ls(x, ωo) =
∫
S2

Li(x, ωi) fs(x, ωi→ωo) | cos γi|dΩ(ωi)

⇐⇒ dLs(x, ωo)

dΩ(ωi)
= Li(x, ωi) fs(x, ωi→ωo) | cos γi|

⇐⇒ dLs(x, ωo)

Li(x, ωi)dΩ(ωi) | cos γi|
= fs(x, ωi→ωo) , (4.59)

where x is the scattering position, ωi is the direction of incident radiance, and
ωo is the direction of outgoing radiance. Note, that the BSDF is a directional
density of outgoing radiance, corresponding to the scattering of incident
radiance towards more than just one outgoing direction.

The “bidirectional” in the BSDF’s name stems from the curious fact that
the BSDF is usually symmetric in ωi and ωo. This symmetry is a funda-
mental property of the underlying physics of light and is widely known as
“Helmholtz reciprocity”.

Due to energy conservation, no more than the total amount of incident
radiance can be scattered away again5. Using Equation 4.15 and Helmholz
symmetry, we can express this constraint mathematically:∫

S2
fs(x, ωi→ωo) | cos γi| dΩ(ωi) ≤ 1, ∀x ∈ ∂V , ∀ωo ∈ S2 , (4.60)∫

S2
fs(x, ωi→ωo) | cos γo|dΩ(ωo) ≤ 1, ∀x ∈ ∂V , ∀ωi ∈ S2 . (4.61)

Furthermore, although theoretically interesting, negative energies are typi-
cally not permitted, and therefore the BSDF is constrained to be positive:

fs(x, ωi→ωo) ≥ 0, ∀x ∈ ∂V , ∀ωi, ωo ∈ S2 . (4.62)

5Note, that this is in contrast to neutron transport, where additional energy can be introduced
into the system due to the splitting of atomic nuclei. Photons in the visible spectrum do not
have enough energy to split nuclei.
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BSDF versus BRDF and BTDF. When reading the above definition of the
BSDF one might wonder why it is defined over the entire sphere of outgoing
directions, rather than only the upper hemisphere. This is because the BSDF
is not only used to model reflection (corresponding to the upper hemisphere),
but also to model transmission (corresponding to the lower hemisphere).
Historically, reflection and transmission were modeled by four separate
functions, the BRDF (bidirectional reflectance distribution function) and the
BTDF (bidirectional transmittance distribution function), each defined twice,
once per side of the surface. However, mostly for convenience, it eventually
became common practice to model both reflection and transmission using a
single function.

In the following sections, we present (and in some cases derive) several
commonly used BSDF models, including most of the ones shown in rendered
images within the later chapters of this dissertation.

4.6.2 Diffuse BSDF

The diffuse (or Lambertian) BSDF is one of the most simple-to-define BSDFs.
It describes a material without a transmissive component (i.e. a BRDF) that
reflects light uniformly into all directions; see Figure 4.5(a). Mathematically,
the diffuse BSDF is therefore a constant

fs(x, ωi→ωo) =
α

π
, (4.63)

where α ∈ [0, 1] controls the fraction of incident light that is reflected rather
than absorbed: an α of 0 describes a material that absorbs all incident light
(black), whereas an α of 1 describes a material that reflects all incident light
(white). The factor 1/π ensures that the energy conservation requirement of
Equation 4.61 is kept. This can easily be verified by calculating the fraction of
reflected radiance by integration:∫
S2

fs(x, ωi→ωo) | cos γo|dΩ(ωo) =
α

π

∫
S2
| cos γo|dΩ(ωo) = α . (4.64)

The diffuse BSDF is a reasonable model for objects with a “flat” appearance,
such as painted walls, paper, and wood. It is worth noting, however, that the
diffuse model suboptimally captures grazing-angle behavior of many realistic
materials, because the model inadequately captures the effect of micro-scale
structure. We refer the interested reader to the more accurate Oren-Nayar
model [Oren and Nayar 1994], which is a widely-used generalization of
Lambert’s model.
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4.6.3 Mirror BSDF

Another very common class of materials exhibit mirror-like reflections. In
physics, mirror reflections (see Figure 4.5(c)) are often defined implicitly by
the constraint that the incident and outgoing directions of radiance form
the same angle with the surface normal and lie within the same plane. This
constraint is expressed mathematically, by enforcing that the mean vector of
ωo and ωi coincides with the surface normal

N(x) =
ωi + ωo

2 cos γi
. (4.65)

The above constraints removes all degrees of freedom, permitting only a sin-
gle valid ωo for any given ωi. Therefore, all reflected radiance is concentrated
into a single direction:

fs(x, ωi→ωo) =
δ(ωo −ωr)

cos γi
, (4.66)

ωr = 2 N(x) cos γi −ωi , (4.67)

where ωr is the reflected direction corresponding to ωi and δ(x) is the Dirac-
delta which, conceptually, is zero everywhere but at x = 0 and integrates to
16.

It is easy to show that the above mirror BSDF reflects all energy:∫
S2

fs(x, ωi→ωo) | cos γo|dΩ(ωo) =
∫
S2

δ(ωo −ωr)

cos γi
| cos γo|dΩ(ωo) = 1 .

(4.68)

In computer graphics literature, we refer to all mirror-like BSDFs (usually
those that involve Dirac-delta functions) as “specular” BSDFs. Although
specular BSDFs are responsible for many visually interesting phenomena,
they also often complicate rendering algorithms due to the inherent difficulty
of deterministically and efficiently satisfying multiple constraints such as
Equation 4.65. This difficulty is exacerbated if the to-be-rendered virtual
scene exhibits light transport with many specular interreflections.

4.6.4 Smooth Dielectric BSDF

Figure 4.6 shows a smooth (that is, the material surface is microscopically
flat) dielectric BSDF, an example of a BSDF that has both a reflective fr and

6Formally, the Dirac-delta function is a generalized function that is defined purely by its integral
and always is associated with a specific measure. Integrated over this measure, it is 1 if the
integration domain contains the zero-element, and 0 otherwise.
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a transmissive ft component, the sum of which yields fs. Many translucent
materials encountered in the real world are dielectric such as water, glass,
diamond, sugar, and even air.

−ωi

x

fr

ft

ηi

ηt

γi

γt

Figure 4.6: Dielectric BSDF.

Snell’s Law. Both the reflective and the
transmissive component are—like the mir-
ror BSDF—delta functions. In fact, the reflec-
tive component is a mirror reflection. The
transmissive component, on the other hand,
has a curious property: it deflects light as it
enters and leaves the material, referred to
as “refraction”, where the angle of deflec-
tion depends on the “indices of refraction”
of the source material ηi and the destina-
tion material ηt. The index of refraction is a
scalar η ≥ 1, with η = 1 only being attained
by vacuum. The exact relationship of the
angles γi and γt on the indices of refraction is given by Snell’s law

ηi

ηt
=

sin γt

sin γi
=

ct

ci
, (4.69)

where ci and ct are the speed of the light in the respective material, which is
inversely proportional to the material’s refractive index. This relationship
hints at the cause behind Snell’s law: it actually is a direct consequence (not
shown) of Fermat’s principle, which dictates that light always follows the path
of least time.

The index of refraction of a material not only depends on the material itself,
but also on the wavelength of light, meaning that different colors of light are
refracted into different directions. This is why prisms made out of dielectric
materials are able to decompose white light into its individual colors.

The Fresnel Equations. With the direction of refraction being known,
we require the ratio between reflected and refracted radiance such that we
can mathematically formulate the dielectric BSDF. This ratio can be directly
derived from the wave nature of light7. Augustin-Jean Fresnel derived the
“Fresnel equations” that describe the fraction of reflected radiance for light

7Although we concern ourselves with geometric optics at a macro scale, in some situations—like
this one—more accurate physical models can be “baked” into localized functions such as the
BSDF.
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that is polarized perpendicular to the surface (i.e. its electromagnetic wave is
aligned perpendicular to the surface)

R>(ωi) =

∣∣∣∣ηt cos γi − ηi cos γt

ηt cos γi + ηi cos γt

∣∣∣∣2 (4.70)

and parallel to the surface

R‖(ωi) =

∣∣∣∣ηt cos γt − ηi cos γi

ηt cos γt + ηi cos γi

∣∣∣∣2 . (4.71)

The modeling of polarized light is out of the scope of this dissertation, so
we assume photons are polarized in either direction with equal probability,
resulting in

R(ωi) =
1
2

(
R>(ωi) + R‖(ωi)

)
, (4.72)

with T(ωi) = 1− R(ωi) being the corresponding transmitted portion of inci-
dent radiance.

Combining Equations (4.69) and (4.72), we finally obtain the dielectric BSDF

fs(x, ωi→ωo) = fr(x, ωi→ωo) + ft(x, ωi→ωo) , (4.73)

fr(x, ωi→ωo) = R(ωi)
δ(ωo −ωr)

cos γi
, (4.74)

ft(x, ωi→ωo) = T(ωi)
δ(ωo −ωt)

cos γi

η2
t

η2
i

, (4.75)

where an additional factor of η2
t/η2

i sneaked in. The next paragraph explains
this factor.

Non-Symmetry due to Refraction. Recall, that we claimed, that—
according to Helmholtz reciprocity—BSDFs are usually symmetric. Dielectric
transmission is an exception to this symmetry. A direct consequence of
the directionally dependent deflection is that (solid-)angles are compacted
or stretched as the index of refraction increases or decreases, respectively.
Radiance, being a density w.r.t. solid-angle, consequently changes non-
symetrically as its differential solid-angle is altered. Veach [1997] derived a
generalized symmetry relationship that incorporates this behavior:

fs(x, ωi→ωo)

η2
o

=
fs(x, ωi←ωo)

η2
i

. (4.76)
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It is worth noting, that in the case of spectral radiance, due to additional
compaction and stretching along wavelength, the relationship becomes

fs(x, ωi→ωo)

η3
o

=
fs(x, ωi←ωo)

η3
i

. (4.77)

4.6.5 Smooth Conductor BSDF

Smooth conductors (i.e. conductive materials with a microscopically smooth
surface) also behave mirror-like. Like dielectrics, conductors have an in-
dex of refraction, which is, however, complex-valued. Conductors—unlike
dielectrics—do not transmit light, making them effectively a colored mirror,
the color of which is a function of their index of refraction (via the Fresnel
equations)

fs(x, ωi→ωo) = R(ωi)
δ(ωo −ωr)

cos γi
. (4.78)

The Conductor BSDF is primarily useful for modeling the appearance of
metals.

4.6.6 Rough Surfaces

The dielectric and conductor BSDFs from above were described as referring to
“smooth” surfaces. At first thought, it may seem that such a smooth-surface
model would be perfectly sufficient, because roughness could be explicitly
captured by the surface geometry, but—even though there exist techniques
that to some degree work in such a way [Jakob et al. 2014b; Yan et al. 2014]—it
is usually more much convenient to model small-scale roughness statistically
inside of the BSDF. Such a statistical model averages a BSDF over possible
microgeometry orientations. Averaging over the Dirac-delta BSDFs such as
the dielectric or the conductor recovers a finite non-Dirac BSDF as illustrated
in Figure 4.5(b). In this dissertation, we refer to BSDFs with this general shape
as “glossy”. In the following sections, we will describe a set of historically
popular glossy BSDF models.

4.6.7 Blinn-Phong BSDF

Phong [1975] was the first to phenomenologically model glossy reflection. He
discovered, that reflected radiance of specular surfaces with micro-roughness
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tends to cluster around the reflected direction ωr prescribed by the macro
normal, which he modeled by a cosine raised to some controllable power

fs(x, ωi→ωo) = α cphong (ωr ·ωo)
β , (4.79)

cphong =
1∫

S2 (ωr ·ωo)
β cos γo dΩ(ωo)

, (4.80)

where the power β controls the concentration of light around ωr (larger β

means a higher concentration, i.e. a smoother surface), cphong ensures energy
conservation, and α ∈ [0, 1] is the familiar surface albedo from the diffuse
BSDF.

Blinn [1977] later proposed a refined version of Phong’s BSDF that is defined
in terms of the half vector ωh between ωi and ωo

fs(x, ωi→ωo) = α cblinn
(

N(x) ·ωh
)β , (4.81)

cblinn =
1∫

S2

(
N(x) ·ωh

)β cos γo dΩ(ωo)
, (4.82)

ωh =
ωi + ωo

‖ωi + ωo‖
, (4.83)

where cblinn again ensures energy conservation. This model is based on
Torrance and Sparrow’s microfacet model [Torrance and Sparrow 1967] and
in Blinn’s work was used in computer graphics for the first time. Although
Blinn suggested the additional usage of a Fresnel term for improved accuracy,
many practitioners omit it when implementing the Blinn-Phong model.

4.6.8 Torrance-Sparrow Microfacet BSDFs

Rather than relying on approximations such as the Blinn-Phong model, it
is sometimes possible to model rough surfaces directly using the Torrance-
Sparrow model [Torrance and Sparrow 1967]. After being popularized by
Walter et al. [2007], the use of this model in computer graphics has under-
gone a significant advancement [Heitz 2014; Heitz et al. 2015, 2016b; Jakob
et al. 2014b; Belcour and Barla 2017; Dupuy et al. 2016]. In the following
paragraphs we briefly outline the basic theory behind the Torrance-Sparrow
model; we refer the interested reader to the above references for a more
in-depth treatment.

The Microfacet Distribution. The Torrance-Sparrow model defines the
micro-scale surface as a collection of randomly oriented differential facets

77



Light Transport in Computer Graphics

with normal Nµ ∈ S2+(x). The set S2+(x) denotes the upper hemisphere at
x ∈ ∂V , i.e. the set of all directions satisfying N(x) · Nµ ≥ 0. This means, that
we only permit upward-facing (relative to the macro surface) micro normals.
We characterize a collection of microfacets by the distribution of their normal
vectors D(x, Nµ). The above cases of smooth surfaces therefore corresponds
to

D(x, Nµ) = δ
(

N(x)− Nµ

)
. (4.84)

To develop a precise definition of the surface consisting of microfacets, we
postulate that all microfacets have the same differential surface area dA(x).
Our goal is to define D(x, Nµ) as the orientation of a microfacet at a uniformly
random position on the macrosurface. We assume that the microgeometry is
continuous and non-overlapping, yielding the differential macro surface area
covered by a microfacet

dA>ω(x) = dA(x)
(

N(x) · Nµ

)
. (4.85)

The distribution of microfacet normals must satify two constraints: it must be
a valid probability density (i.e. integrate to 1), and the microfacets must cover
exactly one differential piece of macro surface area to make the following
derivations easier. Using Equation 4.85, we can express the latter constraint
as ∫

S2
D(x, ωh)dA>ω(x)dΩ(ωh) = dA(x)

⇐⇒
4.85

∫
S2

D(x, ωh)
(

N(x) · Nµ

)
dΩ(ωh) = 1 . (4.86)

This constraint is convenient, because if we define D(x, ωh) as a density per
projected solid-angle, it also ensures that D(x, ωh) is a valid probability density.
Rewriting the above integral, we obtain the definition of D(x, ωh):

D(x, ωh) =
dA(x)

dΩ(ωh)dA>ω(x)
=

1
dΩ(ωh)

(
N(x) · Nµ

) . (4.87)

Using this definition, we can formulate the Torrance-Sparrow microfacet
BSDF as the expected reflected radiance given Nµ sampled from D(x, Nµ)

fs(x, ωi→ωo) =
∫
S2

G(x, ωi, ωo) Ji fµ(x, ωi→ωo) Jo D(x, Nµ)
(

N(x) · Nµ

)
dΩ(Nµ) ,

(4.88)

where fµ(x, ωi→ωo) is the BSDF of the microfacets (also called micro BSDF),
Ji and Jo are the respective absolute Jacobian determinants of transforming
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incident radiance from the macro scale to the micro scale and back (respective
ratios of foreshortening terms)

Ji =

∣∣∣∣ Nµ ·ωi

N(x) ·ωi

∣∣∣∣ , Jo =

∣∣∣∣ Nµ ·ωo

N(x) ·ωo

∣∣∣∣ , (4.89)

and G(x, ωi, ωo), called “geometry-term” or “shadowing-masking” term, the
values of which lie in [0, 1], captures self-occlusion of the micro geometry.

Rough Conductor. It is possible to obtain a closed-form BSDF for rough
conductor surfaces by plugging the smooth conductor BSDF (4.78) into Equa-
tion 4.88:

fs(x, ωi→ωo) =
4.78
4.88

∫
S2

G(x, ωi, ωo) Ji R(ωi)
δ(ωo −ωr)

Nµ ·ωi
Jo D(x, Nµ)

(
N(x) · Nµ

)
dΩ(Nµ) .

(4.90)

To resolve the Dirac-delta function, we need to express the integral with
respect to dΩ(ωr). Using

dΩ(Nµ) =
N(x) · Nµ

4|ωr · Nµ|
dΩ(ωr) (4.91)

and

ωo = ωr ⇐⇒ ωh = Nµ , (4.92)

we can simplify to obtain

fs(x, ωi→ωo) =
4.91

∫
S2

G(x, ωi, ωo) Ji R(ωi)
δ(ωo −ωr)

|Nµ ·ωi|
Jo D(x, Nµ)

N(x) · Nµ

4|ωr · Nµ|
dΩ(ωr)

=
4.92

G(x, ωi, ωo) Ji R(ωi) Jo D(x, ωh)
(

N(x) ·ωh
)

4|ωh ·ωi| |ωo ·ωh|

=
G(x, ωi, ωo) R(ωi) D(x, ωh)

4 | cos γi cos γo|
. (4.93)

Rough Dielectric. The exact same derivations producing Equation 4.93
can be applied to derive the macro-scale BSDF for dielectric reflection. The
reflection component is derived using the exact same formulas, whereas
the transmission component requires using Equation 4.75 in place of Equa-
tion 4.78 within Equation 4.88. Omitting the details, this produces

ft(x, ωi→ωo) =
4.75
4.88

|ωi ·ωh| |ωo ·ωh|
|ωi · N(x)| |ωo · N(x)|

η2
o G(x, ωi, ωo) T(ωi) D(x, ωh)(
ηi(ωi ·ωh) + ηo(ωo ·ωh)

)2 . (4.94)

The interested reader can find the full derivation in the work of Walter et al.
[2007].
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Choices for D and G. The physical plausibility and therefore the quality of
rendered images hinges on using a realistic microfacet distribution D(x, ωh)
and an accurate corresponding shadowing-masking term G(x, ωi, ωo). Deriv-
ing appropriate formulas for the microfacet distribution and the shadowing-
masking term is unfortunately out of the scope of this dissertation. We refer
the reader to the work of Walter et al. [2007] for several such derivations and
a more detailed overview of the theory.

Energy Loss. The Torrance-Sparrow model treats self-occlusion of the mi-
cro geometry as absorbtion of energy, but in reality light may scatter instead
of being absorbed. This amounts to modeling only the singly scattered light
due to microfacets but ignoring any higher order scattering. Kelemen and
Szirmay-Kalos [2001] were the first to propose re-introducing an approxi-
mation of the lost energy in the form of an additive Lambertian (uniform)
component. They argued, that multiply scattered light approaches unifor-
mity as the number of scattering interactions approaches infinity. Jakob et al.
[2014a] extended the aforementioned approach to correctly handle reciprocity.

More recently, Heitz et al. [2016b] proposed to instead model high-order
microfacet scattering with a random walk, the characteristics of which could
directly be derived from previous advances in microflake models [Jakob
et al. 2010; Heitz 2014; Heitz et al. 2015]. The random walk is much more
accurate than the uniform approximation, but on the flipside introduces
additional noise. It is also difficult to integrate with bi-directional path-
tracing techniques.

4.6.9 Data-Driven BSDFs.

Although the volume of research on analytic and semi-analytic BSDF models
is vast, there also exist purely data-driven approaches. Research on data-
driven BSDFs ranges from measurement devices [Nicodemus et al. 1992;
White et al. 1998; Ghosh et al. 2007; Marschner et al. 1999, 2000; Mattison
et al. 1998; Ngan et al. 2005; Ren and Zhao 2010; Ward 1992] over parame-
terizations [Löw et al. 2012; Ngan et al. 2005; Holzschuch and Pacanowski
2017; Bagher et al. 2012, 2016; Dupuy and Jakob 2018] to publicly available
databases [Marschner et al. 1999; Matusik et al. 2003; Ngan et al. 2005; Löw et
al. 2012; Apian-Bennewitz 2013; Filip et al. 2014; Filip and Vávra 2014; Dupuy
and Jakob 2018].

Despite of the vast body of research on the topic, the unfortunate reality
in computer graphics is that only the MERL database [Matusik et al. 2003],
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the UTIA databases [Filip et al. 2014; Filip and Vávra 2014], and the newer
(steadily growing) RGL Material Database [Dupuy and Jakob 2018] have
sufficient directional resolution for the BSDFs to be useful in a rendering sys-
tem. Due to their particular measurement setups, the MERL database does
not contain anisotropic materials, the UTIA does not contain high-frequency
reflectances, and both of them are limited to RGB (non-spectral) data. The
RGL database overcomes these limitations at the expense of requiring con-
siderably longer time for each measured material, and, at the time of writing
this dissertation, contains a smaller amount of materials than the MERL and
the UTIA databases. None of the aforementioned databases contains mea-
surements of transmissive materials, i.e. all of them are limited to capturing
only the BRDF component.

Regardless of these limitations, the above databases of physical material
properties are not only immensely useful for verifying theoretical models
(such as the microfacet model), but are also invaluable in synthesizing images
with known physical correctness (up to measurement and quantization error).
In rendering systems it is often possible to blend between measured materials
to augment the range of tabulated data further.

4.7 The Phase Function

In this section, we mathematically define the “phase function” which captures
light-particle interactions within participating media. Similarly to how the
definition of the BSDF can be derived from the scattering equation (4.59), the
phase function’s definition can be derived from the in-scattering term (4.21):

(ω · ∇)Lin(x, ωo) = σs(x)
∫
S2

fp(x, ωi→ωo)L(x, ωi)dΩ(ωi)

(ω · ∇)
σs(x)

Lin(x, ωo) =
∫
S2

fp(x, ωi→ωo)L(x, ωi)dΩ(ωi)

⇐⇒ (ω · ∇)
σs(x)

dLin(x, ωo)

dΩ(ωi)
= fp(x, ωi→ωo)L(x, ωi)

⇐⇒ (ω · ∇)
σs(x)

dLin(x, ωo)

L(x, ωi)dΩ(ωi)
= fp(x, ωi→ωo) . (4.95)

To understand the phase function, it helps to first consider the ratio
(ω·∇)
σs(x)

Lin(x, ωo). Recall, that (ω · ∇)Lin(x, ωo) describes a 1-dimensional radi-

ance density [W m−3 sr−1] and σs(x) a 1-dimensional number density [m−1]
of particles. The aforementioned ratio therefore has units of [W m−2 sr−1]
and refers to radiance per particle. It follows, that the phase function describes
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Figure 4.7: Phase functions that are always oriented along ωi can either predominantly scatter
towards the front (b), characterized by a positive mean cosine, or towards the back (c) (negative
mean cosine). The special case of uniform scattering in all directions (a) (being a sufficient but not
necessary condition for having a mean cosine of zero) is referred to as “isotropic”; all other cases are
“anisotropic”.

the directional scattering profile of individual light-particle interactions; see
Figure 4.7 for an illustration.

Since we do not permit negative energies, we constrain the phase function to
be positive

fp(x, ωi→ωo) ≥ 0, ∀x ∈ V , ∀ωi, ωo ∈ S2 . (4.96)

Again, like with the BSDF, we typically assume Helmholz reciprocity, i.e. fp
has the same value when swapping ωi and ωo. Unlike the BSDF, however,
where energy-dissipation is part of the distribution, the phase function must
always integrate to 1 (i.e. conserve energy)∫

S2
fp(x, ωi→ωo)dΩ(ωi) = 1, ∀x ∈ V , ∀ωo ∈ S2 , (4.97)∫

S2
fp(x, ωi→ωo)dΩ(ωo) = 1, ∀x ∈ V , ∀ωi ∈ S2 , (4.98)

with fractional absorbtion being explicitly modeled by the albedo α ∈ [0, 1]
as part of the RTE, as previously seen in Section 4.4.1.

4.7.1 Anisotropy of Phase Functions

Most phase function models that are used in practice are rotationally sym-
metric around ωi and independent from both ωi and x. Mathematically, this
amounts to the phase function being a function of only the angle between ωi
and ωo

fp(x, ωi→ωo) = fp(−ωi ·ωo) = fp(cos γ) , (4.99)
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where the angle is by convention parameterized by its cosine cos γ = −ωi ·ωo.
These kinds of phase functions are a suitable model when the infinitesimal
particles constituting the participating medium are either rotationally sym-
metric themselves, or are oriented uniformly at random.

Such phase functions can be broadly categorized by their tendency to scatter
light forward, backward, or in no particular direction at all. This tendency is
quantified easily by the phase-function-weighted cosine

g = 2π
∫ 1

−1
cos γ fp(cos γ)d cos γ , (4.100)

which can also be interpreted as the expected cosine upon randomly scat-
tering proportional to fp. Figure 4.7 illustrates the conceptual difference
between different values of g.

4.7.2 The Henyey-Greenstein Phase Function

The Henyey-Greenstein (HG) phase function [Henyey and Greenstein 1941]
was originally introduced as a model of light scattering by interstellar dust.
Since then, the HG phase function became widely adopted in multiple fields
as an analytic model for all kinds of volumetric scattering [Pegoraro 2016;
Novák et al. 2018].

fp(cos γ, g) =
1

4π

1− g2(
1 + g2 − 2g cos γ

)3/2
, (4.101)

The HG phase function is actually a family of phase functions that is parame-
terized by the aforementioned mean cosine g, which makes it an especially
suitable choice when one wants to prescribe anisotropy explicitly. It is easy
to verify that

g =
4.99

2π
∫ 1

−1
cos γ fp(cos γ, ĝ)d cos γ

= 2π
∫ 1

−1
cos γ

1
4π

1− ĝ2(
1 + ĝ2 − 2ĝ cos γ

)3/2
d cos γ

=
1− ĝ2

2

∫ 1

−1
cos γ

(
1 + ĝ2 − 2ĝ cos γ

)−3/2
d cos γ

=
1− ĝ2

2
ĝ2 − ĝ cos γ + 1

ĝ2
√

ĝ2 − 2ĝ cos γ + 1

∣∣∣1
−1

=
1
2

(
ĝ3 + 1

ĝ2 +
ĝ3 − 1

ĝ2

)
=

ĝ3

ĝ2 = ĝ . (4.102)
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Figure 4.8: Henyey-Greenstein (a), Rayleigh (b), and Lorenz-Mie (c) phase functions, plotted
as a function of γ with logarithmic scale. The shown instances of the HG phase function are
parameterized with g ∈ {−0.9,−0.6, 0, 0.6, 0.9} (from blue to red). The shown Lorenz-Mie phase
function was numerically computed using MiePlot [Laven 2017] for spherical scatterers with
gamma-distributed radii (in µm) with shape k = 2 and scale θ = 2, and averaged across three
different color channels: red (650 nm), green (530 nm), and blue (450 nm).

It is also worth noting that for g = 0, the HG phase function becomes the
isotropic phase function, which scatters light uniformly in all directions

fp(cos γ, 0) =
1

4π

1− 0(
1 + 0− 0 cos γ

)3/2
=

1
4π

. (4.103)

This special phase function is in concept similar to the Lambertian (diffuse)
BSDF (see Section 4.6), which also scatters light uniformly in all directions.
Figure 4.8(a) illustrates the shape of the HG phase function for varying values
of g, where the values are, from blue to red: (−0.9,−0.6, 0, 0.6, 0.9).

4.7.3 Rayleigh Scattering

Rayleigh scattering [Rayleigh 1899] approximates Maxwell’s equations for
light interactions with particles that are much smaller than the wavelength of
light (below λ/10). Rayleigh’s phase function for such particles is simple:

fp(cos γ) =
1

4π

3
4
(1 + cos2 γ) . (4.104)

It consists of two additive components (the squared cosine and the 1), where
the cosine corresponds to forward and backward scattering (without any scat-
tering at a right angle) of horizontally polarized light and 1 describes isotropic
scattering of vertically polarized light. Since we express the phase function
in a rotationally independent manner, all rotations must be integrated out,

84



4.7 The Phase Function

resulting in the additive combination of horizontal and vertical polarization
effects. Since fp(cos γ) = fp(cos γ + π), the Rayleigh phase function has
g = 0. We show the Rayleigh phase function in Figure 4.8(b), comparing it
to the HG and the Lorenz-Mie phase functions which typically have much
more pronounced anisotropic behavior.

In practice, however, light is often not polarized uniformly in all directions.
This is part of the reason that the sky often has a different hue of blue at
the horizon than towards the zenith: microscopic aerosol in the atmosphere
that scatter light in a polarization-dependent manner. In such cases, if the
Rayleigh phase function is used as a scattering model, it requires polarization-
dependent weighting of its additive terms.

Rayleigh not only derived a phase function for microscopic particles, but also
their scattering coefficient, which, due to the assumption of small particle
scales, must consider quantum mechanical effects to be accurate. From these
effects, Rayleigh derived

σs(λ, η, d, ρ) = ρ
2π5

3
d6

λ4

(
η2 − 1
η2 + 2

)2

, (4.105)

where λ is the wavelength of light, η is the index of refraction of the particles, d
is their diameter, and ρ is their 3-dimensional number density8. It is precisely
the wavelength dependence of the above scattering coefficient that gives our
atmosphere its characteristic blue color.

4.7.4 The Lorenz-Mie Phase Function

The Lorenz-Mie phase function (developed independently by Mie [1908] and
Lorenz [1890]) is the solution to Maxwell’s equations for planar waves of
light that are scattered by a dielectric sphere with a size comparable to the
wavelength of light. Unlike more approximate solutions such as the Henyey-
Greenstein (Section 4.7.2) or the Rayleigh (Section 4.7.3) phase functions, the
Lorenz-Mie phase function has a very intricate shape, consisting of a strong
forward-facing peak, a wide sideways-facing lobe, and three backward-facing
peaks. The Lorenz-Mie phase function is especially useful to model the
appearance of atmospheric clouds, consisting of tiny water droplets or ice
crystals that are too big to be well approximated by Rayleigh scattering, but
small enough to be affected by wave optics (around 1 to 100 microns).

8The factor ρ is required to transform scattering cross section [m2] (which Rayleigh originally
derived) to our desired 1-dimensional number density [m−1].
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In Figure 4.8(c), we show an example Lorenz-Mie phase function that was nu-
merically computed using MiePlot [Laven 2017] for an aerosol with gamma-
distributed radii (in µm) with shape k = 2 and scale θ = 2. To obtain the
final shape, we averaged phase-function profiles for three visible colors, red
(650 nm), green (530 nm), and blue (450 nm), across 50 randomly sampled
radii from the gamma distribution.
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C H A P T E R 5
Machine Learning in this Dissertation

The goal of machine learning is the automatic data-driven generation of
programs. Its applications are manifold, including language translation,
voice and image recognition, sound generation, robotics, self-driving cars,
medicine, and many more. Machine learning nowadays truly is ubiquitous,
which is a testimony of its ability to solve many problems far more effectively
than any existing human-designed solution does.

5.1 Overview

The field of machine learning is often subdivided into “supervised learning”,
“unsupervised learning”, and “reinforcement learning”. The following is a
brief overview over each of these sub-fields.

Supervised Learning. In supervised learning, the goal is to learn values
(sometimes also referred to as labels) that correspond to a given input. This
includes problems such as classification (e.g. does image x contain a cat or
a dog?), regression (e.g. meaningful dense approximation of sparse data),
but also certain portions of statistical modeling (e.g. what is the probability
that patient x has cancer, given MRI scan y?). In general, whenever one is
able to supply a machine-learning algorithm with training data that consists
of desired input-output pairs, one operates in the domain of supervised
learning.
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Unsupervised Learning. In contrast to supervised learning, unsupervised
learning deals with automatically extracting hidden properties of unlabeled
data. The field of unsupervised learning includes clustering (e.g. the genomes
of which lifeforms are closely related?), signal compression (e.g. encode any
given video at the highest possible quality using only x bits), and, once again,
portions of statistical modeling such as density estimation (e.g. which prob-
ability density underlies natural images?). The line between unsupervised
and supervised learning is often unclear: the task of weighted density esti-
mation (which we introduce in detail later) has, for instance, qualities of
supervised learning (the weights can be interpreted as labels) and of unsu-
pervised learning (the underlying probability density is only correlated with
the weights and still must be learned). Such cases are also often referred to as
semi-supervised learning.

Reinforcement Learning. Reinforcement learning is the study of automati-
cally navigating an agent through a (partially) unknown environment to max-
imize a pre-defined reward. A prime example for a reinforcement-learning
problem are video games: the goal is to learn the actions of a character that
maximize the score upon completion of the game. However, the applications
of reinforcement learning are not limited to just games; being able to do well
in games translates very well to succeeding in various real-world tasks, such
as navigating self-driving cars, controlling robots, and more abstract settings
such as interacting with the stock market. At first, it may seem like rein-
forcement learning should be classified under semi-supervised learning (the
reward function can be seen as providing training labels while the agent is
tasked with discovering the underlying dynamics of its world on its own), but
the vastness of specialized applications, research, and algorithms arguably
warrants its own category. That said, ongoing research reveals closer con-
nections between reinforcement learning and other fields: Dahm and Keller
[2018] showed, for example, that reinforcement learning can be mapped to
the learning of Fredholm integral equations of the second kind, which sug-
gests a close connection to existing (un)supervised function-approximation
techniques such as regression and density estimation.

5.2 Function Approximation

In this dissertation, we are not interested in the general field of machine
learning, but rather in one particular facet of it: the study of data-driven
function approximation. All our contributions throughout the Chapters 6–8
use machine learning to approximate parts of the path integral (Chapters 6)
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and/or to importance sample parts of the path integral (Chapters 6–8). For this
purpose, we resort to weighted density estimation / regression on the class
of functions f : D→ R that map an arbitrary domain D to the real number
line.

5.2.1 Objective

In function approximation, our goal is to match a ground-truth function f (x) :
D→ R as well as possible with a “trainable model” h(x; θ) : D ×RM→ R.
The model h(x; θ) depends on a set of “model parameters” θ ∈ RM, the
optimization of which to obtain the best possible fit to f (x) is referred to
as “training the model”. The quality of the fit is judged with the help of a
loss function L( f ‖ h; θ) that quantifies the distance between f and h. The
objective can then be framed mathematically as finding the parameters θ that
minimize the loss

θ̂ ∈ arg min
θ

L( f ‖ h; θ) . (5.1)

Although the loss L could in principle have any form, in this dissertation we
are interested in losses that have the form of an integral over a per-data-point
loss function `

L( f ‖ h; θ) =
∫
D
`
(

f (x), h(x; θ)
)

dµ(x) . (5.2)

It is generally impossible to evaluate the loss integral exactly, let alone opti-
mize θ in a way that depends on it. Therefore, what is most commonly done,
is to estimate the loss integral in a Monte Carlo fashion with a finite set of
training data points. Assuming the training data is distributed approximately
uniformly (according to µ) over the data domain allows us to formulate an
approximately ideal choice of θ as those parameters that minimize a Monte
Carlo estimator of the loss integral

〈θ̂〉 ∈ arg min
θ

〈L( f ‖ h; θ)〉 = arg min
θ

1
N

N

∑
i=1

`
(

f (Xi), h(Xi; θ)
)

. (5.3)

Note, that if the training data is not distributed uniformly according to µ,
then we must either adjust the Monte Carlo estimate

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

`
(

f (Xi), h(Xi; θ)
)

q(Xi)
(5.4)

or accept the additional approximation error incurred by not taking q(Xi)
into account.
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5.2.2 Overfitting

“Overfitting” is a term that is frequently used in machine learning. It refers to
the situation, where the training data set is so small (or, conversely, h(x; θ) is
so expressive) that the optimal parameter choice for minimizing the Monte
Carlo loss estimate 〈θ̂〉 is much different from the parameter choice that
minimizes the loss integral θ̂. Detecting when overfitting occurs is relatively
simple: it is common practice to hold back a subset of the available data as
“validation data”, which is not used to train the model. Overfitting is then
revealed by checking whether the model generalizes to the validation data.
There exist two main approaches to avoid overfitting.

Regularization. The first, “regularization”, is to artificially limit the model
capacity just enough so that overfitting no longer occurs. Typically, regular-
ization is implemented by penalizing excessively large parameter values. For
example, a so-called Ln regularizer produces a modified loss

L̂( f ‖ h; θ) = L( f ‖ h; θ) + λ‖θ‖n , (5.5)

that penalizes large-magnitude θ according to the Ln norm in addition to
penalizing a bad fit, where the degree of regularization is controlled by a
tunable “hyperparameter” λ that is not learned. There exist several other
regularization techniques, many of which are tailored towards the specific
model that is being trained (e.g. the use of prior distributions in bayesian
inference, or “dropout” in neural networks) which are out of the scope of this
dissertation.

More Training Data. The second approach to avoid overfitting—which
may sound trivial—is to simply use a larger set of training data. In the limit,
where the amount of training data approaches infinity, the optimal fit to the
training data converges to the actual optimal fit, after all. In practice, though,
it is often very difficult and/or expensive to obtain large-enough quantities
of training data. Think of training a model to diagnose a specific type of brain
cancer: there may simply not exist many people with that specific type of
brain cancer to collect data from (and that is a good thing). For such cases,
there exist techniques that artificially increase the amount of data, for example
by “augmenting” the training data via

• exploiting symmetry equivalences (e.g. horizontally flipping images,
where left and right should be interchangeable),

• adding random noise,
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• using random crops (subsets of dimensions) of data points, and

• generating additional data using a computer simulation that was
bootstrapped with the original data.

Furthermore, many optimization techniques assume independent data sam-
ples, but still work reasonably well when being fed the same data multiple
times in a row in random order. One pass through the training data is re-
ferred to as an “epoch”. In practice, when training data is sparse, it is not
uncommon to optimize models with very large numbers of epochs.

Overfitting in this Dissertation. In this dissertation, we are in the fortu-
nate position that our training data is relatively cheap to generate: it consists
of Monte Carlo samples from (parts of) the path integral. This allows us to
avoid overfitting without the need for any regularization, data augmentation,
or using more than one epoch, simply by generating as much training data as
is required on the fly. We will therefore disregard the pitfalls of overfitting in
the remainder of this chapter on machine learning, and we will instead focus
on models that are interesting to us.

5.2.3 Regression

Regression is the setting, where training data of the form of noisy input-
output observations of f (x) is available. Formally, a training data set with N
data points is a set of tuples

DN =
{(

x1, 〈 f (x1)〉
)
, . . . ,

(
xN, 〈 f (xN)〉

)}
, xi ∈ D , (5.6)

where 〈 f (x)〉 is a noisy estimate of f (x).

In regression, there are usually a number of model-dependent assumptions
that make optimization feasible. A common set of assumptions would be
that xi are distributed uniformly and independently, and that the noise in the
loss function induced by the noise of f (x) has approximately zero-mean, i.e.

E
[
`
(
〈 f (xi)〉, h(xi; θ)

)]
≈ E

[〈
`
(

f (xi), h(xi; θ)
)〉]

= `
(

f (xi), h(xi; θ)
)

. (5.7)

These assumptions make it possible to directly evaluate the previously intro-
duced Monte Carlo estimate of the loss

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

`
(
〈 f (xi)〉, h(xi; θ)

)
, (5.8)
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which in turn allows for a number of optimization techniques to be used. For
example, if ` and h are differentiable w.r.t. θ, then setting the gradient of L to
zero might be a viable option to find its minima.

5.2.4 Density Estimation

Density estimation addresses the same objective as regression, only with a
different kind of training data. Instead of consisting of noisy input-output
pairs, the training data consists only of the inputs xi, but is distributed
according to p(x) = f (x)/F:

DN =
{

x1, . . . , xN

}
, xi ∼ p . (5.9)

From this setting, it is only possible to learn the probability density function
(PDF) that is proportional to f (x), leading to the name “density estimation”.
We refer to the learned density as q(x; θ) = h(x; θ)/F and we express the loss
in terms of PDFs for convenience

D(p ‖ q; θ) = L(F · p ‖ F · q; θ) = L( f ‖ h; θ) . (5.10)

Popular choices for D(p ‖ q; θ) include divergences such as the ones presented
in Section 2.3; e.g. the KL-divergence DKL.

Minimizing the loss in a density-estimation setting is often much more dif-
ficult than in the regression setting. After all, the loss function involves the
ground-truth PDF p which is impossible to evaluate (otherwise, one could
obtain regression training data by evaluating p(x) for each data point). For
certain loss functions, however, the fact that the training data is distributed
according to p enables optimization. For example, the KL-divergence. Then

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

p(xi) log p(xi)
q(xi;θ)

p(xi)

= arg min
θ

1
N

N

∑
i=1

log
p(xi)

q(xi; θ)

= arg min
θ

1
N

N

∑
i=1

(
log p(xi)− log q(xi; θ)

)
= arg max

θ

1
N

N

∑
i=1

log q(xi; θ) , (5.11)

where the log p(xi)-term was dropped in the last step because it is indepen-
dent of θ. This shows, that in order to minimize the KL-divergence in a
density-estimation setting, one must maximize the average learned log-PDF
of p-distributed training data.
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Figure 5.1: Illustration of the training data available when performing regression (a), density
estimation (b), and weighted density estimation / regression (c).

5.2.5 Weighted Density Estimation / Regression

As our goal in this dissertation is to learn an approximation and/or impor-
tance sampling of the path integral using Monte Carlo estimates of the same,
the training data available to us has the form

DN =
{(

x1, 〈 f (x1)〉
)
, . . . ,

(
xN, 〈 f (xN)〉

)}
, xi ∼ qs , (5.12)

where qs(x) is known and may or may not be trained, and 〈 f (x)〉 is an
unbiased Monte Carlo estimate of f (x). The resulting optimization objective

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

〈
`
(

f (Xi), h(Xi; θ)
)〉

qs(Xi)
(5.13)

lies somewhere between density estimation and regression: if qs(x) = p(x),
then the objective becomes that of density estimation, whereas if qs(x) =
1/µ(D), then the objective is that of regression with uniformly distributed
data points. Figure 5.1 illustrates the different kinds of possible training data.

This continuum between density estimation and regression can either be clas-
sified as “weighted density estimation” or “weighted regression”. Depending
on the classification, different interpretations of the objective function are
possible. In the density-estimation setting the weight is wd = p(x)/qs(x),
leading to the objective function

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

wd,i

〈
d
(

p(Xi), q(Xi; θ)
)〉

p(Xi)
, (5.14)

whereas in the regression setting, the weight is wr = 1/qs(x) with corre-
sponding objective function

〈θ̂〉 ∈ arg min
θ

1
N

N

∑
i=1

wr,i
〈
`
(

f (Xi), h(Xi; θ)
)〉

. (5.15)
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Regardless of how one prefers to write the objective, the optimal parameters
〈θ̂〉 are the same. In the following, we describe suitable models for h(x; θ)
and/or q(x; θ) and corresponding optimization techniques that we employ
throughout this dissertation in the pursuit of learning the intricacies of light
transport.

5.3 Piecewise-Constant Functions

When the to-be-learned function can be parameterized over a low-enough-
dimensional space, e.g. f (x) : RD→ R with D ≤ 5, then it is often feasible to
approximate it at reasonable resolution using a piecewise-constant function.
We take this approach in Chapters 6 and 7, where we learn piecewise-constant
approximations of certain low-dimensional subspaces of the path integral
that can later be reused to accelerate rendering.

5.3.1 Definition

A piecewise-constant function is constant within each element of a set of
“bins” B(D) =

{
D1, . . . ,DK

}
that partition the function’s domain

D =
K⋃

i=1

Di , (5.16)

∀i, j ∈ {1, . . . , K} : i 6= j =⇒ Di ∩Dj = ∅ . (5.17)

Let Θ(b) : B(D) → R return the constant value of a piecewise-constant
function within a given bin b, then the corresponding piecewise-constant
function is defined as

h(x; θ) =
K

∑
j=1

Θ(Di) 1Dj(x) , (5.18)

where 1D(x) is the indicator function that denotes set membership

1D(x) =

{
1 if x ∈ D
0 otherwise.

(5.19)

The piecewise-constant function h(x; θ) is therefore fully defined by the choice
of bins B(D) and the bin-to-value mapping Θ(b). Although any choice of
B(D) is theoretically allowed, in most practical scenarios where the domain
spans the real hyperspace D = RD, the bins B(RD) are chosen to correspond
to the subdivision of either a regular or an irregular grid (e.g. an axis-aligned
tree data structure).
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Tabulation. In the case where the bins are arranged in a regular grid, the
process of approximating a function in a piecewise-constant manner is often
referred to as “tabulation” without its close connection to machine learning
being made clear. We argue, that viewing tabulation as a machine-learning
model that requires sound optimization procedures helps avoid common
subtle errors when training data is only available in the form of Monte Carlo
estimates of the to-be-approximated function.

5.3.2 Optimization

We consider the scenario where the bins B(D) are predetermined and our
goal is to optimize the bin-to-value mapping Θ(b). First, we must realize that
the bin-to-value mapping is nothing more than a list of values θ = (θ1, . . . , θK)
with cardinality K being the number of bins and the j-th value being θj =
Θ(Dj). The goal of the optimization is thus to find the bin values θ that
minimize the loss integral. For piecewise-constant functions, the loss integral
can be expressed as the sum of per-bin loss integrals

L( f ‖ h; θ) =
∫
D
`
(

f (x), h(x; θ)
)

dµ(x) (5.20)

=
K

∑
j=1

∫
Dj

`
(

f (x), θj
)

dµ(x) , (5.21)

which allows us to optimize θ1, . . . , θK independently from each other using
only the loss of those data points that lie within each respective bin

〈θ̂j〉 ∈ arg min
θj

1
N

N

∑
i=1

〈
`
(

f (xi), θj
)〉

qs(xi)
1Dj(xi) . (5.22)

We proceed to find the minimum of the loss by setting its gradient to zero. We
use the square loss `

(
f (xi), θj

)
=
(

f (xi)− θj
)2, because it produces a simple

closed form of the loss gradient

∇θj

1
N

N

∑
i=1

〈(
f (xi)− θj

)2
〉

qs(xi)
1Dj(xi) = −

2
N

N

∑
i=1

〈
f (xi)

〉
− θj

qs(xi)
1Dj(xi) = 0 . (5.23)

Solving for θj results in the sample mean

〈θ̂j〉 =
1
N

N

∑
i=1

〈
f (xi)

〉
qs(xi)

1Dj(xi) . (5.24)

In conclusion, fitting a piecewise-constant function with respect to the
squared loss requires simply assigning to each bin the mean value of all
Monte Carlo estimates of the true function that fall within the bin.
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Other Loss Functions. There exist many other loss functions, many of
which perhaps being more reasonable to use than the square loss. Most of
these are, however, generally more difficult to optimize for. The work of Pan-
taleoni and Heitz [2017] is a notable exception: they derive a closed-form op-
timization of piecewise-constant functions with respect to the χ2-divergence,
which is a very attractive quantity to optimize for if the fitted piecewise-
constant function will be used to importance sample another Monte Carlo
estimator, because the χ2-divergence directly corresponds to the variance of
this Monte Carlo estimator, as previously shown in Section 3.3.3. Unfortu-
nately, in our experiments, their optimization was sometimes numerically
unstable and prone to overfitting, even if a large amount of training data
is available, which is why we ultimately use the square loss within this
dissertation.

5.3.3 Usage

Fitting. Following the optimization procedure from the preceeding section,
it is simple to fit a piecewise-constant function to a target function, even if
only unnormalized stochastic estimates of the target function are available.
One must obtain a reasonably large set of estimates of the target function
within in each bin and then assign to each bin the mean of all estimates that
fall within it. According to Section 3.2, the standard error of an estimated bin
value 〈θ̂j〉 compared to the optimally-fitted bin value θ̂j is O(1/

√
N), where

N is the number of samples that fall within bin j. This allows for a robust
estimation of the required number of samples to obtain a fit within a given
desired error tolerance.

Evaluation. The evaluation of a fitted piecewise-constant function h(x; θ)
at a given input x is as simple as (i) determining the index j of the bin that
contains x and (ii) looking up the corresponding fitted value θj. For example,
when x ∈ [0, d], K bins are arranged in a 1-dimensional regular grid, and θ is
stored in an array, then the evaluation of h(x; θ) amounts to looking up the
j-th value of the array, where

j =
⌊

x · K
d

⌋
. (5.25)

Sampling. It is also possible to draw samples according to X ∼ q(x; θ),
where q(x; θ) ∝ h(x; θ). To see how, it is important to realize that q(x; θ) is
a mixture of uniform distributions with each uniform distribution having a

96



5.4 Neural Networks

probability measure that is proportional to the value of its corresponding bin.
Drawing a sample from q(x; θ) then amounts to (i) randomly selecting a bin
with probability proportional to its value, and (ii) picking a uniformly random
position within the chosen bin. The first step can be achieved regardless of the
underlying domain D by subdividing the interval [0, 1] into K segments that
have length proportional to Θ(Dj), drawing an auxiliary random number
ξ ∼ U (0, 1), and selecting the bin index j from the bin that corresponds to
the segment that ξ lies within. The second step is difficult to implement
for arbitrary bins Dj, but is simple when the bins are arranged in a regular
D-dimensional grid: in the latter case, one can simply draw a sample from the
D-dimensional uniform distribution that covers the selected bin following
Section 2.6.1.

5.4 Neural Networks

Deep artificial neural networks (see Bengio et al. [2013]; LeCun et al. [2015] for
a comprehensive review) are able to efficiently model complex relationships
between input and output variables in a highly non-linear manner. They
have emerged as the dominant model that achieves state-of-the-art results in
a wide variety of challenging problems, e.g. image recognition [Simonyan
and Zisserman 2014; He et al. 2016], machine translation [Wu et al. 2016], or
generative modeling of raw audio and natural images [van den Oord et al.
2016a,b].

5.4.1 Definition

In principle, any system consisting of connected units (“neurons”) where
computation is performed along the connections is considered a “neural
network”. This includes not only “artificial” neural networks (e.g. as simu-
lated on computers), but also biological neural networks as found in living
organisms.

Artificial Feed-Forward Nets. In this dissertation, however, we are inter-
ested in only one particular kind of neural network: artificial feed-forward
neural networks that are simulated on a computer. Feed-forward neural
networks form no cycles, i.e. computation follows the edges of an acyclic
directed graph, the nodes of which are the neurons. In the following, we will
refer to artificial feed-forward neural networks simply as “neural networks”.
The computations within a neural network are divided into two categories:
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i4 = W3o3 + b3
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(a) Topology (b) Computation

Figure 5.2: Feed-forward neural-network topology (a) and corresponding computation graph (b)
for an example network with 4 layers that have 4, 2, 3, and 2 neurons, respectively.

inter-neuron computations along the connections between neurons and intra-
neuron computations, also called neuron “activations”, within each neuron.
The inter-neuron computations are affine transformations, which, due to their
simplicity, allow for a large number of connections to be computationally
tractable. The neuron activations, on the other hand, are non-linear (other-
wise, the repeated affine inter-neuron transformation would collapse to a
single affine transformation) and typically performed on a per-neuron basis.

Multi-Layer Perceptrons. We will focus on those neural networks that are
classified as “multi-layer perceptrons” (MLPs). The neurons of multi-layer
perceptrons are arranged in L ∈ N; L ≥ 2 layers, where the inputs to the
neurons of the l-th layer are represented by vector il and the outputs are
another vector

ol = f l
(

il; θl
)

, (5.26)

where f l(il; θl) is the layer’s activation function parameterized by trainable
parameters θl . The affine inter-layer computations are simple matrix multipli-
cations with trainable real-valued “weight matrices” that capture individual
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neuron connectivity, and trainable real-valued bias vectors

il+1 = al(ol) = Wlol + bl . (5.27)

Figure 5.2 illustrates the topology and the computation graph of an example
MLP with 4 layers that have 4, 2, 3, and 2 neurons, respectively.

The first layer l = 1 is the “input layer”, the intermediate layers
l ∈ {2, . . . , L− 1} are “hidden layers” (because their values are interme-
diate results of the computation that are usually not observed externally),
and the last layer l = L is the “output layer”. Therefore, the function learned
by an MLP is

h(x; θ) = f 1 ◦ a1 ◦ · · · ◦ f L−1 ◦ aL−1 ◦ f L , (5.28)

where the set of trainable parameters is θ = (θ1, W1, b1, . . . , WL−1, bL−1, θL).

Activation Functions. We distinguish between the input activation func-
tion f 1, the hidden activation functions f 2, . . . , f L−1, and the output activation
function f L. In our work, the role of the input and output activation functions
f 1 and f L is to transform data to and from neural-network-suitable represen-
tations. For example, if the inputs span a large range of magnitudes, then
normalizing them (e.g. such that they have zero-mean and unit variance)
often drastically improves training performance. Input normalization is, in
fact, a common strategy across a wide variety of machine-learning techniques.
Some MLP architectures even normalize the distribution of intermediate re-
sults of hidden layers as part of the hidden activation functions, a process
that is called batch normalization [Ioffe and Szegedy 2015]. We observed no
benefit when using batch normalization in our experiments and we therefore
only normalize inputs.

In similar spirit, when the desired output of a neural network should meet
certain constraints, then it is worthwhile to enforce these constraints via a
suitable output activation functions. For example, when the output should be
a vector of probabilities that sum up to 1, then the “softmax” function Σ(x) is
a reasonable choice for transforming the arbitrary real-valued output of the
last affine transformation to such a vector of probabilities

f L(iL) = Σ(iL) =
exp

(
iL)

∑D
k=1 exp

(
iL
k

) . (5.29)

In Chapter 8 we will present concrete problem-specific instances of input and
output activation functions.
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Lastly, due to a history of empirically and theoretically demonstrated ro-
bust performance, we choose to always use so-called “rectified linear units”
(ReLUs) as hidden activation functions.

fReLU(x) =

{
x if x > 0
0 otherwise.

(5.30)

In the following paragraph, we elaborate on the reasoning behind this choice.

Why ReLU-Based MLPs? Our choice of focusing on feed-forward MLPs
with ReLU activations is motivated by various empirical and theoretical re-
sults. In terms of empiciral results, the widespread adoption of ReLUs in
state-of-the-art neural-network architectures speaks for itself [Ramachandran
et al. 2017]. Nevertheless, we experimented with alternative activation func-
tions, including variations of the ReLU such as “parametric ReLUs” [He et
al. 2015] and “concatenated ReLUs” [Shang et al. 2016], with and without
looks-linear initialization as proposed by Balduzzi et al. [2017]. In all our
experiments we were unable to outperform vanilla ReLUs, which is why they
remained our preferred choice.

As for theoretical arguments in favor of MLPs in general, it has been shown
that MLPs with a fixed number L ≥ 2 of layers are universal function approx-
imators under certain conditions on the activation function that the ReLU
meets [Cybenko 1989; Hornik 1991]. Mathematically, what we mean by “uni-
versal function approximators” is that any bounded continuous function can
be approximated within arbitrarily small error by some finitely wide, fixed-
depth L ≥ 2 layer MLP. Similar proofs are possible when, instead, the layer
width is fixed but the number of layers may be arbitrarily big: Lu et al. [2017]
showed that any Lebesgue-integrable function f : RD → R (i.e. an even
bigger class of function than the one considered above) can be approximated
up to arbitrarily small error by a (D + 4)-wide, finitely deep MLP. Ongoing
research is making progress towards compelling theoretical evidence for
a greater approximation quality of deep ReLU networks rather than wide
ones [Lu et al. 2017; Hanin 2017], which further motivates our choice of ReLU
activations.

5.4.2 Optimization

It is generally impossible to minimize L( f ‖ h; θ) in closed form when h(x; θ)
is a neural network. Practitioners therefore resort to numerical optimization
techniques: by far the most popular and successful approaches to optimizing
deep neural networks are based on gradient descent.
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(Stochastic) Gradient Descent. “Gradient descent” is an iterative
function-minimization algorithm that utilizes the first-order derivative
of the to-be-minimized function. It works as follows: given a function to
minimize L( f ‖ h; θ) and fixed parameters θ, a new set of parameters θ′ is
obtained by traversing the direction of steepest descent (i.e. the negative
gradient of L( f ‖ h; θ) at θ) for a fixed distance λ:

θ′ = θ − λ∇θL( f ‖ h; θ) . (5.31)

If λ—usually called “learning rate”—is sufficiently small and L( f ‖ h; θ) is
locally Lipschitz w.r.t. θ, then L( f ‖ h; θ′) is smaller than L( f ‖ h; θ). It can be
proven that for λ→ 0, iterating the above update rule makes θ converge to a
local optimum.

Since it is generally impossible or too expensive to compute the exact gradi-
ent ∇θL( f ‖ h; θ), practitioners instead use unbiased estimates of it. This is
called “stochastic gradient descent”. Conveniently, even when only unbiased
estimates of the gradient are used, the convergence of stochastic gradient
descent to local minima can still be proven [Kiwiel 2001].

In practice, more advanced update rules than the one in Equation 5.31 are
used. Popular methods make use of the first and second-order moments of un-
biased loss gradient estimates in order to adaptively scale the learning rate λ.
Exact descriptions of such advanced methods are out of the scope of this dis-
sertation; in all our optimizations we use a method called “Adam” [Kingma
and Ba 2014], which was—like stochastic gradient descent—proven to con-
verge to local minima. Even though convergence is only guaranteed up
to local minima, recent research indicates that the loss function of neural-
network outputs may be well behaved enough such that local minima are a
reasonable proxy of global minima [Li et al. 2017].

Obtaining Unbiased Loss Gradients. In order to use stochastic-gradient-
descent-based optimization methods, one must be able to estimate
∇θL( f ‖ h; θ). What makes this possible in the case of neural networks
is the differentiability of `

(
f (x), h(x; θ)

)
via the chain rule1. For example, the

gradient of the loss function w.r.t. the parameters of the l-th layer activation
function θl is

∇θl`
(

f (x), h(x; θ)
)
=

∂`

∂θl

(
f (x), h(x; θ)

)
=

∂`

∂h
∂h
∂θl

(
f (x), h(x; θ)

)
=

∂`

∂ f 1
∂ f 1

∂a1 · · ·
∂al−1

∂ f l
∂ f l

∂θl

(
f (x), h(x; θ)

)
. (5.32)

1The gradient computation hinges on the assumption that the loss function as well as the activation
functions of the neural network are differentiable (almost) everywhere.
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Due to the linearity of the gradient operator ∇θ , one can express the gradient
of the loss integral in terms of the gradient of the loss integrand2

∇θL( f ‖ h; θ) =
∫
D
∇θ`

(
f (x), h(x; θ)

)
dµ(x) , (5.33)

permitting the stochastic estimation of the gradient using a finitely sized set
of data

〈
∇θL( f ‖ h; θ)

〉
=

1
N

N

∑
i=1

〈
∇θ`

(
f (xi), h(xi; θ)

)〉
q(xi; θ)

. (5.34)

As previously discussed, in the application to Monte Carlo light-transport
simulation that we are interested in, we only have access to Monte Carlo
estimates of f (x), which means that we can not evaluate the above expression
for arbitrary loss functions. In Chapter 8, we show that the above expression
can be estimated without bias when optimizing the KL and χ2-divergence
loss functions, even when only 〈 f (x)〉 is available. An alternative but more
expensive approach is to estimate f (x) with sufficiently many samples such
that the remaining error can be neglected. We went this route in one of our
co-authored publications that is not discussed in further detail within this
dissertation [Kallweit et al. 2017].

5.4.3 Usage

Fitting. As previously discussed, we train a neural network to approximate
a given target function using Adam optimization [Kingma and Ba 2014]. We
compute the necessary stochastic gradient of the loss function w.r.t. the net-
work’s parameters using the automatic differentiation and backpropagation
capabilities of the TensorFlow framework [Abadi et al. 2015].

Evaluation. Evaluating a trained neural networks for a given input x is
done in closed form via Equation 5.28. Since the affine transforms and many
common activation functions lend themselves to parallel execution via vector
processor instructions, it is common to use optimized implementations that
are available in existing frameworks. In this dissertation, we use Tensor-
Flow [Abadi et al. 2015].

2This identity only holds under certain continuity constraints on `. In Chapter 8, we actually run
into a situation where the identity is invalid.
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Sampling. Unfortunately, it is generally not possible to draw samples pro-
portional to a function that was learned by a MLP. MLPs are therefore not di-
rectly applicable to importance sampling of Monte Carlo estimators. In Chap-
ter 8, we show, however, how MLPs (and other gradient-descent-optimized
function approximators) can be integrated into a computation graph that does
permit learning of a PDF that can be sampled from and evaluated.

5.5 Prior Work using Machine Learning in Rendering

Even though sophisticated machine-learning techniques that are rooted in sta-
tistical modeling were only recently adopted in rendering literature [Vorba et
al. 2014; Vévoda et al. 2018], simpler techniques such as tabulation have seen
usage for multiple decades. In this section, we provide a brief sub-sampling
(a complete list would be too expansive for the scope of this dissertation) of
various usages of machine learning that exist in the field of photorealistic
rendering.

5.5.1 Tabulation and Piecewise-Polynomial Fits

Tabulation has a long history of successful usage in rendering and the field
of Computer Graphics in general. Perhaps the most obvious application
of tabulation is the standard representation of images: as a regular lattice
of pixels. Although pixels are typically defined as point samples of the
incident radiance field on the image plane, these point samples are often
approximated via a filtering kernel to combat aliasing. Using a box-filter (also
known as “nearest-neighbor” filter) amounts precisely to approximating the
image plane as a piecewise-constant function according to the definition and
optimization procedure we gave in Section 5.3. In practice, it is common to
use smoother filter kernels than a box (e.g. tent or Gaussian shaped), which
we will also consider as “tabulation” in the remainder of this dissertation.
Other similarly trivial examples of the usage of tabulation to approximate 2-
dimensional functions are textures (including their corresponding mipmaps)
and environment maps.

Tabulation is also frequently used to represent reflectance functions, such as
the data-driven BSDFs we described in Section 4.6.9 and data-driven phase
functions (e.g. the Lorenz-Mie phase function from Section 4.7.4). Researchers
developed specialized reflectance functions for other kinds of scatterers than
differential surface patches and differential volume regions, for instance
for hair segments [Marschner et al. 2003], water droplets [Sadeghi et al.

103



Machine Learning in this Dissertation

2012], grains [Müller 2016], and large volume regions [Kajiya and Kay 1989;
Jensen et al. 2001; Moon et al. 2007; Lee and O’Sullivan 2007]. Many of these
reflectance functions are difficult or impossible to accurately model in closed
form; instead, their advantage lies in parameterizing reflectance using a
small number of dimensions that are feasible to tabulate within the practical
memory and computational limits of today’s hardware.

We take a similar approach in Chapter 6, where we present a novel param-
eterization of large-scale volumetric light transport that allows us, after an
initial tabulation step, to drastically accelerate the computation of volumetric
light transport in continuous and granular participating media with little loss
of accuracy. In Chapter 7 we tabulate the 5-dimensional incident radiance
field at a signal-adaptive resolution such that it can be used to importance
sample a path tracer much better than many traditional heuristics can.

5.5.2 Parametrix Mixture Models

It is often convenient to approximate a function using a (weighted) sum of
parametric basis functions. Such a mixture of parametric basis functions
is generally referred to as a “parametric mixture model”. The basis func-
tions can take any form; prior work on reflectance functions and light-field
representation used, for example, spherical harmonics [Cabral et al. 1987;
Westin et al. 1992], spherical wavelets [Schröder and Sweldens 1995], Zernike
polynomials [Koenderink et al. 1996], cosine lobes [Heitz et al. 2016a,b], and
Gaussians [Wang et al. 2009; Xu et al. 2013; Vorba et al. 2014; Herholz et al.
2016]. Some works even generalize beyond the exact choice of underlying
basis function [Herholz et al. 2018].

Notice, that the piecewise-constant approximation as defined in Section 5.3
also falls under the umbrella of parametric mixtures: the additive compo-
nent of each bin (Equation 5.18) is a parametric (its constant value being
its single parameter) basis function. The piecewise-constant approximation
corresponds to a special case of parametric mixtures, though, because its
basis functions are non-overlapping, i.e. at any given point in the function’s
domain, only at most a single basis function has a non-zero value. This makes
many mathematical derivations (including the optimization that we derived)
much simpler than in the general case where basis functions may overlap.
In this dissertation, we do not make any use of parametric mixture models
beyond the piecewise-constant approximation, which is why we will not
describe their applications and optimization procedures in further detail.
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5.5.3 Probabilistic Models

In this chapter, we introduced machine learning through the point of view of
general function approximation. When the to-be-learned function is a proba-
bility distribution, then it is often possible to craft more effective optimization
procedures than would be possible in the general case. Probabilistic modeling
has seen little usage in rendering literature for a long time, but was recently
picked up in the form of Bayesian learning of posterior distributions [Vorba
et al. 2014; Vévoda et al. 2018]. Since we only take the probabilistic view in
a single one of our chapters (Chapter 8) we defer a more detailed overview
over probabilistic modeling and a corresponding survey of previous work to
that chapter.

5.5.4 Neural Networks and Deep Learning

Although deep learning (and neural networks in general) have been success-
fully applied to problems in computer graphics, such as denoising [Bako et
al. 2017; Chaitanya et al. 2017; Vogels et al. 2018] and fluid simulation [Chu
and Thuerey 2017], they have seen relatively little usage in photorealistic
rendering. Three notable exceptions are the work of Nalbach et al. [2017] who
use convolutional neural networks (CNNs) to synthesize ambient occlusion,
illumination, and other effects in screen space. Their approach operates in
2D, using color and feature images as inputs to the network. More closely
related to our work in the context of path tracing is that of Ren et al. [2013],
who train multiple spatially distributed 2-hidden-layer neural networks to
predict radiance in a specific region of a scene.

More recently, in one of our co-authored works [Kallweit et al. 2017] we
also predict radiance, but operate globally rather than locally, using a much
deeper network architecture, and utilizing several recent advances in the
field of deep neural networks such as residual connections [He et al. 2016]
and Adam optimization [Kingma and Ba 2014].

In contrast, our method in Chapter 8 not only learns a predictive approxima-
tion of the radiance field, but can also draw samples from it, which is enabled
by recent advances in the field of normalizing flows [Dinh et al. 2014, 2016].
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C H A P T E R 6
Multiple Scattering in Translucent
Materials

This chapter is based on the following publication by Müller et al. [2016]:

Efficient Rendering of Heterogeneous Polydisperse Granular Media
Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, Jan Novák
ACM Trans. Graph. (Proc. SIGGRAPH Asia), vol. 35, no. 6, pp. 168:1-–168:14,
Nov 2016

6.1 Overview and Prior Work

In this chapter we aim at accelerating the rendering of bright translucent
materials, the appearance of which is dominated by light paths that scatter
hundreds to thousands of times beneath the surface. We are particularly
interested in a method that can handle dynamic, heterogeneous translucent
materials (i.e. materials with spatially and temporally varying appearance
parameters), as those are most difficult to render with traditional techniques.

Our effort is focused on idealized continuous participating media that obey
the radiative transfer equation (RTE). We made this choice not only because
such media are a frequently used approximation in movie production, but
also because their accelerated rendering constitutes the missing piece that is
required to handle dynamic, heterogeneous assemblies of grains in existing
techniques that approximate part of the appearance of granular media [Meng
et al. 2015; Müller 2016] using the RTE. Granular assemblies are desirable to
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EPT

PPT

VPT+ST
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Figure 6.1: Our method allows efficient rendering of dynamic, heterogeneous mixtures of grains,
as demonstrated in two frames of the BOWL animation. The small images on the right of each frame
show the individual components of our method, which add up to the full light transport. Explicit
Path Tracing (EPT) simulates most of the high-frequency detail, such as glints. Proxy Path Tracing
(PPT) accelerates the simulation of light scattering within each individual grain. Shell Tracing
(ST) advances light through the medium in large steps. Across the entire simulation, we achieve a
2.5–5× speed improvement over the explicitly path traced reference.

render, because they are ubiquitous in nature; examples of their occurrence
include snow, sand, spices, and bubbles.

6.1.1 Multiple Scattering in Continuous Volumes

Although there already exist several approaches for accelerating the simu-
lation of long “high-order” paths in RTE-based continuous volumes, they
all either suffer from visible approximation error [Stam 1995; Jensen et al.
2001; Li et al. 2005] or require scene-dependent precomputation [Lee and
O’Sullivan 2007; Moon et al. 2007; Ramamoorthi 2009; Zhao et al. 2013]. Our
goal is to find a technique that at most needs a single scene-independent pre-
computation while still being more accurate than existing diffusion-based
approaches (Figure 6.2(e)).

The work of Lee and O’Sullivan [2007] and Moon et al. [2007] is of particular
interest to us in this regard. They propose to side-step the expensive simu-
lation of long light paths by learning the propagation of radiance through
large spherical shells filled with the to-be-rendered medium. The authors
then invoke their learned “shell transport functions” (STFs) to traverse the
granular medium in large steps (the radius of their shells) during rendering,
referred to as “shell tracing” (Figure 6.2(d)). Although the STFs require a
per-medium precomputation, shell tracing is otherwise independent of the
scene geometry and introduces no bias other than that caused by an imperfect
fit. This is in stark contrast with the popular diffusion approximation that
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inherently makes simplifying assumptions about the scene geometry and the
anisotropy of the underlying medium.

These desirable aspects of shell tracing and its high performance make it
attractive to build on. We leverage an isotropy assumption found by Müller
[2016] to reduce the dimensionality of STFs from 4-D to 2-D, allowing us to
densely fit an STF database over the full RTE appearance space (α, g), where
g parameterizes the Henyey-Greenstein phase function. To this end, we
import a technique called “white Monte Carlo” [Alerstam et al. 2008] from
biomedical optics that enables the computation of STFs for all possible values
of α at once. The resulting precomputation time is just a few hours, running
on a single workstation. Our STF database permits the efficient usage of the
correct STF in arbitrary continuous media on the fly during rendering.

6.1.2 Granular Materials

The appearance of granular materials can be classified into two components.
First, there is high-frequency detail that is governed by the fine-scale structure
and arrangement of individual grains. This detail is caused by short “low-
order” light paths that either directly reflect incoming light towards the
camera, producing glints and the granular texture, or few-bounce indirect
reflections that exhibit perceivable glimmer. Secondly, in addition to the
high-frequency detail, there exists a smooth large-scale appearance that is
shared with other translucent materials and which leads to the characteristic
saturated and soft color that most granular materials have. This part of the
appearance is caused by similarly long high-order light paths as those found
in continuous participating media.

Although both the low-order and the high-order components are a result
of the same underlying light transport that is governed by the full granular
detail and therefore can be obtained by explicit path tracing (Figure 6.2(a)),
each component exhibits fundamentally different characteristics that warrant
a specifically tailored acceleration technique. Low-order paths are usually
cheap to simulate because they are short, but they may exhibit large variance
due to their radiance profile being sharp and high-frequency. This is espe-
cially noticeable when the grains are shiny and reflective, producing direct
reflections of light, such as glints, that are difficult to importance sample.
High-order paths, on the other hand, by consisting of large numbers of ver-
tices, are exceedingly expensive to simulate. Their variance is typically lower
than that of low-order paths, but not by enough to counteract their greater
expense.
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(a) Explicit PT (b) Proxy PT (c) Volum. PT (d) Shell tracing (e) Diffusion

Figure 6.2: Overview of different techniques that range from accurate and slow (left) to approxi-
mate and fast (right). Meng et al. [Meng et al. 2015] combine (a), (c), and (e), Moon et al. [2007]
combine (a) and (d), and Müller [2016] combines (a, b, c, and d). We extend Müller’s technique
by extending (d) and automatically selecting between (a) and (b).

Due to the inherent difficulty in efficiently simulating either of the two com-
ponents, there exists previous work tailored to high-order scattering [Moon
et al. 2007; Meng et al. 2015; Müller 2016] and to low-order scattering [Müller
2016].

Meng et al. [2015] propose to approximate the granular medium by a corre-
sponding continuous participating medium, the RTE parameters of which
are obtained in a learning step prior to rendering from the individual grains
and their arrangement. Meng et al. are then able to leverage volumetric
path tracing [Lafortune and Willems 1996] (Figure 6.2(c)) in conjunction with
existing high-order acceleration techniques for the RTE; they use a variant of
the diffusion approximation [Stam 1995; Jensen et al. 2001; Li et al. 2005] (Fig-
ure 6.2(e)). Müller [2016] extends Meng et al.’s method to be able to extract
RTE parameters from heterogeneous, polydisperse arrangements of grains
and proposes to leverage a simplified form of STFs instead of the diffusion
approximation to reduce error. They are, however, unable to leverage STFs for
accelerating the rendering of general heterogeneous continuous media—this
is where our contributions fit in.

Unfortunately, these high-order solutions are quite approximate: not only
do granular media not follow the underlying assumption of the RTE (i.e.
infinitesimal, independently distributed scatterers), but many existing tech-
niques for efficiently solving the RTE introduce additional approximation
error. Therefore, the high-order solutions must be prefixed by explicit path
tracing through several grains in order to retain visual accuracy. The bottle-
neck of the simulation is thereby shifted towards low-order scattering. Müller
[2016] addresses part of this bottleneck by introducing a complementary low-
order acceleration technique, named “proxy path tracing” (Figure 6.2(b)),
which replaces the detailed geometry of each grain with a statistical aggre-
gate, referred to as “grain scattering distribution function” (GSDF). Proxy
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path tracing is accurate enough to be used immediately on the first interaction
from the camera for distant views, and typically requires handling only the
very first grain using explicit path tracing for close-up views—significantly
reducing the current path tracing bottleneck in low-order scattering. We
embrace proxy path tracing as a component of rendering granular materials
and we propose a novel heuristic that automatically determines which light
paths require explicit path tracing of the first grain interaction based on an
error analysis of the GSDF.

6.1.3 Contribution Summary

Our contributions in this chapter are two-fold: (i) we extend shell tracing to
handle dynamic, heterogeneous continuous participating media using only a
single scene-independent precomputation, and (ii) we propose an automated
heuristic that selects between Müller’s proxy path tracing and explicit path
tracing at the first grain interaction along each simulated light path. The
end result is the first accelerated method that can handle heterogeneous,
dynamically changing mixtures of grains like that shown in Figure 6.1 without
requiring manual tuning or expensive precomputation.

6.2 Multiple Scattering in Continuous Volumes

Our goal in this section is to aggregate many light-particle interactions into
one step to accelerate the evaluation of high-order transport in high-albedo
RTE-based continuous volumes. We first briefly review the 4-D STFs by Lee
and O’Sullivan [2007] and then explain the modified 2-D STFs of Müller
[2016]. Lastly, we describe our novel approach to computing Müller’s STFs
densely over the RTE parameter space (σt, α, fp), allowing their use in any
scene without dedicated precomputation.

6.2.1 Definition of Shell Transport Functions

A shell transport function [Lee and O’Sullivan 2007; Moon et al. 2007] ag-
gregates volumetric light transport that exits the surface of a large spherical
region. More precisely, the STF captures the outgoing light field on the shell
surface due to an infinitesimal pencil beam emitter at the shell center. The
STF is ten-dimensional, being parameterized by the location xc and direction
ωc of the emitter, and by the position xs and direction ωs on the surface of the
shell (see Figure 6.3 for an illustration). Given a photon originating from this
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(a) Uncollided radiance
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(c) Multiple scattering

Figure 6.3: The parameterization of the shell transport function of Müller [2016]. The function is
split into non-scattering paths (a), single scattering paths (b) and multiple scattering paths (c).
The dashed arrow from xc to xs summarizes all scattering happening within the shell.

pencil beam emitter, the STF quantifies the PDF of the photon first exiting the
shell at xs in direction ωs:

fstf(xc, ωc → xs, ωs) = αsps(xs, ωs|xc, ωc) , (6.1)

where αs and ps(xs, ωs|xc, ωc) are the fraction and spatio-angular distribution
of light that reached the surface of the shell, respectively. We will refer to αs
as the shell albedo.

By assuming a homogeneous participating medium (i.e. optical properties
invariant with respect to position or direction), Lee and O’Sullivan [2007]
make the STF agnostic to the position and orientation of the emitter, and rota-
tionally symmetric about ωc. The function thus reduces to four dimensions
and can be conveniently parameterized by the radius r = ‖xs− xc‖, elevation
angle of the surface point θ = cos-1 (ωc · N(xs)

)
, and outgoing direction ωs;

see Figure 6.3 for an illustration. To precompute the STF, Lee and O’Sullivan
[2007] trace a large number of randomly seeded photons through an infinite
homogeneous participating medium and fit a piecewise-constant function to
the directional radiance profile of photons that reach a distance r from the
origin.

6.2.2 Appearance Parameterization

In order to efficiently support spatially varying appearance, we strive for
precomputing a general function, fitted only once, that can be used for arbitrary
RTE-based participating media parameterized by (σt, α, fp). We model this
function as piecewise constant and follow the fitting procedure described in
Section 5.3.
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Since the STF, as proposed by Lee and O’Sullivan [2007], is already 4-D,
adding the RTE parameters naively as extra dimensions would make precom-
putation and storage intractable. Fortunately, the extinction coefficient of the
medium can be implicitly accounted for by expressing the shell’s radius r in
units of mean free paths 1/σt. Furthermore, we can reduce the phase function
fp to a single parameter, the mean cosine g of scattered light in the Henyey-
Greenstein phase function [Henyey and Greenstein 1941]. The appearance of
any homogeneous participating medium can thus be classified using (α, g).
Adding these to the STF results in a total of only six dimensions, which, while
still being intractable to store densely, are close to a feasible number of dimen-
sions. Furtunately, Müller [2016] tackled this remaining issue by studying
the directional distribution of radiance exiting the shell and proposing a de-
composition that allows reducing the STF to only four remaining dimensions.
Under normal circumstances, fitting such a 4-D piecewise-constant function
at high resolution would still be expensive, but in this particular situation
we are able to leverage white Monte Carlo [Alerstam et al. 2008] to fit the
function for all possible values of α at once, effectively reducing the number
of to-be-fitted dimensions to only three.

6.2.3 Separation of Uncollided and Once-Scattered Radiance

Incorporating all modification described above, we define our STF as a sum
of uncollided, single-scattered, and multi-scattered components:

fstf(α, g, xc, ωc → xs, ωs) = α0
s(r) δ(ωc −ωs)

+ α1
s(α, g, r) p1

s (xs, ωs|g, r)
+ αm

s (α, g, r) pm
s (xs, ωs|α, g, r) , (6.2)

where the superscript “0, 1, m” mark quantities of the respective compo-
nents, p1

s (xs, ωs, r) is the distribution of single-scattered photons. The joint
PDF pm

s (xs, ωs|α, g, r) is defined as the product of positional and directional
components:

pm
s (xs, ωs|α, g, r) = pm,x

s (θ|α, g, r) pm,ω
s (ωs|α, g, r, θ) . (6.3)

Separating out the uncollided and single-scattered radiance, and integrat-
ing them on the fly using Monte Carlo estimators, results in a significantly
smoother function to be fitted. We also make use of the observation that the
multi-scattering lobe pm,ω

s can be approximated well by a cosine-weighted
hemispherical distribution oriented about normal N(xs) [Müller 2016]; Fig-
ure 6.5 demonstrates the approximation error. This reduces the pm

s to four
dimensions (α, g, r, θ).
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Table 6.1: STF precomputation discretization spacing, range, and resolution of the four tabulated
dimensions. We only precompute a given radius r if the corresponding shell albedo (αs) is larger
than 0.5. Furthermore, we add an additional bin for α = 1.

Dim. Domain Spacing Resolution

g ∈ [−1, 1] linear in g 200 bins
α ∈ [0, 0.999] linear in log 1

1−α 1000 bins
r ∈ [1, 256] (αs > 0.5) linear in log r ≤ 9 bins
θ ∈ [0, π] linear in cos θ 45 bins

6.2.4 Precomputation of the STF Database

To construct the STF database pm
s , we discretize its individual components

according to Table 6.1 and populate it via white Monte Carlo [Alerstam
et al. 2008] in the following way. For each value of the mean cosine gj,
we create an infinite homogeneous volume with the corresponding HG
phase function and α = 1 (hence the “white” in “white Monte Carlo”).

++Hi[2]
++Hj[1]

++H0[0]

θ0

θi
θj

Figure 6.4: Shell histograms.

We trace N photons and first fit the shell
with the smallest radius. The radius for
the k-th shell is computed as rk = 2k−1

mean free paths; we start with k = 1.
For each spatial bin θl, we construct a
histogram Hl, where the b-th bin counts
photons exiting the shell after exactly b
bounces; see Figure 6.4. This allows com-
puting the multi-scattered radiance for
any value of the discretized albedo αi as

pm,x
s (θl|αi, gj, rk) =

1
N

|Hl |

∑
b=2

αb
i Hl[b] . (6.4)

We also use the histogram to compute
the albedos of the individual components as

α0
s(rk) = exp(−rk) , (6.5)

α1
s(αi, gj, rk) =

1
N ∑

l
αiHl[1] , (6.6)

αm
s (αi, gj, rk) =

1
N ∑

l

|Hl |

∑
b=2

αb
i Hl[b] . (6.7)

Equations 6.4–6.7 express all terms for a shell of radius rk mean free paths.
We use the smaller shells to accelerate tracing of paths for larger shells; this

116



6.2 Multiple Scattering in Continuous Volumes

significantly reduces the number of traced path segments, cutting down
the precomputation of the entire STF database to around 10 hours on our
workstation running two Intel Xeon E5-2680v3 CPUs (24 cores in total). With
our discretization defined in Table 6.1 stored as an array of 4 byte floating-
point numbers, the entire STF database occupies roughly 400 MB of memory
in uncompressed form. We did not attempt to reduce the database’s memory
footprint, and we chose its resolution conservatively.

6.2.5 Shell Tracing with the STF Database

Homogeneous Media. Suppose a light path within a RTE-based partici-
pating medium is to be continued from vertex xc in direction ωc. We first look
up the STF with the best-matching g and α parameters from our database.
Then, we use the largest radial component of this STF that fits inside the mesh
to advance the light path. Next, we randomly pick one of the components
proportional to their respective αs. If the uncollided component is chosen, we
simply continue the path forward in r mean free path units, i.e. xs = xc + rωc,
ωs = ωc. For single scattering, we first sample the free-flight distance to
the one scattering location, x, then generate direction ωs by phase function
importance sampling, and set xs to the shell surface point seen from x in
ωs. To sample multiple scattering, we sample xs on the surface of the shell
according to the fitted piecewise-constant distribution pm,x

s and choose ωs by
cosine-weighted sampling of the hemisphere at xs.

Figure 6.5 shows the Lucy statue filled with a forward-scattering high-albedo
continuous volume. The renderings use various instances of the STFs to
compute high-order transport and demonstrate the error of the multiple
approximations we use. In order to evaluate our method on varying medium
densities, we show the statue at four different sizes: 10 cm, 1 m, 10 m, and
100 m large. We compare the VPT ground truth to:1

• STFs with a cosine hemisphere as their directional component,

• STFs with our additional assumption that the volume has a HG phase
function,

• STFs additionally interpolated logarithmically in size such that they
tightly fit into the volume boundary,

• the diffusion approximation used by Meng et al. [2015].

1The full 4-D STFs as described by Lee and O’Sullivan [2007] are an exact solution up to a
quantization error, and are thus not listed in Figure 6.5.
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Reference Approximate Solution Approximation Error (RSE×12)
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Figure 6.5: Error introduced by the STF approximations. The LUCY statue is filled with a
forward-scattering homogeneous continuous medium. The first column shows volumetrically path
traced (VPT) reference images, which can be matched perfectly by 4-D STF. The following three
columns demonstrate the visual impact of each approximation: 2-D STFs approximate pm,ω

s as a
cosine-weighted hemispherical distribution [Müller 2016], using the HG phase function reduces
the dimensionality of continuous-volume-appearance space, and interpolation between tabulated
STFs allows fitting STFs tightly into the mesh. The last column shows the diffusion approximation
(DA) employed by Meng et al. [2015] to illustrate the increased accuracy of our proposed solution.
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The results suggest that the cosine hemisphere approximation introduces
minimum error compared to diffusion while maintaining a similar rendering
speed. The next step—introducing the HG phase assumption—again adds
little error, but permits the precomputation of STFs over a dense appearance
space, which can be re-used for all possible sets of RTE parameters. However,
the lookups of the correct STF from this database during path tracing end up
increasing render times slightly. With our last approximation—interpolation
of STFs in order to achieve tight fits in the bounding mesh—we introduce
further error, but gain speed again.

Heterogeneous Media. In heterogeneous media, we choose an STF the
same way as in homogeneous media, except that we use the RTE parameters
at the current path vertex. The difference is in choosing the size (radius) of the
STF. We tested two techniques that are inspired by Müller [2016]: greedy shell
selection, which ignores the heterogeneity and selects the shell respecting only
the boundary of the assembly (like in homogeneous media), and conservative
shell selection, limiting the shell size to a locally homogeneous region. Müller’s
conservative shell selection is only designed for binary heterogeneous media
where a clear boundary between piecewise-homogeneous regions exists. In
the following, we present a more general approach that is able to identify
locally homogeneous regions in arbitrary heterogeneous media.

Conservative STF Selection. When conservatively selecting STF sizes, we
limit the amount of variation of σt and α within the volume of the selected
STF. More specifically, we choose an upper bound on the STF radius r by
enforcing the following constraints on all locations x inside the STF:∣∣∣∣log2

(
σt(x)
σt(xc)

)∣∣∣∣ < 0.5 , (6.8)∣∣∣∣log2

(
1− α(x) + ε

1− α(xc) + ε

)∣∣∣∣ < 0.5 . (6.9)

Constraint (6.8) is motivated by the exponential nature of transmittance
τ(σt, t) = σte−σtt. Constraint (6.9) is based on the observation that the diffuse
reflectance of a continuous volume is roughly proportional to log( 1

1−α ) up
to values very close to 1, at which point the relation becomes sublinear. We
set ε = 0.001 in order to avoid the singularity at α = 1, and to capture the
sublinear aspect.

Figure 6.6 shows a comparison of the greedy and conservative shell selec-
tion on a heterogeneous wedge with a variety of optical configurations. The
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Figure 6.6: Conservative (first row) and greedy (second row) usage of STFs in a wedge with
decreasing thickness (from left to right). Heterogeneity is modeled using a Perlin noise with a
hard (top third), soft (middle third), and smooth (bottom third) transition. Relative squared error
(middle left column) shows that using ST greedily, not respecting the heterogeneity, leads to larger
error than a conservative algorithm in optically thin media. On the other hand, it provides greater
speedup as larger portions of paths are constructed using STFs; see the right column visualizing the
energy computed using STFs.

difference images illustrate, how greedy shell tracing introduces additional
error when compared to conservative shell tracing, i.e. respecting the het-
erogeneity. This effect is especially pronounced in optically thin media. In
optically thick media, however, there is relatively small difference between
greedy and conservative shell tracing. Since the primary benefit of shell
tracing is the acceleration of high-order scattering in optically thick media,
we found little merit in using conservative shells and instead select shells
greedily in all other renderings in this chapter. Nevertheless, we expect that
in heterogeneous media with higher spatial density variation as found in our
scenes (e.g. an avalanche) the bias from greedy shell selection may increase,
in which case conservative selection could offer a superior trade-off between
performance and error.
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6.3 Granular Materials

To accelerate the simulation of low-order scattering in granular materials,
Müller [2016] propose to approximate the individual grains using tight spher-
ical proxies with largely identical internal transport; up to the accuracy of the
so-called “grain scattering distribution function” (GSDF), denoted fg, which
models the grain’s appearance. The GSDF is effectively a BSSRDF [Nicode-
mus et al. 1992] that relates the incident radiance to differential outgoing
radiance on the surface of the proxy sphere:

fg(xi, ωi → xo, ωo) =
dLo(xo, ωo)

Li(xi, ωi)dΩ(xi)dΩ(ωi)
. (6.10)

The differential of xi is taken with respect to the solid-angle measure because
the GSDF is defined in units of the grain size, causing xi to always reside on
the unit sphere S2. We will now briefly introduce Müller’s GSDF, followed
by our automatic switching criterion between explicit path tracing and proxy
path tracing.

6.3.1 Definition of the GSDF

The GSDF is defined as the sum of two terms, one for uncollided-flux (i.e.
light that hits the grain’s bounding sphere, but misses the grain itself—a delta
component; superscript 0) and one for scattered transport (superscript +):

fg(xi, ωi → xo, ωo) = α0
g(xo, ωo) δ(ωi + ωo)

+ α+g (xo, ωo) pg(xi, ωi|xo, ωo) . (6.11)

The PDF pg(xi, ωi|xo, ωo) describes the distribution of spatio-angular loca-
tions of incident radiance with respect to a given location of the outgoing
radiance. In other words, pg represents the shape of the incident light field
contributing to a given coordinate (xo, ωo) in the outgoing light field. Unfor-
tunately, pg is 8-D in its full form, making tabulation of the GSDF for arbitrary
grains impractical. To this end, Müller introduced a number of assumptions
that reduce the 8-D space to two independent 3-D subspaces.

Random-Orientation Assumption. First, Müller [2016] assumes that each
light path interacting with a proxy experiences the grain under a different
random orientation. The blurry visual effect of this is best understood by
looking at the middle row in Figure 6.7.
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Figure 6.7: Appearance of various grains (top row) and their corresponding GSDFs (bottom
row). The middle row shows the impact of the random-orientation assumption without assuming
separability of the directional and spatial components of the GSDF.

Mathematically, the approximation averages the grain appearance over all
sphere surface points xo and rotations about their respective normal N(xo).
Thus, the GSDF no longer depends on xo and the azimuthal component γo of
ωo; see Figure 6.8 for an illustration. In terms of the outgoing light field, the
GSDF varies only in the inclination angle βo = cos−1 (ωo · N(xo)

)
.

fg(xi, ωi → xo, ωo) ≈ α0
g(βo) δ(ωi + ωo)

+ α+g (βo) pg(xi, ωi|βo) . (6.12)

The distribution of scattered radiance pg(xi, ωi|βo) is thereby reduced to
5-dimensions, which is still too much. Müller [2016] further reduces the
dimensionality by decoupling the spatial and angular dimensions of the
incident light field and tabulating them independently.

Separability Assumption. In order to decouple the spatial and angular
components, Müller [2016] assumes that the distribution of scattered radiance
is separable, that is:

pg(xi, ωi|βo) ≈ px
g(xi|βo) pω

g (ωi|βo) . (6.13)

Introducing the separability is motivated by the fact that grains are relatively
small and most incident illumination can often be assumed as purely direc-
tional, i.e. Li(xi, ωi) = Lω

i (ωi). Under directional illumination, the reflection
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equation simplifies, allowing pre-integration over the spatial domain:

Lo(xo, ωo) =
∫
S2

∫
S2

fg(xi, ωi → xo, ωo) Li(xi, ωi)dΩ(xi)dΩ(ωi)

=
∫
S2

Lω
i (ωi)

∫
S2

fg(xi, ωi → xo, ωo)dΩ(xi)dΩ(ωi)

=
∫
S2

Lω
i (ωi) f̂g(ωi → xo, ωo)dΩ(ωi) , (6.14)

where the distribution of scattered radiance from Equation (6.12) can be
represented, without changing the reflection integral, by a product of the
directional component pω

g (ωi|βo) and a constant. Evaluating the reflection
equation thus requires only a 3-dimensional precomputation.

In reality, the incident illumination is not perfectly directional, e.g. light
arriving from nearby grains. Müller [2016] thus does not assume perfectly
directional lighting, but only employs the separability assumption, i.e. Müller
replaces the aforementioned constant by a 3-dimensional spatial distribution
px

g(xi|βo), as shown in Equation (6.13).

Figure 6.7 shows the type of blurring that the random-orientation and sep-
arability assumptions induce. While the first is responsible for the loss of
geometric detail, the second assumption may result in further blurring of
details seen through the grain (see the bottom image of the glass sphere in
Figure 6.7). Despite the introduced approximations, the reduced-dimensional
GSDF still preserves most of the important directional effects, such as local
brightening and darkening due to reflection and refraction that are important
to preserve characteristic visual features, such as sheen.

Minimal Approximation Impact. To ensure that the reduced-dimensional
GSDF does not impair visual quality, Müller uses proxies only after a hand-
tuned number of full-detail grain interactions. We propose to replace this
hand-tuned parameter with an automatic heuristic.

6.3.2 Directional Approximation Error of the GSDF

Our goal is to automatically decide in which situations the GSDF provides a
sufficiently good approximation, and when to employ explicit path tracing,
e.g. to resolve glints. For this purpose, we estimate the GSDF’s approximation
error in the directional domain (i.e. when averaging grain appearances over
all incident and outgoing path locations xi and xo) during its precomputation
as:

e fg(ωi, ωo) =
∣∣ fg(ωi→ωo)− fg(βi)

∣∣ . (6.15)
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Figure 6.8: The reduced-dimensional GSDF of Müller [2016] preserves the inclination angle βo

of light paths (the remaining dimensions of the outgoing light field are neglected), and decomposes
the spatial xi and directional ωi components of the incident light field.

For a given pair of incident and outgoing directions, this formula captures the
absolute difference between the spatially averaged ground truth 8-D GSDF
fg(ωi→ωo), and the spatially averaged approximate 3-D GSDF fg(βi). Note,
that spatial averaging collapses the 3-D GSDF into a rotationally symmet-
ric phase function, depending only on a single one-dimensional parameter
βi = cos−1(−ωi ·ωo).

To illustrate the meaning behind the 4-D error function e fg(ωi, ωo), we visual-
ize it in Figure 6.9 for the “white sugar” grain of Figure 6.7. The figure shows
polar slices through the error function at 25 fixed outgoing directions ωo,
parameterized by ωi. Inspecting the figure shows, that it is primarily high-
frequency detail (i.e. the glints that we want to detect) which is lost by the
3-D GSDF approximation. To confirm this observation, we show additional
visualizations of the errors of the “glass sphere”, “brown sand”, “snowflake”,
and “cinnamon” grains in Section B.1.

In order to robustly limit the error during rendering, we therefore use the
maximum approximation error to decide when to switch to proxy path tracing

E fg = max
ωi,ωo

e fg(ωi, ωo) . (6.16)

This error directly corresponds to the worst-case appearance difference be-
tween a grain and its corresponding 3-D GSDF. The next section details how
this error is used to choose between explicit and proxy path tracing.

6.3.3 Choice Between Explicit and Proxy Path Tracing

When a ray intersects the first grain bounding sphere, we decide whether to
instantiate the full geometry (EPT) or its corresponding proxy (PPT) depend-
ing on how close the grain is to the camera and how good of an approximation
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Figure 6.9: Front-facing directional GSDF approximation error e fg(ωi, ωo) on sugar grains.
We visualize the 4-dimensional error function by plotting slices through cos βo (vertical) and γo

(horizontal). The individual circular heatmaps encode sin βi as the distance from their center and
γi as their rotational component.
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Figure 6.10: We start building paths by (optionally) explicitly path tracing (EPT) to account for
fine detail of grains and resolve high-frequency effects, e.g. glints. We then switch to the proxy
representation by Müller [2016] which leverages GSDFs to accelerate grain-internal transport. To
quickly simulate long paths, we employ shell tracing using our extension to STFs. Whenever the
smallest shell does not fit inside the boundary of the assembly, we employ volumetric path tracing.

our GSDF is for that particular grain’s type:

instantiate

{
explicit grain if Ωg > 4Ωpx or E fg > 0.1 ,

proxy otherwise ,

where Ωg is the solid angle occupied by the grain’s bounding sphere when
viewed from the camera, and Ωpx is approximately the solid angle of the
corresponding pixel. This allows our method to switch to PPT immediately
for distant grains that are well approximated by their proxies. Furthermore,
this criterion is only used for the first grain interaction of each light path.
After interacting with a grain or its proxy once, further interactions will no
longer instantiate explicit grains.

6.3.4 Full Grain Rendering Algorithm

Our rendering algorithm is a straightforward extension of the algorithm
by Müller [2016]. It is based on standard unidirectional path-tracing. Rays
originating from the camera traverse through the scene and query for the
nearest grain bounding sphere intersection. When a ray intersects the first
grain bounding sphere, we decide whether to instantiate the full geometry
(EPT) or its corresponding proxy (PPT) based on our automated criterion.
The following bounding sphere interactions are all resolved via proxy path
tracing until the path reaches deeper than 1 mean-free-path (i.e. 1/σt) into the
continuous approximation of the granular medium [Meng et al. 2015; Müller
2016], at which point we switch to our extended shell tracing algorithm.
After having begun with shell tracing, we must resort to volumetric path
tracing near the boundary, where the smallest fitted shell no longer fits. This
algorithm is illustrated in Figure 6.10.
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6.4 Implementation

We implemented our method as a forward path-tracer in the open source Mit-
suba renderer [Jakob 2010]. Like Müller [2016] we allow grains to be loaded
explicitly—e.g. from a simulation—in addition to procedural instantiation.
Our only two constraints on the grains are that they have to be oriented
uniformly at random and that their bounding spheres must not overlap. Fur-
thermore, we use the optimized procedural grain instantiation as described
by Müller [2016] in order to accelerate ray-grain intersection queries. When
comparing our method to the method of Meng et al., we use this optimization
in both cases, such that our method does not have an unfair advantage that
stems from implementation details.

Multi-channel rendering. STFs introduce complications in multi-channel
rendering. Since we compute STFs at discrete radii, which are multiples of
the mean-free-path of the medium, the sizes of shells in each channel do
not match up if the extinction of the medium varies across channels. This
means that we cannot trivially evaluate STFs across channels. We solve this
problem by approximating STFs of arbitrary radii by linearly interpolating
precomputed STFs with neighboring radii in logarithmic space. For example,
if fstf(r1) and fstf(r2) were precomputed, and r1 ≤ r < r2, then

fstf(r) ≈ (1− wr) fstf(r1) + wr fstf(r2) , (6.17)

wr =
log(r)− log(r1)

log(r2)− log(r1)
. (6.18)

The usage of the logarithmic space is motivated by the exponential nature of
continuous media, and by empirical experiments, e.g. as shown in Figure 6.5.

6.5 Results

In this section we compare our grainular-media-rendering method to refer-
ence images rendered with EPT and the algorithm of Meng et al. [2015]. To
best illustrate the bias each method introduces we present results that are as
converged as possible. Unfortunately, some reference images converge ex-
tremely slowly (e.g. the SNOWMAN reference in Figure 6.12 took 13 core-years
to compute) and thus still exhibit residual noise. Due to the varying degrees
of convergence across images, we do not report absolute rendering times, but
instead use time to unit variance (TTUV). Additionally, we report mean rela-
tive squared error (MRSE). A comprehensive summary of the aforementioned
metrics on the scenes presented in this chapter can be found in Table 6.2.
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Table 6.2: Time to unit variance (TTUV) and mean relative squared error (MRSE) for each scene
presented in this chapter. We provide numbers for a reference solution, the method by Meng et al.
[2015], and our method.
Scene Resolution Method TTUV (speedup) MRSE

DUNES 2.07 MP
Reference (EPT) 8.74e-1 hrs —
Ours (EPT+PPT+ST) 6.66e-2 hrs (13.1×) 7.25e-4
Meng et al. (EPT+VPT+DA) 3.28e-1 hrs (2.53×) 7.82e-3

SNOWMAN 1.04 MP
Reference (EPT) 1.67e-0 hrs —
Ours (EPT+PPT+ST) 2.93e-4 hrs (5699×) 1.60e-4
Meng et al. (EPT+VPT+DA) 1.10e-2 hrs (152.×) 2.93e-3

TWO PILES 1.15 MP
Reference (EPT) 2.97e-1 hrs —
Ours (EPT+PPT+ST) 7.17e-2 hrs (4.14×) 7.86e-4
Meng et al. (EPT+VPT) 8.30e-2 hrs (3.58×) 2.60e-3

BOWL (frame 100) 1.31 MP
Reference (EPT) 4.47e-3 hrs —
Ours (EPT+PPT+ST) 7.88e-4 hrs (5.67×) 1.11e-4
Meng et al. (EPT+VPT) 9.36e-4 hrs (4.78×) 5.01e-4

BOWL (frame 1000) 1.31 MP
Reference (EPT) 2.17e-3 hrs —
Ours (EPT+PPT+ST) 7.79e-4 hrs (2.78×) 1.19e-4
Meng et al. (EPT+VPT) 7.27e-4 hrs (2.98×) 5.53e-4

LUCY (1m large) 0.52 MP
Reference (VPT) 1.61e-3 hrs —
Ours (VPT+ST) 2.31e-4 hrs (6.96×) 1.64e-4
Meng et al. (VPT+DA) 1.93e-4 hrs (8.35×) 1.25e-3

LUCY (100m large) 0.52 MP
Reference (VPT) 3.04e-3 hrs —
Ours (VPT+ST) 1.61e-4 hrs (18.9×) 2.14e-4
Meng et al. (VPT+DA) 2.21e-4 hrs (13.8×) 1.19e-3

Time to Unit Variance. We define TTUV as the product of the time T it
takes to render an image on a single CPU core and its mean pixel variance.
With the TTUV it becomes trivial to compute the rendering time required for
achieving a desired variance (dividing it by the desired variance) and vice
versa, the variance achieved after rendering for a desired time (dividing it by
the desired time).

Mean Relative Squared Error. The MRSE is defined as the mean
1
N ∑N

i=1 (vi − v̂i)
2/(v̂2

i + ε) where pi and p̂i are the values of the i-th ap-
proximate and reference pixels, respectively, and ε is set to 0.01 in order to not
over-emphasize very dark pixels and to prevent division by 0. We downscale
images by a factor of 4 in both width and height via bilinear filtering before
computing MRSE to reduce the influence of residual Monte Carlo noise in
the reference image.
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EPT+VPT*+DA (Meng) EPT (Reference) EPT+PPT+ST (Ours)
TTUV: 3.28e-1 hrs TTUV: 8.74e-1 hrs TTUV: 6.66e-2 hrs
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Figure 6.11: The DUNES scene is a static desert landscape consisting of quadrillions of procedu-
rally instantiated polydisperse sand grains with average radius of 1 mm. We render the scene with
the method of Meng et al., with explicit path tracing (EPT), and with our method. Our technique
is 13× faster than EPT, whereas the method of Meng et al. is only 2.5× faster. The images on the
right depict contributions of EPT and approximations used by each method, per-pixel visualizations
of TTUV, and the switching criterion for our method (black: EPT, white: PPT on the first bounce).

6.5.1 Low-Order Light Transport

The DUNES scene consists of quadrillions of procedurally instantiated, poly-
disperse sand grains using the tile-based approach by Meng et al. [2015].
Each tile was generated by placing grains of normally-distributed sizes using
a dart-throwing algorithm. The resulting distribution of grain radii has a
the mean of 0.28 mm, standard deviation of 0.19 mm, and the minimum and
maximum of 0.023 mm and 1 mm, respectively.

Each grain has a dielectric boundary and is filled with one of four distinct
continuous homogeneous media. These grain types are uniformly distributed
throughout the entire scene. In Figure 6.11 we show renderings of the DUNES

scene with just EPT, with the method by Meng et al. [2015], and with our
method. The scene showcases both the high-frequency detail of grains close
to the camera and the large-scale appearance of grains at a large distance. For
a reference of scale, the dinosaur skeleton is about 12 m long, and the large
dunes in the distance are circa 1 km away.

Both alternatives to EPT are close to the ground truth, but the previous
approach produces visibly darker colors. In terms of performance, however,
our method converges 5× faster than the algorithm by Meng et al., and 13×
faster than EPT. In fact, most of the variance in our method comes from the
region in the bottom-right where the individual grains are close and we can
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Reference Approximate Solution Approximation Error (RSE×8)

EPT EPT+PPT+ST (Ours) EPT+VPT+DA (Meng) EPT+PPT+ST (Ours) EPT+VPT+DA (Meng)

TTUV: 1.67e-0 hrs TTUV: 2.93e-4 hrs TTUV: 1.10e-2 hrs MRSE: 1.60e-4 MRSE: 2.93e-3

Figure 6.12: We render the SNOWMAN scene by Meng et al. [2015] using their and our full
method. Our method achieves significantly faster convergence (37.5×), because, in contrast, it can
skip the expensive EPT prefix using our automatic switching criterion. Additionally, ST introduces
less bias than the diffusion approximation of Meng et al. [2015], which we quantify as MRSE and
visualize on the right.

not use PPT from the beginning. When cropping away the bottom region of
the image, or when neglecting glints, our method becomes about 80× faster
than the method by Meng et al. Note, that even though the method of Müller
[2016] could also accelerate rendering of this scene, it can not adaptively use
EPT for the nearby grains and PPT for the far-away grains, resulting in either
worse performance or in increased bias in the bottom region of the image.

6.5.2 High-Order Light Transport

The SNOWMAN scene by Meng et al. [2015] contains a 1 m tall snowman,
made up from a homogeneous mixture of procedural mono-disperse snow
grains, which have a radius of 0.1 mm. We render this scene in Figure 6.12
using our full method (EPT+PPT+ST) and the full method of Meng et al.
[2015] (EPT+VPT+DA). Our method is able to render the scene 37.5× faster
thanks to the automatic switching criterion that skips EPT and immediately
employs PPT. The method of Müller [2016], although being able to achieve a
similar speed-up, would require manually specifying the choice of skipping
EPT in the scene configuration. We also compare the error introduced by
Meng et al. [2015] and our method versus an explicitly path traced reference.
Our method introduces over 18× less MRSE, which can be mostly attributed
to the error-prone diffusion approximation.

6.5.3 Heterogeneity

The TWO PILES scene shows piles of blue and pink salt. The grains in each
pile are polydisperse and distributed heterogeneously in layers based on a
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PPT
TTUV: 1.04e-2 hrs

EPT
TTUV: 2.97e-1 hrs

EPT+PPT+ST
TTUV: 7.17e-2 hrs

EP
T

PP
T

ST

Figure 6.13: The TWO PILES scene consists of two heterogeneous piles made out of polydisperse
salt grains. PPT (top) does not capture glints and achieves a speedup of 28.6× compared to the
EPT reference. Our full method (EPT+PPT+STF) has an overall lower bias than PPT and is able
to capture glints, with a smaller speedup of 4.14× over the EPT reference. On the right, we break
down of the individual components of our method. EPT contributes mostly glints, PPT preserves
most of the residual high-frequency granular structure, and ST captures low-frequency, high-order
light transport.

simulation which we performed with Houdini. The resulting distribution of
grain radii has a the mean of 1.31 mm, standard deviation of 0.33 mm, and
the minimum and maximum of 0.44 mm and 2.97 mm, respectively.

This scene demonstrates simultaneous usage of both of our novel features,
which the previous state of the art does not support: automatic selection be-
tween EPT and PPT, and acceleration of high-order light transport in general
heterogeneous mixtures. Note, that the method of Müller [2016] does support
heterogeneous ST at the cost of a per-scene precomputation when only a
small number of possible local grain mixtures exists. However, in scenes
such as this one, there exist too many local grain mixtures to exhaustively
precompute.

Figure 6.13 compares the convergence rates and appearances of EPT, PPT, and
our full method (EPT+PPT+ST). PPT alone is 28.6× faster than EPT, whereas
our full method only achieves a 4.14× speed improvement.

6.6 Discussion and Future Work

Variance and Per-sample Cost. The time per sample of our full method is
only at most 5× larger than the per-sample time of rendering corresponding
assemblies as opaque diffuse surfaces, suggesting there is only a relatively
small potential for further optimizing our implementation. The per-sample
variance of our method, however, is far higher than that of a diffuse surface.
Future work should thus focus on better importance sampling techniques.
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Reciprocity. Since we target forward path-tracing, we purposely did not
enforce Helmholtz reciprocity to maximize the performance by retaining only
the most visually salient features. As such, some parts of our tracing pipeline,
e.g. the GSDFs, as well as the switching criteria and the order of individual
accelerators would have to be revisited when incorporated into bidirectional
algorithms.

Simulating Orientation of Grains. Currently, all dynamic simulations of
granular materials that we know of do not simulate the rotational dynamics
of grains. In our experience, however, the dynamic behavior of grain orien-
tations is in fact quite important for low-order detail to look convincingly
realistic. In the BOWL scene we hallucinate such rotations based on the abso-
lute movement of grains, which yields only moderate realism. Ideally, the
input simulation data would include physically plausible grain orientations.

Beyond Non-overlapping Bounding Spheres. By modeling grains
within non-overlapping bounding spheres grains cannot be packed tighter
than spheres. This assumption is not a big problem for approximately
spherical grains, but it breaks down for anisotropic grains such as rice.
Without the assumption of non-overlapping bounding spheres, neighboring
grains influence the orientations of each other, breaking our assumption of
randomly oriented grains.
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C H A P T E R 7
Practical Path Guiding

This chapter is based on the following publication by Müller et al. [2017]:

Practical Path Guiding for Efficient Light-Transport Simulation
Thomas Müller, Markus Gross, Jan Novák
Computer Graphics Forum (Proc. EGSR), vol. 36, no. 4, pp. 91—100, Jun 2017

7.1 Overview

In this chapter, we present a robust, unbiased technique for importance
sampling the rendering equation in a data-driven manner. This type of
importance sampling has recently found renewed interest [Vorba et al. 2014;
Vorba and Křivánek 2016; Herholz et al. 2016, 2018] and was dubbed “path
guiding” due to systematically leading path-tracing algorithms towards
regions of large contribution.

Like previous approaches, our algorithm learns an approximate representa-
tion of the 5-dimensional incident radiance field Li(x, ω) and uses it to guide
paths towards brightly lit scene regions. Unlike previous work, however,
we perform this step on the fly during rendering with the goal of having
the renderer produce low-variance images as quickly as possible after start
up. In this context, we propose a principled method for combining learning
and rendering computations: we partition the traced paths into subsets with
geometrically growing power-of-two cardinalities and use only the last subset
to synthesize the displayed image. This scheme prevents initial high-variance
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Vorba et al. Reference PPG (Ours)

MSE: 0.017 MSE: 0.018

Figure 7.1: Our method (PPG) allows efficient guiding of path-tracing algorithms as demonstrated
in the TORUS scene. We compare equal-time (4.2 min) renderings of PPG (right) to previous work
on path guiding [Vorba et al. 2014; Vorba and Křivánek 2016] (left). PPG automatically estimates
how much training time is optimal, displays a rendering preview during training, and requires no
parameter tuning. Despite being fully unidirectional, PPG achieves similar MSE values compared
to Vorba et al.’s method, which trains bidirectionally.

estimates (due to the learned distributions being less accurate in the begin-
ning) from “polluting” the statistics of the final image. The power-of-two
scheme ensures that at least half of the total computation time is used to
synthesize the final image. We additionally derive a provably optimal (under
mild assumptions) scheme for allocating a larger fraction of our compute
budget to the final image by automatically detecting when the quality of our
learned incident radiance approximation stops improving.

For approximating the spatio-directional incident radiance field, we intro-
duce a hierarchical tree data structure, which we call spatio-directional-tree
(dubbed SD-tree). It consists of an upper part—a binary tree that partitions
the 3-dimensional spatial domain—and a lower part—a quadtree that parti-
tions the 2-dimensional directional domain. The SD-tree models the incident
radiance as a piecewise-constant function as described in Section 5.3. We
design the construction and refinement rules of the SD-tree in such a manner
that it works robustly and automatically throughout a multitude of scenes
with difficult light-transport characteristics. Due to its simple tree structure,
the SD-tree lends itself to efficient importance sampling and refinement such
that its usage adds negligible computational overhead over other common
rendering operations such as ray casting.

Our technique compares favorably on difficult-to-render scenes against a
multitude of previous techniques: stochastic progressive photon mapping
(SPPM) [Hachisuka and Jensen 2009], manifold exploration metropolis light
transport (MEMLT) [Jakob and Marschner 2012], bidirectional path trac-
ing [Veach and Guibas 1994; Lafortune and Willems 1993], and previous
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work on incident-radiance-based path guiding [Vorba et al. 2014; Vorba and
Křivánek 2016].

All our design decisions can be traced back to the goal of producing a robust
path-guiding algorithm that does not require any tuning of its hyperparam-
eters1, hopefully making the algorithm suitable for movie production envi-
ronments. For this reason, we dub our technique “Practical Path Guiding”,
abbreviated as PPG.

Our contributions in this chapter can be summarized as

• an on-line path tracing algorithm that learns the incident radiance
field on the fly during rendering,

• a principled method for combining learning and rendering computa-
tions to achieve optimal variance,

• and a spatiodirectional data structure—the SD-tree—designed for
robust adaptation to the incident radiance and for high efficiency.

7.2 Problem Statement and Related Work

Recall, that the amount of radiance Lo(x, ωo) leaving point x in direction ωo
is quantified by the rendering equation [Kajiya 1986] as previously discussed
in Section 4.3.1

Lo(x, ωo) = Le(x, ωo) +
∫
S2

Li(x, ωi) fs(x, ωi→ωo) |cos γi|dΩ(ωi)︸ ︷︷ ︸
Ls(x,ωo)

, (7.1)

where Le(x, ωo) is radiance emitted from x in direction ωo, Li(x, ωi) is incident
radiance at x from direction ωi, and fs is the BSDF. Further recall, that uni-
directional path tracing algorithms estimate the scattering integral Ls(x, ωo)
numerically via Monte Carlo integration

〈
Ls(x, ωo)

〉
=

Li(x, ωi) fs(x, ωi→ωo) | cos γi|
q(ωi | x, ωo)

,

In this chapter we address the problem of reducing the variance of the Monte
Carlo estimator 〈Ls〉 via importance sampling. The ultimate goal of im-
portance sampling is for q to be proportional to the integrand—the product

1Although we never observed the SD-tree occupying more than 20 MB in practice, we allow
limiting its maximum memory footprint to a chosen amount, which could be considered a
hyperparameter.

135



Practical Path Guiding

Li(x, ωi) fs(x, ωi→ωo) |cos γi|—which results in the estimator having a vari-
ance of zero. We refer back to Section 3.3.2 for more detail.

In the general case, however, being perfectly proportional to the integrand is
not practical because it would require knowing the integral we would like to
estimate beforehand. A common strategy is to break the integrand down into
individual components and to devise sampling strategies for each of them.
They can later be combined again to form a holistic sampling strategy that is
approximately proportional to the integrand.

Since sampling proportional to just the BSDF fs and the foreshortening term
cos γi is often possible we focus on the usually more difficult problem of sam-
pling as-proportional-as-possible to Li. BSDF/foreshortening sampling and
approximate sampling from Li can then be combined via multiple importance
sampling [Veach and Guibas 1995] as previously explained in Section 3.3.4
or—even better if it is possible—by sampling from their product.

7.2.1 Prior Work on Path Guiding

The key idea behind path guiding techniques is to reuse information from
an a-priori traced set of paths to devise an informed importance sampling
strategy for paths that are traced later on. Jensen [1995] and Lafortune and
Willems [1995] first introduced the concept of guiding camera paths. Jensen
[1995] populates the scene with sampling points, each equipped with a hemi-
spherical histogram from an a-priori traced set of photons. The histograms
are then used to sample directions when building camera paths. Lafortune
and Willems [1995] propose to rasterize incident radiance in a 5-dimensional
tree for later usage as a control variate and for importance sampling. Budge et
al. [2008] apply a specialized form of Jensen’s technique to improve sampling
of caustics and Hey and Purgathofer [2002] recognize that regular histograms
are ill-suited for this type of density estimation and instead propose to av-
erage cones of adaptive width centered around the incident directions of
photons. What all these approaches have in common is that they precom-
pute the 5-dimensional incident radiance field in a single pre-pass prior to
rendering.

Recently, Vorba et al. [2014] proposed to instead use an iterative reinforcement-
learning-style algorithm, the key idea being that the precomputed radiance
field can not only reduce the variance when rendering the final image, but
also when computing another, more refined version of the radiance field.
Performing this type of iterative scheme multiple times in a row allowed
them to obtain vastly superior approximations of the incident radiance over
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previous work. Their parametrization of incident radiance is a parametric
gaussian-mixture model and they present a maximum a-posteriori scheme
for fitting them to Monte Carlo estimates of incident radiance in an on-line
fashion. Their follow-up work added adjoint-based Russian roulette [Vorba
and Křivánek 2016] to the method.

Dahm and Keller [2018] take the concept of reinforcement learning further
and combine rendering and training into the same algorithm rather than
performing multiple training passes prior to rendering. They leverage sim-
ilarities between the rendering equation and Q-learning to learn incident
radiance in a more efficient fashion, albeit at the cost of additional bias in the
learned distributions.

Only few attempts have been made to importance sample according to the
full 7-dimensional product of incident radiance and the BSDF. One approach
is building a discrete representation of the product on the fly [Lafortune
and Willems 1995; Steinhurst and Lastra 2006], which is prone to miss high-
frequency components of the BSDF and requires many potentially expensive
BSDF evaluations. Alternatively, is it possible to leverage precomputations
over a select set of BSDFs [Herholz et al. 2016] or a parametric class of
BSDFs [Herholz et al. 2018], which unfortunately does not work in the general
setting of encountering many previously unseen BSDFs.

In PPG, we adopt iterative reinforcement learning and—like the work by
Dahm and Keller [2018]—we additionally combine learning and rendering
into the same algorithm. Unlike previous work, we split the entire algorithm
into distinct passes—each guided by the previous pass—in such a way that
each pass remains unbiased and such that initial high-variance estimates (due
to the learned distribution being less accurate) can not negatively impact the
final image.

Due to multiple difficulties associated with learning the full 7-dimensional
product, we focus on learning just the 5-dimensional incident radiance field
Li(x, ωi) and combine it with sampling of the other terms via multiple impor-
tance sampling. We discuss potential extensions of our work to the product
in Section 7.7.4 and we present an alternative path guiding technique that
can naturally handle the full product in Chapter 8.

7.2.2 Datastructure for Storing Incident Radiance

The other big difference between our approach and previous work is our
data structure: the SD-tree, which was specifically tailored for robustly ap-
proximating incident radiance given only noisy Monte Carlo estimates. Since
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(a) Spatial binary tree (b) Directional quadtree

Figure 7.2: The spatio-directional subdivision scheme of our SD-tree. Space is adaptively par-
titioned by a binary tree (a) that alternates between splitting the x, y, and z dimension in half.
Each leaf node of the spatial binary tree contains a quadtree (b), which approximates the spherical
radiance field as an adaptively refined piecewise-constant function.

our goal is to importance sample from a directional probability distribution
conditional on a given spatial location, we treat the spatial and directional
components of our datastructure differently. Hybrid data structures such as
ours have been used successfully in the past in the field of rendering and
geometry processing [Novák and Dachsbacher 2012; Boubekeur et al. 2006].
For the similar problem of radiance caching, Gassenbauer et al. [2009] used a
spatial octree and a directional kd-tree to record individual radiance samples.

Rather than using an octree, we use a binary tree that splits each dimension in
half via in a round-robin fashion. Our motivation is the smaller branching
factor, which is essential in our progressive refinement scheme that ensures
each spatial leaf node receives a roughly constant number of incident radiance
samples (see Section 7.3.4).

We opt for a directional quadtree to retain the ease of fitting piecewise-
constant approximations to Monte Carlo samples and sampling from them;
we previously discussed piecewise-constant approximations and their fit-
ting procedure in Section 5.3. With kd-trees [Gassenbauer et al. 2009] and
gaussian-mixture models [Vorba et al. 2014; Herholz et al. 2016] it is generally
more difficult to obtain a robust fit. The use of a tree structure, rather than a
grid, is motivated by the incident radiance signal usually being very sparse,
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leading to memory savings of multiple orders of magnitude in practice when
compared to previous work [Jensen 1995]. We illustrate our SD-tree in Fig-
ure 7.2 and discuss our quadtree construction scheme that strives for equal
amounts of flux in each leaf node in Section 7.3.3.

7.3 Path Guiding with SD-trees

PPG is based on iteratively learning an approximation of the incident radiance
field

Li(x, ω) ≈ L̂i
k
(x, ω) , (7.2)

where the approximate incident radiance L̂i is represented by an SD-tree
and k ∈ N is the iteration number in which L̂i is computed. We employ
a reinforcement-learning-style scheme where the incident radiance of one
iteration L̂i

k is learned from Monte Carlo estimates that are importance sam-
pled via the SD-tree learned in the previous iteration q ∝ L̂i

k−1. This scheme
greatly improves performance over naı̈ve estimation of L̂i without any adap-
tation or reinforcement. We describe the collection of Monte Carlo estimates
in an SD-tree in Section 7.3.1.

Once L̂i
k has been computed, it will not only be used for importance sampling

the computation of L̂i
k+1, which we describe in Section 7.3.4, but it will also

affect the topology of the SD-tree capturing L̂i
k+1 in a way that reflects newly

gained information about the shape of the incident radiance field. How,
precisely, this adaptivity is achieved is discussed in Section 7.3.2 for the
spatial component and in Section 7.3.3 for the directional component.

7.3.1 Collecting Estimates of Li

We train L̂i
k by following the procedure that we previously described in

Section 5.3. When tracing paths throughout the scene we keep track of all the
vertices encountered. Whenever a path is then connected to a light source—
either by chance via BSDF sampling or any other importance sampling tech-
nique such as next event estimation—we accumulate incident radiance not
only in the image plane but also in the leaf nodes of the current SD-tree L̂i

k at
all vertices v of the path.

For each vertex, the SD-tree is first traversed spatially to determine the leaf
node containing the vertex position xv. Then, the directional quadtree of
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Algorithm 7.1: Refine our spatial binary tree post training iteration

1 function subdivide(leaf):
2 numSamples← getNumSamples(leaf)
3 children← splitAlongAlternatingAxis(leaf)
4 forall childNode ∈ children do
5 setNumSamples(childNode, numSamples / 2)

6 function refineBinaryTree(c, k):
7 forall leaf ∈ leafNodes do
8 if getNumSamples(leaf)> c ·

√
2k then

9 subdivide(leaf)

said leaf node is traversed towards its own leaf node that contains ωv, the
direction in which the path was continued from xv. The Monte Carlo estimate
of incident radiance is accumulated in all quadtree nodes that contain it, not
just within the leaf. This has the effect of estimating incident radiance not
just at the finest resolution, but also at all coarser scales. Effectively, this leads
to a mipmap-style representation of incident radiance, only that the number
of levels is spatially varying. This representation will be important later on
for sampling directions proportional to the radiance stored in the quadtree.

Once L̂i
k has been fully populated, it will be used not only for importance

sampling the construction of paths during the next iteration, but also to
determine the topology of L̂i

k+1. We copy L̂i
k to produce an initial version

of L̂i
k+1 on which we perform all topology refining operations. After the

topology of L̂i
k+1 has been refined, we reset the radiance in all its nodes to

zero to prepare it for accumulating radiance estimates in iteration k + 1.

7.3.2 Adaptive Spatial Binary Tree

We first discuss our subdivision scheme of the spatial binary tree, which
controls the resolution at which we capture the spatial component of the
incident radiance. To make it easier to reason about the performance of our
datastructure, we split alternatingly between the x, y, and z dimensions,
always in the middle of the node to be split.

As mentioned before, the overarching goal of PPG is to be robust and practical.
To ensure robustness, it is paramount that the learned radiance distribution
performs consistently. The goal of consistent performance is the backbone
of our spatial subdivision criterion. To ensure the directional radiance distri-
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butions have consistent quality across spatial leaf nodes, we would like all
spatial leaf nodes—i.e. all directional quadtrees—to receive a roughly equal
number of Monte Carlo estimates. We therefore make spatial subdivision
directly depend on the number of samples in each node.

Specifically, we split a node if there have been at least c ·
√

2k path vertices.
The number 2k will be proportional to the number of traced paths in the k-th
iteration—we will double the number of paths between iterations—and c is
derived from the resolution of the quadtrees; we detail this in Section 7.5.4.
After a node has been split, we copy its quadtree into both children and we
temporarily set the number of samples in each child to half of that of their
parent. We then recursively apply the subdivision criterion.

Post subdivision, all leafs contain roughly c ·
√

2k path vertices except for
pathological cases. Therefore, the total number of leaf nodes is proportional

to 2k

c·
√

2k
=
√

2k

c . Effectively, our threshold ensures that the total number of
leaf nodes and the number of samples in each leaf both grow at the same rate√

2k across iterations. The constant c trades off convergence of the directional
quadtrees with spatial resolution of the binary tree. Pseudocode for this
subdivision scheme is listed in Algorithm 7.1 and our choice of c is explained
later in Section 7.5.4.

While refining the tree based only on the number of samples may seem
rudimentary, it performs remarkably well since the iteratively learned distri-
butions guide paths into regions with high contributions to the image; these
thus get refined more aggressively than low-contribution regions due to the
larger number of samples. Having a coarser radiance-function approximation
in regions that receive fewer paths is tolerable, because the increase in relative
noise is generally counteracted by the smaller contribution of such paths.

7.3.3 Adaptive Directional Quadtree

Like the spatial binary tree, we also update the topology of the quadtrees
inbetween each iteration to better reflect the distribution of incident radiance.
Our goal is to make the directional resolution proportional to incident radi-
ence, such that high-power regions are represented in high quality and vice
versa. This goal is equivalent with postulating an equal amount of flux—i.e.
integrated radiance—in each leaf.

Let Φ be the total flux flowing through the quadtree. We then achieve a
roughly-equal flux partitioning by pruning leaves of an interior node when
its flux Φi—i being the node index—is smaller than a constant fraction ρ of
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Algorithm 7.2: Refine our directional quadtree post training iteration

1 function subdivide(leaf):
2 Φleaf ← getFlux(leaf)
3 children← splitQuadtree(leaf)
4 forall childNode ∈ children do
5 setFlux(childNode, Φleaf/4)

6 function refineQuadtree(nodes):
7 forall node ∈ nodes do
8 if getFlux(node)/Φ ≤ ρ then
9 pruneChildren(node)

10 else if isLeaf(node) then
11 subdivide(node)

Φ, i.e. if

Φi < ρΦ. (7.3)

Conversely, we subdivide any leaf node whose flux is greater or equal to the
flux percentage

Φi ≥ ρΦ. (7.4)

After subdividing a leaf node, we temporarily split its flux evenly over its
children—all children will have a quarter of the original flux—and recursively
apply the subdivision criterion to allow multiple subdivisions to occur at a
time.

We list pseudocode for refining the topology of the quadtree in Algorithm 7.2.
After all quadtrees have been refined, the leaves of the quadtrees contain at
most a flux of ρΦ and are therefore guaranteed to have at least a resolution
proportional to their mean incident radiance. At this point we reset the flux
in all nodes of the newly created quadtrees such that they can be populated
with new estimates in the following rendering iteration.

The choice of ρ determines an additional constant factor on the resolution:
the total number of leaves is roughly proportional to 1/ρ. For choosing ρ,
not only memory requirements are an important consideration, but also the
fact that a larger resolution results in higher-variance Monte Carlo estimates
of incident flux in each leaf. We found that a threshold of ρ = 1% works
well in practice. We analyze its impact on the memory footprint in detail in
Section 7.5.3.
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Algorithm 7.3: Sample from our directional quadtree

1 function sampleQuadtree(node):
2 if isLeaf(node) then
3 return uniformRandomPositionIn(node)
4 else
5 childNode← sampleChildByEnergy(node)
6 return sampleQuadtree(childNode)

Algorithm 7.4: Compute PDF of sampling ω from our directional quadtree

1 function pdfQuadtree(node, ω):
2 if isLeaf(node) then
3 return 1/4π

4 else
5 childNode← getChild(node, ω)

6 α← 4 · getFlux(childNode) / getFlux(node)
7 return α · pdfQuadtree(childNode, ω)

7.3.4 Iterative Learning and Rendering

We train L̂i via path tracing during rendering, i.e. we use vertices from the
same light paths that contribute to the image also for training L̂i. Recall, that
we train a sequence L̂i

1, L̂i
2, . . . , L̂i

M, M ≥ 1 of SD-trees—one for each iteration
k ∈ {1, . . . , M}—each with light paths that are guided proportional to the
SD-tree L̂i

k−1 trained in the preceding iteration. This scheme often drastically
accelerates the convergence compared to naı̈ve Monte Carlo estimation. Only
the first SD-tree L̂i

1 is trained with an unguided path tracer: in our case
unidirectional path tracing, but in practice it can use any other importance
sampling scheme.

Given a path vertex v, we sample a direction from L̂i
k−1 as follows. First, we

descend through the spatial binary tree to find the leaf node containing the
vertex position xv. Next, we sample the direction ωv from the quadtree con-
tained in the spatial leaf node via hierarchical sample warping as described
by McCool and Harwood [1997]. We provide pseudocode for sampling in
Algorithm 7.3 and for evaluating the PDF of a given sample in Algorithm 7.4.
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Total budget: 1 s, 60 spp Total budget: 5 s, 252 spp Total budget: 21 s, 1020 spp
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Figure 7.3: PPG converges most rapidly in the beginning of rendering, yielding a reasonable
preview of the final image far quicker than traditional path tracing with next event estimation
(NEE). Except for Dahm and Keller [2018], existing path guiding approaches perform training in a
separate pass, neglecting the rendering preview.

7.3.5 Geometrically Growing Sample Count

To prevent high-variance estimates from initial iterations “polluting” the
image, we propose to discard all images but the one produced by the last
iteration. Additionally, to avoid wasting a large proportion of the total
number of samples, we geometrically grow the number of samples in each
iteration. We double the number of samples in each iteration, but in practice
any other geometric growth factor b > 1 could be used, resulting in bk

samples being invested in the k-th iteration. The fraction of discarded samples
is then(

M−1

∑
i=1

bi−1

)/( M

∑
i=1

bi−1

)
=

1− bM−1

1− b
1− b

1− bM =
1− bM−1

1− bM . (7.5)

Since this fraction is monotonic in M, letting M go to infinity gives us an
upper bound on the fraction of discarded samples

lim
M→∞

1− bM−1

1− bM =
1
b

. (7.6)

In our special case of b = 2 we therefore never “waste” more than half of the
total number of samples just on learning the sequence L̂i

1, L̂i
2, . . . , L̂i

M.
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Another important property of doubling the sample count in each iteration
surfaces when considering our spatial subdivision scheme. Since spatial
subdivision of a binary-tree leaf node halves its volume, doubling the number
of samples ensures that approximately the same number of samples reaches
both new leaf nodes. Therefore, even locally, L̂i

k usually does not become
noisier than L̂i

k−1.

7.3.6 On-line Rendering Preview

To provide the user with quick visual feedback, we progressively display
images synthesized using the path samples of the current iteration. Since
each iteration starts rendering the image from “scratch”, naı̈vely displaying
the latest result would lead to sudden quality degradations whenever a
new iteration starts. We avoid this by switching to the image of the current
iteration only once it accumulated more samples than the previous iteration.
In Figure 7.3 we demonstrate the rendering preview of the TORUS scene
comparing against a path tracer.

7.3.7 Balancing Learning and Rendering

In this section, we describe how to split a given compute budget B, which
can be defined either as time or number of samples, between learning and
rendering such that the variance of the final image is minimized. For iteration
k, we define the budget to unit variance τk = Vk · Bk, i.e. the product of variance
of image Ik computed using paths traced in iteration k, and the budget Bk
spent on constructing these paths. Variance Vk is computed as the mean
variance of pixels in Ik. Assuming we keep using L̂i

k for guiding the paths
until we reach B, we can estimate the variance of the final image as

V̂k =
τk

B̂k
, (7.7)

where B̂k is the remaining budget from the start of the k-th iteration:

B̂k = B−
k−1

∑
i=1

Bi . (7.8)

Our goal is to find the optimal iteration k̂ that minimizes the final-image
variance, i.e.

k̂ = arg min
k

V̂k . (7.9)
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SPPM MEMLT Vorba PPG Ref.

Minutes (training + rendering): 0 + 7.5 0 + 7.5 5.3 + 6.4 1.1 + 6.4
Samples per pixel: n/a n/a 4264 5812

MSE: 0.936 2067.754 0.150 0.144

Figure 7.4: Equal-time comparison of our method (PPG) versus previous work on the SWIMMING

POOL scene; we report training + rendering time in minutes. The caustics inside the pool consist
of difficult “specular, diffuse, specular” light transport that varies spatially due to the waves. The
optimal training-rendering budgeting of PPG is in this case automatically determined to be 15%
and 85%, respectively.

To that end, we assume that training has monotonically diminishing returns;
more precisely, the sequence τk is monotonically decreasing and convex. It
follows that V̂k is also convex (see Appendix C.1). We can then find k̂ as the
smallest k for which V̂k+1 > V̂k holds. Since we need to evaluate V̂k+1, we
need to perform one more iteration than would be optimal, but the wasted
computation is greatly outweighed by the variance reduction due to our
automatic budgeting mechanism.

We can use a similar approach to optimally trade-off training and rendering
when aiming for a target variance. In this case, we can estimate the rendering
budget B̄k required to reach a target variance V̄ via B̄k = τk/V̄, and training
is stopped whenever the total budget B̃k > B̃k−1, where

B̃k = B̄k +
k−1

∑
i=1

Bi . (7.10)

This successfully finds k̂ = arg mink B̃k, because the sequence B̃k is convex
whenever Bk is monotonically increasing, which is the case with the exponen-
tial sample count.
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PT BDPT MEMLT Vorba PPG Ref.

Minutes (training + rendering): 0 + 5.1 0 + 5.1 0 + 4.85 5.5 + 3.9 1.1 + 3.9
Samples per pixel: 3100 2560 n/a 1104 1812

MSE: 7.949 2.800 0.742 1.052 0.694

Figure 7.5: The glass tabletop and the mirror next to the window in the COUNTRY KITCHEN

scene challenge the efficiency of most light-transport algorithms. Unidirectional path tracing is
unable to capture most of the non-trivial indirect-illumination patterns. Bidirectional path tracing
struggles with constructing light sub-paths through the window (just like SPPM would). MEMLT
avoids “fireflies” but has convergence issues. Both guiding methods are capable of finding difficult
light paths, with our approach (PPG) performing similar to Vorba et al.’s despite being purely
unidirectional.

7.4 Results

We integrated our algorithm, dubbed PPG, into the Mitsuba renderer [Jakob
2010]2. We compare PPG to several other approaches, including bidirectional
path tracing [Veach and Guibas 1994], stochastic progressive photon mapping
(SPPM) [Hachisuka and Jensen 2009], manifold exploration metropolis light
transport (MEMLT) [Jakob and Marschner 2012], and, closely related to
PPG, the technique by [Vorba et al. 2014; Vorba and Křivánek 2016], which
represents incident radiance using gaussian-mixture models (GMM); we use
an adjusted version of the authors’ implementation for comparison. To ensure
the path-guiding GMMs are properly trained, we always use 30 pre-training
passes, 300000 importons and photons, adaptive environment sampling, and
we leave all other parameters at their default values. In all comparisons
images were rendered with an equal time budget. For PPG, training happens
within its time budget. We do not count pre-training of the GMMs as part of
their budget; we give GMMs as much rendering time as PPG uses.

Both path-guiding methods—Vorba et al.’s and PPG—render with unidi-

2The implementation is publicly available under the GPLv3 license at https://github.com/
Tom94/practical-path-guiding.
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rectional path tracing without next event estimation (NEE) to emphasize the
difference in guiding distributions. Application to more sophisticated algo-
rithms such as BDPT or VCM [Georgiev et al. 2012] would only mask the
shortcomings of path guiding and obscure the comparisons. Lastly, none
of the methods perform product importance sampling, since its benefits are
orthogonal (and complementary) to path guiding. Extending our work to
perform product importance sampling is discussed in Section 7.7.4.

The TORUS scene contains very long chains of specular interactions and a
significant amount of specular-diffuse-specular (SDS) light transport, which is
notoriously difficult to simulate with most unbiased algorithms. Path guiding
approaches are able to learn and importance sample the high-frequency
transport as long as it can be discovered by the underlying algorithm. In
Figure 7.1 we render the scene with PPG comparing at equal-time to the
method by Vorba et al. [2014]. The GMMs struggle with learning the correct
distribution on the torus consistently, manifesting as uneven convergence;
see Figure 7.11. PPG, overall still only achieves a slightly worse MSE as Vorba
et al.’s method, while our automatic budgeting mechanism assigned 44 s to
training out of the total 298 s compute time.

The SWIMMING POOL scene features difficult SDS light transport in a real-
istic scenario: rendering under-water caustics caused by waves. Standard
(unguided) path tracing performs very poorly on this scene; the reference
image in Figure 7.4 (right) took 18 h to render and still exhibits residual noise
in some regions. By the nature of density estimation, the SPPM algorithm can
handle such scenes without bright pixels (“fireflies”), but it instead struggles
with preserving the sharpness of caustics and produces splotchy artifacts
on the window frames. The manifold-walk-enhanced MLT (MEMLT) pre-
serves the caustics’ sharpness, but its uneven visual convergence manifests
on the over-exposed window frame and darker pool ladder. Both guided
unidirectional path tracers suffer from occasional outliers, but estimate the
overall brightness more reliably than MEMLT and without the bias of SPPM.
Compared to the method by Vorba et al., our SD-trees slightly reduce the
number of “fireflies” as well as the average noise at roughly two thirds of the
memory; see Table 7.1.

The COUNTRY KITCHEN scene in Figure 7.5 consists of various glossy ma-
terials and complex geometries that are lit by sunlight entering through a
glass-free window and being reflected by a glass tabletop. The reflection of
the sun on the ceiling viewed through the mirror—an SDS interaction de-
picted in the yellow inset—poses a challenge for most algorithms, including
MEMLT. When properly guided, a simple unidirectional path tracer without
NEE is capable of efficiently sampling these narrow, high-energy regions
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Figure 7.6: Convergence of various algorithms in terms of mean squared error (MSE) plotted
as a function of time. The dash-dotted vertical lines indicate when PPG (Ours) stops training and
switches to render-only mode for the rest of the given budget: 5, 7.5, 5, and 20 min. In these plots
the rendering component of Vorba et al.’s algorithm is synchronized with that of PPG.

of path space even without Markov-chain mutations. Despite learning the
incident light field only unidirectionally, PPG performs the best in terms of
MSE thanks to the ability to render faster than Vorba et al.’s method. Our
technique also requires slightly less memory in this scene.

7.5 Analysis

In this section, we analyze the convergence and memory usage and discuss
the threshold for subdividing the binary tree.

7.5.1 Comparison to Other Methods

Figure 7.6 compares the convergence of our algorithm to several competing
methods. Pre-training time of Vorba et al.’s algorithm is not included in
these plots, but instead its rendering phase is synchronized with ours. In
the beginning of the rendering process, MEMLT and SPPM often outper-
form PPG. However, the inherently unpredictable nature of MEMLT and
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Figure 7.7: Left: variance as a function of time plotted for subsequent training iterations. The
dashed extension lines indicate convergence if we continued rendering, rather than beginning
the next iteration. Right: intersections of the convergence curves with three dash-dotted lines
representing three sample budgets. The intersections form convex sequences; the annotations show
the percentage of the sample budget that was spent on training.

the asymptotically slower convergence of SPPM allow PPG to eventually
overtake. The “flat” regions in the training phase of our algorithm are due to
delayed switching of the on-line preview to the result of the current iteration,
as described in Section 7.3.4.

7.5.2 Convergence as a Function of Training Budget

Figure 7.7 demonstrates the convergence as a function of how many samples
are used for training the guiding distributions. The curves represent the
convergence of subsequent, geometrically growing iterations. Later iterations
converge faster to a lower error thanks to their better-trained guiding distri-
butions. When a fixed compute budget is given, our balancing scheme, as
described in Section 7.3.7, automatically chooses when to stop the iterative
training and continue rendering until the budget is exhausted. In the scatter
plot on the right, we show the estimated final variance for the increasingly-
trained distributions for the target budgets of 200, 1000, and 5000 samples.
The three series empirically demonstrate the convexity of this optimization
problem (the small deviations from a perfectly convex shape are due to the
discrete refinement decisions).
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Table 7.1: Quantitative comparison against the method of Vorba et al. on all scenes in this chapter.

Scene Method Memory Training Rendering SPP MSE

TORUS
Vorba et al. 2.5 MB 5.1 min 4.2 min 8932 0.017
Ours 4.2 MB 0.73 min 4.2 min 11568 0.018

HAIRBALL
Vorba et al.

511.2 MB 60 min 17.3 min 1492 0.246
7.2 MB 6.7 min 17.3 min 476 1.250

Ours 6.1 MB 1.7 min 17.3 min 20596 0.022

SWIMMING POOL
Vorba et al. 12.8 MB 5.3 min 6.4 min 4264 0.150
Ours 8.0 MB 1.1 min 6.4 min 5812 0.144

COUNTRY KITCHEN
Vorba et al. 23.8 MB 5.5 min 3.9 min 1104 1.052
Ours 15.6 MB 1.1 min 3.9 min 1812 0.694

7.5.3 Memory Usage

The memory usage of our directional quadtrees can be estimated using the
subdivision threshold ρ: with the energy-based refinement from Section 7.3.3
there can be no fewer than 1/ρ leaf nodes. The maximum number is un-
bounded for arbitrarily narrow energy distributions (e.g. a delta light source).
We remedy this by limiting the maximum depth of the quadtree to 20, which
is sufficient for guiding towards extremely narrow radiance sources without
precision issues. The worst case of refining 1/ρ quads to the maximum depth
results in the upper bound of 4 · 20/ρ on the number of nodes.

We found ρ = 0.01 to work well, which in practice results in an average of
roughly 300 nodes per quadtree. The maximum number of nodes across all
quadtrees and results we tested is 792; well below the theoretical maximum
of 4 · 20/ρ = 8000. Our quadtree nodes require 5 bytes of memory each,
translating to an average footprint of 1.5 kb, and an upper bound of 40 kb, for
each quadtree. A single mixture model with 8 gaussians requires 273 bytes.

According to the iterative training and rendering scheme, only two SD-trees
L̂i

k−1 and L̂i
k have to be kept in memory at the same time. However, because

the spatial binary tree of L̂i
k is merely a more refined version of the spatial tree

of L̂i
k−1, it is straightforward to use the same spatial tree for both distributions,

where each leaf contains two directional quadtrees; one for L̂i
k−1 and one for

L̂i
k. This means, that only a single spatial binary tree has to be traversed for

each path vertex.

In all our scenes, the full guiding distribution never exceeded 20 mb (see
Table 7.1) without anyhow limiting the subdivision of the spatial binary tree.
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However, we allow specifying an upper bound of nodes in the spatial tree to
ensure memory requirements are kept. Once the limit is reached, the spatial
tree is not subdivided further.

7.5.4 Binary Tree Subdivision Threshold

As described in Section 7.3.3, we subdivide a leaf node of the binary tree
whenever it records more then c ·

√
2k path vertices during the previous

iteration. We derive c from the desired number of samples s that each quadtree
leaf node should receive. All quadtree leaves carry a roughly equal amount
of energy and are thus sampled with similar probability during training.
The average number of samples a quadtree leaf receives is then s = S/Nl,
where S is the total number of samples drawn from a quadtree, and Nl is
the number of leaf nodes in it. Our quadtrees have 300 nodes on average
(see Section 7.5.3), and almost never more than that. We found, that s = 40
samples per quadtree leaf node results in a reasonably converged quadtree,
and we thus choose c such that binary tree leaf nodes get subdivided after the
first iteration (k = 0) when this number of samples is reached. We therefore
obtain

c =
s · Nl√

2k
=

40 · 300
1

= 12000 . (7.11)

7.6 Extensions

In this section we present two optional extensions to our PPG algorithm that
were not used in the above experiments and analysis, but that can further
enhance its performance. These extensions were developed in collaboration
with the Walt Disney Animation Studios and were recently published as part
of Chapter 10 of the ACM SIGGRAPH 2019 “Path Guiding in Production”
course [Vorba et al. 2019].

7.6.1 Increased Robustness by Filtering

The main advantage of our SD-tree radiance accumulation scheme is per-
formance: it is very efficient to traverse the SD-tree towards a leaf node
containing a particular vertex position xv and direction ωv for recording
incident radiance estimates. Unfortunately, this scheme can result in visi-
ble variance discontinuities around the edges of spatial and directional leaf
nodes, especially when the incident radiance field has high-frequency content
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Path Tracing PPG Unfiltered PPG Filtered

Figure 7.8: Improved handling of narrow illumination by spatio-directional filtering of radiance
estimates that are splatted into the SD-tree. We illustrate a contrived difficult situation: a small light
source that is not sampled with next-event estimation (NEE). Although PPG (middle) dramatically
improves overall variance compared to an unguided path tracer (left), residual noise is distributed
non-uniformly along the spatial structure of the SD-tree, which is visually unpleasing. Spatio-
directional filtering (right) addresses the structured noise by distributing it evenly across the scene
and at the same time reducing it overall.

in both the spatial and directional domain; see the middle image in Figure 7.8.
To address this issue, we experimented with spatio-directional filtering of
Monte Carlo estimates that improves robustness at additional computational
cost.

Instead of recording radiance estimates within the leaf node that contains
the vertex position xv and direction ωv, we record the estimates within those
leaf nodes that fall into a spatial neighborhood around xv and a directional
neighborhood around ωv.

More concretely, given an estimate, we begin by traversing the spatial tree to
obtain the spatial footprint and corresponding volume V of the leaf containing
ωv; this footprint determines the filter radius and thereby the size of the
spatial neighborhood. We then traverse the spatial tree again, this time
visiting each node that has non-zero volume overlap with the spatial footprint
from before, centered around xv. For each spatial leaf with non-zero volume
overlap Vo that we find this way, we record the radiance estimate weighted
by the fraction of overlapped volume Vo/V.

Directional filtering works analogously, only that we perform area-based
filtering over the cylindrical domain as opposed to spatial filtering over
space.
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Path Tracing PPG w/ Automatic Budget PPG w/ Weighted Average

Figure 7.9: Improved robustness by weighting the results of iterations rather than terminating
training of the SD-tree early. We illustrate a contrived difficult situation: a small light source that
is not sampled with next-event estimation (NEE). We compare unidirectional path tracing (left)
against PPG with an automatically chosen training budget (middle; Section 7.3.7) and PPG with a
weighted average of all iterations (right; Section 7.6.2) at an equal total sample count of 1024 spp.

Stochastic Filtering. When implemented as described above, the filtering
operation comes with significant computational cost. This cost can be avoided
by replacing the deterministic filtering that traverses entire sub-trees with
stochastic filtering that traverses only towards a single leaf. After obtaining
the spatial footprint, the position xv is simply jittered within the footprint’s
volume (again, centered around xv) and then recorded in the SD-tree as done
in the original algorithm.

We found that performing only the spatial filtering stochastically and using
deterministic filtering in the directional domain gave the best results at neg-
ligible computational cost. Figure 7.8 demonstrates the gained quality by
spatio-directional filtering in a difficult lighting situation (a tiny quad light
shining directly at a wall) at equal computation time.

7.6.2 Automatic Budget vs. Combining of All Iterations

In Section 7.3.7 we detailed how learning and rendering budgets can be
optimally split under the assumption that the samples of previous iterations
are discarded. We will now discuss an alternative in which we always iterate
training until the very end and combine the resulting images of all iteration
via carefully chosen weights.

To minimize the variance of the final image, the optimal weights to combine
samples from all iterations are proportional to the samples’ inverse variance.
Let Ik

xy be the value of pixel x, y in the image produced by the k-th iteration,
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Vorba et al. PPG (Ours) Reference

Minutes (training + render): 60.0 + 17.3 6.7 + 17.3 1.7 + 17.3
Memory overhead: 511 MB 7.2 MB 6.1 MB
Samples per pixel: 1492 476 20596

MSE: 0.246 1.250 0.022

Figure 7.10: Comparison of our method (PPG) and the method by Vorba et al. [2014] on a heavily
tesselated hairball inside a glass cube. With its default parameters, Vorba et al.’s algorithm (left)
exhibits worse performance and 83× higher memory consumption than PPG (right). The benefits
of our approach become more prominent in an equal-memory comparison (middle vs right).

then the corresponding pixel value of the final image with minimal variance
is

Ixy =

 M

∑
i=1

1

V
[

Ik
xy

]
−1

M

∑
i=1

Ik
xy

V
[

Ik
xy

] (7.12)

Since we do not have access to the sample variance in closed form, we
estimate it. Furthermore, since the variance of individual pixels is difficult to
estimate robustly, we estimate the mean pixel variance of each image and use
that in place of the per-pixel variance.

Using estimates of the variance unfortunately introduces a small amount of
bias, because the variance estimates (and therefore the combination weights)
depend on the samples themselves. However, due to our geometrically growing
sample count across iterations, the variance estimate becomes more accurate
in later iterations, making its correlation with the samples vanishes. This
results in the weighting scheme being consistent.

In Figure 7.9, we demonstrate the benefit of the inverse-variance-weighted
sample combination over utilizing our automatic budgetting scheme from
Section 7.3.7.
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7.7 Discussion

7.7.1 Spherical vs. Hemispherical Domain.

Our directional quadtree distributions cover the entire sphere of directions
parameterized using world-space-aligned cylindrical coordinates. This has
two key benefits compared to most previous work [Jensen 1995; Vorba et al.
2014; Herholz et al. 2016] that covers only the upper (oriented) hemisphere.
Firstly, we do not need to discriminate distributions according to their angular
distance to the normal at the shading point. This simplifies the search to
merely selecting the spatially nearest distribution and avoids the need for
rotating the distribution to prevent overblurring in the directional domain.
Secondly, spherical distributions naturally generalize to volumetric path
tracing and typically perform better on organic structures, such as foliage
and hair.

We demonstrate this on the HAIRBALL scene in Figure 7.10 consisting of
cylindrical hairs inside a glass cube. We compare our orientation-independent
cylindrical parametrization to the hemispherical parameterization of Vorba et
al. [2014]. To remain accurate, Vorba et al.’s method has to densely populate
the hairball with hemispherical distributions, leading to a significant memory
and performance cost. The cylindrical parametrization is decoupled from
geometric properties, and results in almost 83× lower memory consumption
and significantly improved convergence rate. Adjusting the parameters of
Vorba et al.’s method to approximately match our memory consumption
yields significantly slower convergence.

7.7.2 Quadtree vs. Gaussian Mixture Model

The main advantage of quadtrees over gaussian-mixture models is the in-
creased robustness. The expectation-maximization algorithm utilized by
Vorba et al. [2014] is not guaranteed to find the global optimum, and the dis-
tribution can vary dramatically across nearby spatial locations; see Figure 7.11.
In contrast, our quadtrees adapt to the energy distribution hierarchically, top-
down and adapt the resolution such that each leaf contains roughly the same
amount of energy. The convergence of the rendering algorithm (within one
iteration) is thus more stable.

Within Figure 7.11, at the location marked in yellow, Vorba et al.’s method
exhibits high variance as the GMM failed to represent the light reflected by
the glass cube. The distributions at the locations marked in orange and red
demonstrate the instability of the GMM under similar incident illumination,
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Jensen PPG (Ours) Vorba et al.

Training: 3 h
Rendering: 3 h

Training: 0.73 min
Rendering: 0.57 min

Training: 4.9 min
Rendering: 0.57 min

Figure 7.11: We show directional radiance distributions discretized in the datastructure by Jensen
[1995] (left), our quadtrees (middle), and the gaussian mixture model (GMM) by Vorba et al. [2014]
(right). We used the same spatial locations to train all three directional distribution models. The
left column was trained and rendered for 6 h to provide a reasonably converged reference. Our and
Vorba et al.’s distributions have each been computed within 5 min.

and its struggle to capture multiple modes robustly. Our quadtrees reliably
capture all 5 important modes with high precision.

7.7.3 Temporal path guiding

We described an algorithm for guiding light transport in a static scene. For
time-dependent effects, e.g. motion blur, it would be beneficial to refine the
SD-tree also over the temporal domain. We suspect that adding a fourth
dimension t to our spatial binary tree and including it in the dimension-
alternating subdivision scheme is a straightforward extension which is capa-
ble of handling temporal effects.
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7.7.4 Multiple and Product Importance Sampling

Sampling scattering directions purely from our quadtrees can lead to arbi-
trarily large variance in regions where the incident radiance is approximated
badly. We avoid this problem by combining directions from our quadtrees
with BSDF samples via multiple importance sampling, which guarantees
that the variance can not be much worse compared to pure BSDF sampling.
Although we use a multiple-importance-sampling ratio of 0.5 in this chapter,
we demonstrate in Chapter 8 that it is possible to lean the ratio using gradi-
ent descent during rendering. The public implementation of PPG contains
experimental code that explores this avenue.

The performance of sampling with our quadtrees could be further improved
by ignoring quads in the bottom hemisphere. This can be done explicitly with
a rectifying parameterization by Bitterli et al. [2015], though the mapping
would no longer preserve areas.

Another possible solution is to generate several samples from the BSDF and
the quadtree, and to then perform importance resampling [Talbot et al. 2005]
towards their product. This technique never generates samples in the wrong
hemisphere and approaches product importance sampling as the number of
candidate samples for resampling approaches infinity.

Lastly, it might be possible to directly sample the product of the BSDF and
the incident radiance. Herholz et al. [2016, 2018] demonstrate how product
importance sampling between the BSDF fs and L̂i can be achieved with Vorba
et al.’s mixtures of gaussians by approximating all BSDFs in the scene also
with mixtures of gaussians. We could similarly extend PPG by adopting the
approach of Jarosz et al. [2009]. This would require converting the incident ra-
diance distributions into Haar wavelets and representing BSDFs in spherical
harmonics. Because our quadtrees only approximate the incident radiance,
however, it is advisable to still combine the approximate product with BSDF
sampling via multiple importance sampling to bound the error.

7.7.5 Guiding Sophisticated Sampling Algorithms

We presented results with guiding applied to a unidirectional path tracer. The
deliberate choice of using a simple path tracer was made to best highlight
the strengths and weaknesses of different guiding approaches; more sophis-
ticated path-construction algorithms would only mask the shortcomings in
regions where they already sample the integrand well. In practice, however,
we recommend combining path-guiding with NEE via multiple importance

158



7.8 Acknowledgments
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C H A P T E R 8
Neural Importance Sampling

This chapter is based on the following work by Müller et al. [2018]:

Neural Importance Sampling
Thomas Müller Brian McWilliams, Fabrice Rousselle, Markus Gross, Jan Novák
ACM Trans. Graph. (to appear)

The above work is currently accepted for publication in the journal ACM
Trans. Graph. and was already presented at ACM SIGGRAPH 2019.

8.1 Overview

In this chapter, we improve the effectiveness of path guiding by parameteriz-
ing the importance-sampling PDF q(x) using neural networks. Generative
neural networks have been successfully leveraged to draw samples from a
to-be-learned probability distribution in many fields, including signal process-
ing, variational inference, and probabilistic modeling, but their application
to Monte Carlo integration—in the form of sampling PDFs—remains to be
investigated. We will initially focus on the task of importance sampling
general Monte Carlo estimators (Sections 8.2 through 8.5) and will only then
apply our sampling PDFs to the task of path guiding (Section 8.6) by replac-
ing the SD-tree in the practical-path-guiding framework of Chapter 7. Our
neural PDFs are able to learn not only the incident radiance, but the full
product of the scattering integral, yielding much lower variance than the
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SD-tree of PPG. We also present an alternative technique to path guiding—
primary-sample-space path sampling—where we, however, achieve only
limited success compared to the path-guiding setting.

Since the effectiveness of a sampling PDF q(x) to reduce variance via impor-
tance sampling heavily depends on how well it matches the distribution of
the integrand p(x) = f (x)/F, it is crucial for the PDF’s underlying model to
be expressive enough to model the shape of f (x) with high fidelity. Addition-
ally, to avoid negatively affecting the performance of the underlying Monte
Carlo estimator, generating samples Xi ∼ q must be fast (relative to the cost
of evaluating f ), and invertible. That is, given a sample Xi, we require an
efficient and exact evaluation of its corresponding density q(Xi)—a necessity
for evaluating the unbiased estimator

F ≈ 〈F〉N =
1
N

N

∑
i=1

f (Xi)

q(Xi)
.

Being expressive, fast to evaluate, and invertible are the key properties of
good sampling PDF models, and all our design decisions in this chapter can
be traced back to these desired properties.

We focus on the general function-approximation setting from Section 5.2
where little to no prior knowledge about f is given, but f can be estimated
at a sufficiently high number of points. Our goal is to extract the sampling
PDF from these observations while handling complex high-dimensional
distributions with possibly many modes and arbitrary frequencies. To that
end, we approximate the ground-truth p(x) using a generative probabilistic
parametric model q(x; θ) that utilizes deep neural networks.

Our work builds on prior work that is capable of compactly representing
complex manifolds in high-dimensional spaces and permits fast and exact
sampling and PDF evaluation. More specifically, we extend the work of Dinh
et al. [2014, 2016] who learn highly non-linear invertible mappings between
an observation x and a latent variable z with fixed, prescribed PDF q(z) by
stacking a number of simple invertible mappings that are called coupling
layers. The composition of many simple coupling layers can model a complex
function in a similar fashion to how deep neural networks consisting of many
simple layers can model complex functions. We introduce two new types of
coupling layers, piecewise-linear and piecewise-quadratic (collectively referred
to as piecewise-polynomial), that are much more expressive than the coupling
layers used by Dinh et al. [2016]. This larger expressivity allows us to model
complex functions using much fewer coupling layers, thereby reducing the
total cost of training and evaluation.
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After reviewing related work on generative modeling using neural networks
in Section 8.2, we detail the framework of “non-linear independent compo-
nents estimation” (NICE) Dinh et al. [2014, 2016] in Section 8.3, which forms
the foundation of our approach. In Section 8.4, we describe a new class of in-
vertible piecewise-polynomial coupling transforms that replace affine transforms
proposed in the original work, and one-blob-encoded network inputs, which
stimulate localization of computation and improve inference. We illustrate
the benefits of our extensions on a few low-dimensional density-estimation
problems and test the performance when learning the (high-dimensional)
distribution of natural images. In Section 8.5, we demonstrate how NICE
can learn from Monte Carlo estimates by deriving unbiased loss gradients
of the KL and χ2 divergences for use in a stochastic-gradient-descent-based
optimizer as described in Section 5.4.2. Finally, we apply the proposed ap-
proach to light-transport problems in Section 8.6: we use NICE with our
piecewise-polynomial coupling layers and our one-blob encoding to guide
the construction of light paths and demonstrate that we outperform the state
of the art at equal sample count in path guiding and primary-sample-space
path sampling.

In summary, our contributions in this chapter are

• two piecewise-polynomial coupling transforms (piecewise-linear and
piecewise-quadratic) that improve expressiveness,

• one-blob-encoded network inputs (a generalization of one-hot encod-
ing) for improving learning speed and quality,

• stochastic gradients that can be used for optimizing the KL and χ2

divergences when only Monte Carlo estimates of the unnormalized
target distribution are available, and

• an application of NICE with the aforementioned tools to the problem
of light-transport simulation.

8.2 Related Work

Since our goal is to learn a probability distribution and—among other things—
draw samples from it, our approach falls into the category of generative
modeling. Since we already provided an introduction to neural networks
and surveyed prior usage of them in the field of physically based rendering
in Section 5.4, we will focus in this section on generative neural networks
outside of rendering and highlight their strengths and weaknesses for usage
in Monte Carlo integration.
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To recap, we are interested in techniques that allow training a neural network
that parameterizes a probability density function q(x; θ) that approximates a
true PDF p(x) that is proportional to the integrand f (x), using only using un-
biased estimates of f (x) at some finite number of data points x. Furthermore,
the trained model q(x; θ) must permit efficient sampling and PDF evaluation.

Various prior methods on generative modeling were built on less stringent
requirements. For example, it is often the case that only the synthesis of
samples is required without an explicit need for q(x; θ) [Goodfellow et al.
2014; Germain et al. 2015; van den Oord et al. 2016a,b]. This disqualifies a
large number of existing methods for our use case of Monte Carlo integration.
In the following, we will therefore focus on only those existing techniques
that show promise in satisfying our requirements.

The Latent-Variable Model. Many existing generative models rely on aux-
iliary unobserved “latent” variables z with fixed, prescribed PDF q(z), where
each possible value of z gives rise to a unique conditional distribution q(x|z; θ)
that is learnable via parameters θ. Since any particular value of x can be
caused by multiple different values of z, one must resort to integration to
obtain q(x; θ)

q(x; θ) =
∫

q(x|z; θ)q(z)dµ(z) , (8.1)

In this context, q(x; θ) is referred to as the “marginal likelihood” and q(z)
as the “prior distribution”. The prior is often modeled as a simple distri-
bution (e.g. Gaussian or uniform) and it is the task of a computation graph
parameterized by a neural network to learn the “likelihood” q(x|z; θ).

Unfortunately, the above integral is often not solvable in closed form, necessi-
tating its estimation with another Monte Carlo estimator. It may be tempting
to use such estimates of q(x; θ) in the denominator of our desired Monte
Carlo estimator

〈F〉N ≈
1
N

N

∑
i=1

f (Xi)

〈q(Xi)〉
,

but this scheme introduces undesirable bias1.

1This can be verified using Jensen’s inequality.
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Normalizing Flows. To avoid the limitation of having to estimate q(x; θ), a
growing literature emerged that models x as a deterministic bijective mapping
of z, a so-called “normalizing flow” x = h(z; θ). This has the effect of assign-
ing only a single value of x to each possible value of z (and vice versa), thereby
avoiding the difficult integration when computing the marginal-likelihood.
Mathematically, q(x|z; θ) becomes a Dirac-delta function δ

(
x − h(z; θ)

)
, re-

sulting in

q(x; θ) =
∫

δ
(
x− h(z; θ)

)
q(z)dµ(z) = q(z)

∣∣∣∣det
(

∂h(z; θ)

∂zT

) ∣∣∣∣−1

. (8.2)

Here, the inverse Jacobian determinant accounts for the change in density
due to h in the infinitesimal neighborhood around x.

Although Equation 8.2 no longer contains a difficult integral, there exist a
number of additional requirements on h to make the usage of q(x; θ) in Monte
Carlo integration practical. Since q(x; θ) is expressed in terms of z, one must
know the value of z that corresponds to x. Generally, this requires a tractable
inverse z = h−1(x).2 Additionally, to ensure efficiency, the evaluation of both
h and h−1 as well as the corresponding Jacobian determinant must be fast
relative to the cost of evaluating f .

Prior Work on Normalizing Flows. In the following, we mention a number
of existing techniques based on normalizing flows that satisfy some (but not
necessarily all) of our requirements. Rezende and Mohamed [2015] apply
normalizing flows to model the posterior distribution in variational inference.
Unfortunately, their computation graph is difficult to invert, not allowing the
exact evaluation of q(x; θ).

Chen et al. [2018] propose a continuous analog of normalizing flows that
utilizes the instantaneous change-of-variable formula, which only requires
computing the trace of the Jacobian as opposed to the determinant. This
reduces computational cost in many situations. Unfortunately, the evaluation
of their continuous normalizing flows relies on a numeric ODE solver, which
reintroduces computational cost in other places and results in approximation
error when computing q(x; θ). This approximation error causes bias in our
use case of Monte Carlo integration and therefore disqualifies their approach.

2Monte Carlo estimators that only sample from q(x; θ) are an exception, because they can simply
use the z that generated x. However, when using auxiliary PDFs (as in multiple importance
sampling) one must be able to evaluate q(x; θ) for x that were sampled externally. We note, that
in the context of MIS, it is also possible learn the MIS weights rather than basing them on q(x; θ),
which however invalidates the optimality guarantees of commonly used MIS heuristics.
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Kingma and Dhariwal [2018] extend RealNVP with invertible 1× 1 convo-
lutions, achieving better results. The 1× 1 convolutions, however, require
a deep computation graph to be effective, which is oppsite to the shallow
computation graph we desire for efficiency.

A number of recent approaches investigate the usage of normalizing flows
for auto-regressive density estimation [Kingma et al. 2016; Huang et al. 2018;
Papamakarios et al. 2017]. These “autoregressive flows” offer the desired
exact evaluation of q(x; θ). Unfortunately, they generally only permit either
efficient sample generation or efficient evaluation of q(x; θ), which makes
them prohibitively expensive for our needs.

Lastly, “non-linear independent components estimation” (NICE) [Dinh et
al. 2014, 2016] is a special case of autoregressive flows that allows both fast
sampling and density evaluation through the use of so-called “coupling lay-
ers”, the composition of which constituting a normalizing flow. Because of
NICE’s efficient sample generation and its efficient and exact density evalua-
tion, NICE satisfies all our postulated requirements for usage in Monte Carlo
integration and we therefore base our work on it. In the following section,
we introduce NICE in detail and proceed with describing our piecewise-
polynomial coupling layers that greatly increase its modeling capacity.

8.3 Non-linear Independent Components Estimation

In this section, we detail the works of Dinh et al. [2014, 2016] which form the
basis of our approach. The authors propose to learn a mapping between the
data and the latent space as a bijective compound function ĥ = hL ◦ · · · ◦ h2 ◦
h1, where each hi is a relatively simple bijective transformation (warp). The
choice of the type of h is different in the two prior works and in this chapter
(details follow in Section 8.4), but the key design principle remains: h needs to
be bijective with (computationally) tractable Jacobians. This enables exact and
fast inference of latent variables as well as exact and fast probability density
evaluation: recall, that given a differentiable mapping h : X → Y of points
x ∼ pX (x) to points y ∈ Y , we can compute the PDF pY (y) of transformed
points y = h(x) using the change-of-variables formula (Equation 2.45):

pY (y) = pX (x)
∣∣∣∣det

(
∂h(x)
∂xT

) ∣∣∣∣−1

,

where ∂h(x)
∂xT is the Jacobian of h at x. The cost of computing the determinant

grows superlinearly with the dimensionality of the Jacobian. If X and Y are
high-dimensional, computing pY (y) is therefore computationally intractable.
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The key proposition of Dinh et al. [2014] is to focus on a specific class of
mappings—referred to as coupling layers—that admit Jacobian matrices where
determinants reduce to the product of diagonal terms.

8.3.1 Coupling Layers

A single coupling layer takes a D-dimensional vector and partitions its di-
mensions into two groups. It leaves the first group intact and uses it to
parameterize the transformation of the second group.

Let x ∈ RD be an input vector, A and B denote disjoint partitions of
[[1, D]], and m be a function on R|A|, then the output of a coupling layer
y = (yA, yB) = h(x) is defined as

yA = xA , (8.3)

yB = C
(
xB; m(xA)

)
, (8.4)

where the coupling transform C : R|B| × m(R|A|) → R|B| is a separable and
bijective map.

The invertibility of the coupling transform, and the fact that partition A
remains unchanged, enables a trivial inversion of the coupling layer x =
h−1(y) as:

xA = yA , (8.5)

xB = C−1(yB; m(xA)
)
= C−1(yB; m(yA)

)
. (8.6)

If partition A was allowed to change, then the input to m for a correct in-
version would be near impossible to know. The invertibility is crucial in
our setting as we require both density evaluation and sample generation in
Monte Carlo integration.

The second important property of C is separability. Separable C ensures that
the Jacobian matrix is triangular and the determinant reduces to the product
of diagonal terms; see Dinh et al. [2014] or Section D.1 for a full treatment. The
computation of the determinant thus scales linearly with D and is therefore
tractable even in high-dimensional problems.

8.3.2 Affine Coupling Transforms

Additive Coupling Transform. Dinh et al. [2014] describe a very simple
coupling transform that merely translates the signal in individual dimensions
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...

Coupling layer h1 h2 hL

x z

Partition A

Partition B

xA

xB

yA

yB

m(xA)

C(xB; m(xA))

Figure 8.1: A coupling layer splits the input x into two partitions A and B. One partition is
left untouched, whereas dimensions in the other partition are warped using a parametric coupling
transform C driven by the output of a neural network m. Multiple coupling layers may need to be
compounded to achieve truly expressive transforms.

of B:

C(xB; t) = xB + t , (8.7)

where the translation vector t ∈ R|B| is produced by function m(xA).

Multiply-add Coupling Transform. Since additive coupling layers have
unit Jacobian determinants, i.e. they preserve volume, Dinh et al. [2016]
propose to add a multiplicative factor es:

C(xB; s, t) = xB � es + t , (8.8)

where � represents element-wise multiplication and vectors t and s ∈ R|B|

are produced by m: (s, t) = m(xA). The Jacobian determinant of a multiply-
add coupling layer is simply exp ∑ si.

The coupling transforms above are relatively simple. The trick that enables
learning non-linear dependencies across partitions is the parametric function
m. This function can be arbitrarily complex, e.g. a neural network, as we do
not need its inverse to invert the coupling layer and its Jacobian does not affect
the determinant of the coupling layer (cf. Section D.1). Using a sophisticated
m allows extracting complex non-linear relations between the two partitions.
The coupling transform C, however, remains simple, invertible, and permits
tractable computation of determinants even in high-dimensional settings.
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8.3.3 Compounding Multiple Coupling Layers

As mentioned initially, the complete transform between the data space and
the latent space is obtained by chaining a number of coupling layers. A
different instance of neural network m is trained for each coupling layer.
To ensure that all dimensions can be modified, the output of one layer is
fed into the next layer with the roles of the two partitions swapped; see
Figure 8.1. Compounding two coupling layers in this manner ensures that
every dimension can be altered.

The number of coupling layers required to ensure that each dimension can
influence every other dimension depends on the total number of dimen-
sions. For instance, in a 2D setting (where each partition contains exactly one
dimension) we need only two coupling layers. 3D problems require three
layers, and for any high-dimensional configuration there must be at least four
coupling layers.

In practice, however, high-dimensional problems (e.g. generating images of
faces), require significantly more coupling layers since each affine transform
is fairly limited. In the next section, we address this limitation by providing
more expressive mappings that allow reducing the number of coupling lay-
ers and thereby the sample-generation and density-evaluation costs. This
improves the performance of Monte Carlo estimators presented in Section 8.6.

8.4 Piecewise-polynomial Coupling Layers

In this section, we propose piecewise-polynomial, invertible maps as cou-
pling transforms instead of the limited affine warps reviewed previously.
Specifically, we introduce the usage of polynomials with degrees 1 and 2, i.e.
piecewise-linear and piecewise-quadratic warps. In contrast to Dinh et al.
[2014, 2016], who assume x, y ∈ (−∞,+∞)D and Gaussian latent variables,
we choose to operate in a unit hypercube (i.e. x, y ∈ [0, 1]D) with uniformly
distributed latent variables, as most practical problems span a finite domain.
Unbounded domains can still be handled by warping the input of h1 and the
output of hL e.g. using the sigmoid and logit functions.

Similarly to Dinh and colleagues, we ensure computationally tractable Jaco-
bians via separability. We transform each dimension independently:

C
(
xB; m(xA)

)
=
(

C1
(
xB

1 ; m(xA)
)

, · · · , C|B|
(
xB
|B|; m(xA)

))T
. (8.9)
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Figure 8.2: Predicted probability density functions (PDFs, left) and corresponding cumulative
distribution functions (CDFs, right) with K = 5 bins fitted to a target distribution (dashed). The
top row illustrates a piecewise-linear CDF that only supports fixed bin sizes and the bottom row a
piecewise-quadratic CDF with learned bin sizes.

Operating on unit intervals allows interpreting the warping function Ci as a
cumulative distribution function (CDF). To produce each Ci, we instrument
the neural network to output the corresponding unnormalized probability
density qi, and construct Ci by integration; see Figure 8.2 for an illustration.

In order to further improve performance, we propose to encode the inputs to
the neural network using one-blob encoding, which we discuss in Section 8.4.3.

8.4.1 Piecewise-Linear Coupling Transform

Motivated by their simplicity, we begin by investigating the simplest continu-
ous piecewise-polynomial coupling transforms: piecewise-linear ones. Recall
that we partition the D-dimensional input vector in two disjoint groups, A
and B, such that x = (xA, xB). We divide the unit dimensions in partition
B into K bins of equal width w = K−1. To define all |B| transforms at once,
we instrument the network m(xA) to predict a |B| × K matrix, denoted Q̂.
Each i-th row of Q̂ defines the unnormalized probability mass function (PMF)
of the warp in the i-th dimension of xB; we normalize the rows using the
softmax function Σ and denote the normalized matrix Q; Qi = Σ(Q̂i).
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Figure 8.3: Our coupling layer with a piecewise-quadratic transform for |B| = 4. Signals
in partition A (and additional features) are encoded using one-blob encoding and fed into a U-
shape neural network m with fully connected layers. The outputs of m are normalized yielding
matrices V and W that define warping PDFs. The PDFs are integrated analytically to obtain
piecewise-quadratic coupling transforms; one for warping each dimension of xB.
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Dinh et al. [2016] Ours (L=2)

Affine (L=2) Affine (L=4) Affine (L=16) P/w-linear P/w-quadratic Reference

Figure 8.4: Our 32-bin piecewise-linear (4-th column) and 32-bin piecewise-quadratic (5-th
column) coupling layers achieve superior performance compared to affine (multiply-add) coupling
layers [Dinh et al. 2016] on three 2-dimensional regression problem. The false-colored distributions
were obtained by optimizing KL divergence with uniformly drawn i.i.d. samples (weighted by the
reference value) over the 2D image domain.

The PDF in i-th dimension is then defined as qi(xB
i ) = Qib/w, where b =

bKxB
i c is the bin that contains the scalar value xB

i . We integrate the PDF to
obtain our invertible piecewise-linear warp Ci:

Ci(xB
i ) =

∫ xB
i

0
qi(t)dt = αQib +

b−1

∑
k=1

Qik , (8.10)

where α = KxB
i − bKxB

i c represents the relative position of xB
i in b.

In order to evaluate the change of density resulting from the coupling layer,
we need to compute the determinant of its Jacobian matrix; see Equation 2.45.
Since C(xB) is separable by definition, its Jacobian matrix is diagonal and
the determinant is equal to the product of the diagonal terms. These can be
computed using Q:

det

(
∂C
(
xB; Q

)
∂(xB)T

)
=
|B|

∏
i=1

qi(xB
i ) =

|B|

∏
i=1

Qib
w

, (8.11)

where b again denotes the bin containing the value in the i-th dimension. To
reduce the number of bins K required for a good fit we would like the network
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Affine (L=16) Piecewise-linear (L=2) Piecewise-quadratic (L=2)

scalar one-blob scalar one-blob scalar one-blob Reference

Figure 8.5: Results with scalar- and our one-blob input encoding. The experimental setup is the
same as in Figure 8.4. While the affine coupling transforms fail to converge with one-blob encoded
inputs, the distributions learned by the piecewise-polynomial coupling functions become sharper
and more accurate.

to also predict bin widths. These can unfortunately not easily be optimized
with gradient descent in the piecewise-linear case, which we demonstrate in
Section D.2. To address this, and to improve accuracy, we propose piecewise-
quadratic coupling transforms.

8.4.2 Piecewise-Quadratic Coupling Transform

Piecewise-quadratic coupling transforms admit a piecewise-linear PDF,
which we model using K + 1 vertices; see Figure 8.2, bottom left. We store
their vertical coordinates (for all dimensions in B) in |B| × (K + 1) matrix
V, and horizontal differences between neighboring vertices (bin widths) in
|B| × K matrix W.

The network m outputs unnormalized matrices Ŵ and V̂. We again normalize
the matrices using the standard softmax Wi = Σ(Ŵi), and an adjusted version
in the case of V:

Vi,j =
exp

(
V̂i,j

)
∑K

k=1
exp(V̂i,k)+exp(V̂i,k+1)

2 Wi,k

, (8.12)

where the denominator ensures that Vi represents a valid PDF.

The PDF in dimension i is defined as

qi(xB
i ) = lerp(Vib, Vib+1, α) , (8.13)

where α = (xB
i −∑b−1

k=1 Wik)/Wib represents the relative position of scalar xB
i

in bin b that contains it, i.e. ∑b−1
k=1 Wik ≤ xB

i < ∑b
k=1 Wik.

The invertible coupling transform is obtained by integration:

Ci(xB
i ) =

α2

2
(Vib+1 −Vib)Wib + αVibWib +

b−1

∑
k=1

Vik + Vik+1

2
Wik . (8.14)
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Examples from training data Generated novel images Manifold spanned by four images

Figure 8.6: Generative modeling of facial photographs using the architecture of Dinh et al. [2016]
with our piecewise-quadratic coupling transform. We show training examples (left), faces generated
by our trained model (middle), and a manifold of faces spanned by linear interpolation of 4 training
examples in latent space (right; training examples are in the corners).

Note that inverting Ci(xB
i ) involves solving the root of the quadratic term,

which can be done efficiently and robustly.

Computing the determinant of the Jacobian matrix follows the same logic
as in the piecewise-linear case, with the only difference being that we must
now interpolate the entries of V in order to obtain the PDF value at a specific
location (cf. Equation 8.13).

8.4.3 One-Blob Encoding

An important consideration is the encoding of the inputs to the network.
We propose to use the one-blob encoding—a generalization of the one-hot
encoding—where a kernel is used to activate multiple adjacent entries instead
of a single one. Assume a scalar s ∈ [0, 1] and a quantization of the unit
interval into k bins (we use k = 32). The one-blob encoding amounts to
placing a kernel (we use a Gaussian with σ = 1/k) at s and discretizing it into
the bins. With the proposed architecture of the neural network (placement of
ReLUs in particular, see Figure 8.3), the one-blob encoding effectively shuts
down certain parts of the linear path of the network, allowing it to specialize
the model on various sub-domains of the input.

In contrast to one-hot encoding, where the quantization causes a loss of
information if applied to continuous variables, the one-blob encoding is
lossless; it captures the exact position of s.
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8.4.4 Analysis

We compare the proposed piecewise-polynomial coupling transforms to
multiply-add affine transforms Dinh et al. [2016] on a 2D regression problem
in Figure 8.4. To produce columns 1–5, we sample the 2D domain using
uniform i.i.d. samples (16 384 samples per training step), evaluate the refer-
ence function (column 6) at each sample, and optimize the neural networks
that control the coupling transforms using KL divergence described in Sec-
tion 8.5.1. We also ran the same experiment with equally weighted i.i.d. sam-
ples drawn proportional to the reference function—i.e. in a density-estimation
setting—producing near-identical results (not shown). Every per-layer net-
work has a U-net (see Figure 8.3) with 8 fully connected layers, where the
outermost layers contain 256 neurons and the number of neurons is halved at
every nesting level. We use 2 additional layers to adapt the input and output
dimensionalities to and from 256, respectively. The networks only differ
in their output layer to produce the desired parameters of their respective
coupling transform (s and t, Q̂, or Ŵ and V̂).

We use adaptive bin sizes only in the piecewise-quadratic coupling transforms
because gradient descent can not easily be applied to optimize the piecewise-
linear case, which we demonstrate in Section D.2.

When using L = 2 coupling layers—i.e. 2× 10 fully connected layers—the
piecewise-polynomial coupling layers consistently perform better thanks
to their significantly larger modeling power, and outperform even large
numbers (e.g. L = 16) of multiply-add coupling layers, amounting to 16× 10
fully connected layers.

Figure 8.5 demonstrates the benefits of the one-blob encoding when com-
bined with our piecewise coupling transforms. While the encoding helps our
coupling transforms to learn sharp, non-linear functions more easily, it also
causes the multiply-add transforms of Dinh et al. [2016] to produce exces-
sive high frequencies that inhibit convergence. Therefore, in the rest of this
chapter we use the one-blob encoding only with our piecewise-polynomial
transforms; results with affine transforms do not utilize one-blob encoded
inputs.

We tested the piecewise-quadratic coupling layers also on a high-dimensional
density-estimation problem: learning the manifold of a specific class of natu-
ral images. We used the CelebFaces Attributes dataset [Liu et al. 2015] and
reproduced the experimental setting of Dinh et al. [2016]. Our architecture is
based on the authors’ publicly available implementation and differs only in
the coupling layer used and the depth of the network—we use 4 recursive
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subdivisions while the authors use 5, resulting in 28 versus 35 coupling lay-
ers. We chose K = 4 bins and did not use our one-blob encoding due to GPU
memory constraints. Since our coupling layers operate on the [0, 1]D domain,
we do not use batch normalization on the transformed data.

Figure 8.6 shows a sample of the training set, a sample of generated images,
and a visualization of the manifold given by four different faces. The visual
quality of our results is comparable to those obtained by Dinh and colleagues.
We perform marginally better in terms of negative log-likelihood (lower
means better): we yield 2.85 and 2.89 bits per dimension on training and
validation data, respectively, whereas Dinh et al. [2016] reported 2.97 and 3.02
bits per dimension. We tried decreasing the number of coupling layers while
increasing the number of bins within each of them, but the results became
overall worse. We hypothesize that the high-dimensional problem of learning
distributions of natural images benefits more from having many coupling
layers rather than having fewer but expressive ones.

8.5 Monte Carlo Integration with NICE

In this section, we reduce the variance of Monte Carlo integration by extract-
ing sampling PDFs from observations of the integrand. Denoting q(x; θ) the
to-be-learned PDF for drawing samples (θ represents the trainable parame-
ters) and p(x) the ground-truth distribution of the integrand, we can rewrite
the MC estimator from Equation 3.3as

〈F〉N =
1
N

N

∑
i=1

f (Xi)

q(Xi; θ)
=

1
N

N

∑
i=1

p(Xi) F
q(Xi; θ)

. (8.15)

In the ideal case when q(x; θ) = p(x), the estimator returns the exact value of
F. Our objective here is to leverage NICE to learn q from data while optimizing
the neural networks in coupling layers so that the distance between p and q
is minimized.

We follow the standard approach of quantifying the distance using one of the
commonly used divergence metrics. While all divergence metrics reach their
minimum if both distributions are equal, they differ in shape and therefore
produce different q in practice.

In Section 8.5.1, we optimize using the popular Kullback-Leibler (KL) diver-
gence. We further consider directly minimizing the variance of the resulting
MC estimator in Section 8.5.2 and demonstrate that it is equivalent to mini-
mizing the χ2 divergence.
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8.5.1 Minimizing Kullback-Leibler Divergence

Most generative models based on deep neural networks do not allow eval-
uating the likelihood q(x; θ) of data points x exactly and/or efficiently. In
contrast, our work is based on bijective mappings with tractable Jacobian
determinants that easily permit such evaluations. In the following, we show
that minimizing the KL divergence with gradient descent amounts to directly
maximizing a weighted log likelihood.

The KL divergence between p(x) and the learned q(x; θ) reads

DKL(p ‖ q; θ) =
∫

Ω
p(x) log

p(x)
q(x; θ)

dx

=
∫

Ω
p(x) log p(x)dx−

∫
Ω

p(x) log q(x; θ)dx︸ ︷︷ ︸
Cross entropy

. (8.16)

To minimize DKL with gradient descent, we need its gradient with respect
to the trainable parameters θ. These appear only in the cross-entropy term,
hence

∇θDKL(p ‖ q; θ) = −∇θ

∫
Ω

p(x) log q(x; θ)dx (8.17)

= E

[
− p(X)

q(X; θ)
∇θ log q(X; θ)

]
, (8.18)

where the expectation is over X ∼ q(x; θ), i.e. the samples are drawn from
the learned generative model3. In most integration problems, p(x) is only
accessible in an unnormalized form through f (x): p(x) = f (x)/F. Since
F is unknown—this is what we are trying to estimate in the first place—
the gradient can be estimated only up to the global scale factor F. This is
not an issue since common gradient-descent-based optimization techniques
such as Adam [Kingma and Ba 2014] scale the step size by the reciprocal
square root of the gradient variance, cancelling F. Furthermore, if f (x) can
only be estimated via Monte Carlo, the gradient is still correct due to the
linearity of expectations. Equation 8.18 therefore shows that minimizing the
KL divergence via gradient descent is equivalent to minimizing the negative
log likelihood weighted by MC estimates of F.

3If samples could be drawn directly from the ground-truth distribution—as is common in com-
puter vision problems—the stochastic gradient would simplify to that of just the log likelihood.
We discuss a generalization of log-likelihood maximization.
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8.5.2 Minimizing Variance via χ2 Divergence

The most attractive quantity to minimize in the context of (unbiased) Monte
Carlo integration is the variance of the estimator. Inspired by previous works
that strive to directly minimize variance [Pantaleoni and Heitz 2017; Vévoda
et al. 2018], we demonstrate how this can be achieved for the MC estimator
p(X)/q(X; θ), with X ∼ q(x; θ), via gradient descent. We begin with the
variance definition and simplify:

V

[
p(X)

q(X; θ)

]
= E

[
p(X)2

q(X; θ)2

]
−E

[
p(X)

q(X; θ)

]2

=
∫

Ω

p(x)2

q(x; θ)
dx−

(∫
Ω

p(x)dx
)2

︸ ︷︷ ︸
1

. (8.19)

The stochastic gradient of the variance for gradient descent is then

∇θV

[
p(X)

q(X; θ)

]
= ∇θ

∫
Ω

p(x)2

q(x; θ)
dx

=
∫

Ω
p(x)2∇θ

1
q(x; θ)

dx

=
∫

Ω
− p(x)2

q(x; θ)
∇θ log q(x; θ)dx

= E

[
−
(

p(X)

q(X; θ)

)2

∇θ log q(X; θ)

]
. (8.20)

Relation to the Pearson χ2 divergence Upon close inspection it turns
out the variance objective (Equation 8.19) is equivalent to the Pearson χ2

divergence Dχ2(p ‖ q; θ):

Dχ2(p ‖ q; θ) =
∫

Ω

(p(x)− q(x; θ))2

q(x; θ)
dx

=
∫

Ω

p(x)2

q(x; θ)
dx−

(
2
∫

Ω
p(x)dx−

∫
Ω

q(x; θ)dx
)

︸ ︷︷ ︸
1

. (8.21)

As such, minimizing the variance of a Monte Carlo estimator amounts to
minimizing the Pearson χ2 divergence between the ground-truth and the
learned distributions.
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Connection between the χ2 and KL divergences Notably, the gradients
of the KL divergence and the χ2 divergence differ only in the weight applied
to the log likelihood. In ∇θDKL the log likelihood is weighted by the MC
weight, whereas when optimizing ∇θDχ2 , the log likelihood is weighted by
the squared MC weight. This illustrates the difference between the two loss
functions: the χ2 divergence penalizes large discrepancies stronger, specif-
ically, low values of q in regions of large density p. As such, it tends to
produce more conservative q than DKL, which we observe in Section 8.6 as
fewer outliers at the cost of slightly worse average performance.

8.6 Neural Path Sampling and Path Guiding

In this section, we take NICE (Section 8.3) with piecewise-polynomial warps
(Section 8.4) and apply it to sequential MC integration of light transport using
the methodology described in Section 8.5.

Our goal is to reduce estimation variance by “guiding” the construction
of light paths using sampling densities learned on the fly by leveraging
the on-line-learning framework with iterations of geometrically growing
sample counts developed in Chapter 7. We explore two different settings: a
global setting that leverages the path-integral formulation of light transport
and employs high-dimensional sampling in the primary sample space (PSS;
see Section 4.5.5) to build complete light-path samples (Section 8.6.1), and a
local setting, natural to the rendering equation, where the integration spans a
2D (hemi-)spherical domain and the path is built incrementally (Section 8.6.2).

8.6.1 Primary-Sample-Space Path Sampling

Operating in PSS (see Section 4.5.5) has a number of compelling advantages.
The sampling routine has to be evaluated only once per path, instead of once
per path vertex, and the generic nature of PSS coordinates enables treating
the path construction as a black box. Importance sampling of paths can
thus be applied to any single path-tracing technique, and, with some effort,
also to multiple strategies Lafortune and Willems [1995]; Veach and Guibas
[1994]; Kelemen et al. [2002]; Hachisuka et al. [2014]; Guo et al. [2018]. Lastly,
the sampling routine directly benefits from existing importance-sampling
techniques in the underlying path-tracing algorithm since those make the
path-contribution function smoother in PSS and thus easier to learn.
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Methodology Given that NICE scales well to high-dimensional problems,
applying it in PSS is straightforward. We split the dimensions of U into two
equally-sized groups A and B, where A contains the even dimensions and
B contains the odd dimensions. One group serves as the input of the neural
network (each dimension is processed using the one-blob encoding) while
the other group is being warped; their roles are swapped in the next coupling
layer. To infer the parameters θ of the networks, we minimize one of the
losses from Section 8.5 against p(x) = Li(x1← x2)T(x)Wxy(xk−1← xk) F−1,
ignoring the unknown normalization factor, i.e. assuming F = 1.

In order to obtain a path sample x, we generate a random vector z,
warp it using the reversed inverted coupling layers, and apply the path-
construction technique: x = ρ

(
h−1

1

(
· · · h−1

L (z)
))

; please refer back to Equa-
tions 8.5 and 8.6 for details on the inverses. In this project, all our experiments
were conducted with ρ corresponding to a unidirectional path tracer, but in
principle other path construction techniques could be used. Their advan-
tages and disadvantages in the primary-sample-space setting remain to be
investigated.

Before we analyze the performance of primary-sample-space path sampling
in Section 8.6.4, we discuss neural path guiding, which applies NIS at each
vertex of the path—essentially replacing the SD-tree in PPG from Chapter 7—
and typically yields higher performance.

8.6.2 Path Guiding

The concept of path guiding by leveraging observations of the directional
integrand to construct sampling densities and previous work on the topic
has already been discussed in detail in Section 7.2. Therefore, in this section,
we will focus on the main differences of applying NIS to path guiding, which
we dub neural path guiding (NPG), as opposed to using the SD-tree from
Chapter 7 or other previous work [Vorba et al. 2014].

All previous path-guiding approaches rely on carefully chosen data structures
(e.g. BVHs, kD-trees) in combination with relatively simple PDF models (e.g.
histograms, quad-trees, gaussian mixture models), which are populated in
a data-driven manner either in a pre-pass or on line during rendering. Our
goal is also to learn accurate local sampling densities, but we utilize NICE to
represent and sample from q(ωi|x, ωo).

Methodology. We use a single instance of NICE, which is trained and sam-
pled from in an interleaved manner: drawn samples are immediately used for
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training, and training results are immediately used for further sampling. In
the most general setting, we consider learning q(ωi|x, ωo) that is proportional
to the product of all terms in the integrand. Since the integration domain is
only 2D, partitions A and B in all coupling layers contain only one dimension
each—one of the two cylindrical coordinates that we use to parameterize the
sphere of directions.

To produce the parameters of the first piecewise-polynomial coupling func-
tion, the neural network m takes the cylindrical coordinate from A, the posi-
tion x and direction ωo that condition the density, and additional information
that may improve inference; we also input the normal of the intersected shape
at x to aid the network in learning distributions that correlate with the local
shading frame. The subsequent piecewise-polynomial coupling functions
are parameterized by their corresponding neural networks analogously as
described in Section 8.3.3.

We one-blob encode all of the network inputs as described in Section 8.4.3
with k = 32. In the case of x, we normalize it by the scene bounding box,
encode each coordinate independently, and concatenate the results into a
single array of 3× k values. We proceed analogously with directions, which
we parameterize using world-space cylindrical coordinates: we transform
each coordinate to [0, 1] interval, encode it, and append to the array. The im-
proved performance enabled by our proposed one-blob encoding is reported
in Table 8.1.

At any given point during rendering, a sample is generated by drawing a
random pair u ∈ [0, 1]2, passing it through the inverted coupling layers in
reverse order, h−1

1 (· · · h−1
L (u)), and transforming to the range of cylindrical

coordinates to obtain ωi.

MIS-aware Optimization. In order to optimize the networks, we use Adam
with one of the loss functions from Section 8.5, but with an important,
problem-specific alteration. To sample ωi, most current renderers apply
multiple importance sampling (MIS) [Veach and Guibas 1995] to combine
multiple sampling densities (e.g. to estimate direction illumination or impor-
tance sample the BSDF). When learning the product, we take this into account
by optimizing the networks with respect to the final (MIS) PDF instead of
the density learned using NICE. If certain parts of the product are already
covered well by existing densities, the networks will therefore be optimized
to only handle the remaining problematic case.

We therefore optimize D(p ‖ q′) where q′ = wq + (1 − w)p fs and
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p(ωi|x, ωo) = Li(x, ωi) fs(x, ωi→ωo)| cos γ|F−1 (we again ignore the normal-
ization constant F) and p fs is the PDF for sampling the BSDF.

We use an additional network m̂ to learn optimal MIS weights w =
l(m̂(x, ωo)) and optimize it jointly with the other networks; all networks
use the same architecture and l is the logistic function. To prevent over-
fitting to local optima with degenerate MIS weights, we use loss funtion
β(τ)D(p ‖ q) +

(
1 − β(τ)

)
D(p ‖ q′) where τ ∈ [0, 1] is the fraction of ex-

hausted render budget (either time or sample count) and β(τ) = 1/2 · (1/3)5τ.

BSDFs that are a mixture of delta and smooth functions—such as plastic—
require a small amount of special handling. While our stochastic gradient
in Section 8.5 in theory is well behaved with delta functions, they need to
be treated as finite quantities in practice due to the limitations of floating
point numbers. When the path tracer samples delta components, continuous
densities therefore need to be set to 0 and optimization of our coupling
functions disabled (by setting their loss to 0), effectively only optimizing for
MIS weights.

Discussion. Our approach to sampling the full product of incident radi-
ance, the BSDF, and foreshortening Li(x, ωi) fs(x, ωi→ωo)| cos γ| has three
distinct advantages. First, it is agnostic to the number of dimensions that
the 2D domain is conditioned on. This allows for high-dimensional condi-
tionals without sophisticated data structures. One can simply input extra
information into the neural networks and let them learn which dimensions
are useful in which situations. While we only pass in the surface normal,
the networks could be supplied with additional information—e.g. textured
BSDF parameters—to further improve the performance in cases where the
product correlates with such information. In that sense, our approach is more
automatic then previous works.

The second advantage is that our method does not require any precom-
putation, such as fitting of (scene-dependent) materials into a mixture of
gaussians [Herholz et al. 2016, 2018]. While a user still needs to specify the
hyperparameters as is also required by most other approaches, we found
our configuration of hyperparameters to work well across all tested scenes.
Note, however, that our lack of explicit factorization can also be detrimental
in situations where the individual factors are much simpler functions to learn
than their product and said product can be efficiently sampled from.

Lastly, our approach offers trivial persistence across renders. A set of net-
works trained on one camera view can be reused from a different view
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or within a slightly modified scene; see Section 8.6.4. Unlike previous ap-
proaches, where the learned data structure requires explicit support of adapta-
tion to new scenes, neural networks can be adapted by the same optimization
procedure that was used in initial training. Applying our approach to anima-
tions could thus yield sub-linear training cost by amortizing it over multiple
frames.

8.6.3 Experimental Setup

We implemented our technique in Tensorflow Abadi et al. [2015] and inte-
grated it with the Mitsuba renderer Jakob [2010]. Before we start rendering,
we initialize the trainable parameters of our networks using Xavier initial-
ization Glorot and Bengio [2010]. While rendering the image, we optimize
them using Adam Kingma and Ba [2014]. Our rendering procedure is im-
plemented as a hybrid CPU/GPU algorithm, tracing rays in large batches
on the CPU while two GPUs perform all neural-network-related tasks. One
GPU is responsible for computing MIS weights and evaluating and sampling
from q, while the other trains the networks using Monte Carlo estimates from
completed paths. Both GPUs use minibatch sizes of 100 000 samples. Com-
munication between the CPU and GPUs happens via asynchronous buffers to
aid parallelization. MIS weight computation and q-evaluation and -sampling
communicate via asynchronous queues that are processed as fast as possi-
ble. Our training buffer is configured to always contain the latest 2 000 000
samples of which minibatches are randomly selected for optimization. This
procedure decorrelates samples that are nearby in the image plane.

In order to obtain the final image with N samples, we perform M =
blog2(N + 1)c iterations with power-of-two sample counts 2i; i ∈ {0, . . . , M},
as proposed in Chapter 7. In contrast to Chapter 7, however, we do not reset
the learned distributions at every power-of-two iteration and keep training
the same set of networks from start to finish. At any point during rendering
the latest samples are used for training the neural networks and the latest
training results are used for drawing samples. Furthermore, instead of dis-
carding the samples of earlier iterations, we weight the images produced
within each iteration by their reciprocal mean pixel variance, which we esti-
mate on the fly. This strategy was discussed in Section 7.6.2 as an alternative
to automatically determining a training-rendering budget split and we ob-
tained the best results with it. We apply the same weighting scheme to PPG
when comparing against it in this chapter to ensure a fair comparison.

All results in this chapter were produced on a workstation with two Intel
Xeon E5-2680v3 CPUs (24 cores; 48 threads) and two NVIDIA Titan Xp
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Figure 8.7: Neural path sampling in primary sample space 1. We compare a standard uni-
directional path tracer (PT-Unidir), the method by Guo et al. [2018] (PSSPG), neural path sampling
using L = 16 multiply-add coupling layers Dinh et al. [2016], and L = 4 of our proposed piecewise-
quadratic coupling layers, both optimized using the KL divergence. We experimented with sampling
the 1, 2, or 3 first non-specular bounces (NPS–2D, NPS–4D and NPS–6D). Overall, our technique
performs best in terms of mean absolute percentage error (MAPE) in this experiment, but only
rarely offers improvement beyond the 4D case.
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Figure 8.8: Neural path guiding 1. We compare a uni-directional path tracer (PT-Unidir), our
PPG algorithm, the gaussian mixture model (GMM) of Vorba et al. [2014], and variants of our
framework with L = 4 coupling layers sampling the incident radiance alone (NPG-Radiance) or
the whole integrand (NPG-Product), when optimizing either the KL and χ2 divergences. Overall,
sampling the whole integrand with the KL divergence yields the most robust results.
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Figure 8.9: Neural path sampling in primary sample space 2. We compare a standard uni-
directional path tracer (PT-Unidir), the method by Guo et al. [2018] (PSSPG), neural path sampling
using L = 16 multiply-add coupling layers Dinh et al. [2016], and L = 4 of our proposed piecewise-
quadratic coupling layers, both optimized using the KL divergence. We experimented with sampling
the 1, 2, or 3 first non-specular bounces (NPS–2D, NPS–4D and NPS–6D). Overall, our technique
performs best in terms of mean absolute percentage error (MAPE) in this experiment, but only
offers improvement beyond the 4D case if paths stay coherent, e.g. in the top crop of the SPACESHIP

scene.
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Figure 8.10: Neural path guiding 2. We compare a uni-directional path tracer (PT-Unidir), our
PPG algorithm, the gaussian mixture model (GMM) of Vorba et al. [2014], and variants of our
framework with L = 4 coupling layers sampling the incident radiance alone (NPG-Radiance) or
the whole integrand (NPG-Product), when optimizing either the KL and χ2 divergences. Overall,
sampling the whole integrand with the KL divergence yields the most robust results. Note how
optimizing the χ2 divergence tends to produce higher variance overall, but fewer outliers, in
particular in the SWIMMING POOL scene.
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GPUs.Due to the combined usage of both the CPU and the GPU, runtimes of
different techniques depend strongly on the particular setup. We therefore
focus on comparing the performance using equal-sample-count metrics that are
independent of hardware. Absolute timings and an equal-time comparison
of a subset of the scenes and methods are provided for completeness.

We quantify the error using the mean absolute percentage error (MAPE), which
is defined as 1

N ∑N
i=1 |vi − v̂i|/(v̂i + ε), where v̂i is the value of the i-th pixel

in the ground-truth image, vi is the value of the i-th rendered pixel, and
ε = 0.01 serves the dual objective of avoiding the singularity at v̂i = 0 and
down-weighting close-to-black pixels.

8.6.4 Results

In order to best illustrate the benefits of different neural-importance-sampling
approaches, we compare their performance when used on top of a unidirec-
tional path tracer that uses BSDF sampling only. While none of the results
utilized next-event estimation (including prior works), we recommend us-
ing it in practice for best performance. In the following, all results with
our piecewise-polynomial coupling functions utilize L = 4 coupling layers.
We use 1023 samples per pixel (spp) on all scenes except for the COPPER

HAIRBALL (2047 spp) and YET ANOTHER BOX (4095 spp). Our images were
rendered at low resolutions (640× 360 and 512× 512), which means lower
spp would be required at high definition to achieve the same total sample
count, leading to learned distributions of the same quality (9× fewer spp
at 1920× 1080). We therefore also report the total sample count as mega
samples (MS) as it reflects the quality of learned distributions independent of
resolution.

In Figures 8.7 and 8.9, we study primary-sample-space path sampling using
our implementation of the technique by Guo et al. [2018] (PSSPG) and our
neural path sampling (NPS) with piecewise-polynomial and affine coupling
transforms. We apply the sampling to only a limited number of non-specular
interactions in the beginning of each path and sample all other interactions
using uniform random numbers. We experimented with three different prefix
dimensionalities: 2D, 4D, and 6D, which correspond to importance sampling
path prefixes of 1, 2, and 3 non-specular vertices, respectively. As shown in
the figure, going beyond 4D brings typically little improvement, except for the
highlights in the SPACESHIP, where even longer paths are correlated thanks
to highly-glossy interactions with the glass of the cockpit4. This confirms

4Due to faster training of lower-dimensional distributions, the 2D case still has the least overall
noise in the SPACESHIP scene.
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the observation of Guo et al. [2018] that cases where more than two bounces
are needed to connect to the light source offer minor to no improvement.
We speculate that the poor performance in higher dimensions is due to the
relatively weak correlation between path geometries and PSS coordinates,
i.e. paths with similar PSS coordinates may have drastically different vertex
positions. The correlation tends to weaken at each additional bounce (e.g. in
the diffuse CORNELL BOX) unless the underlying path importance-sampling
technique preserves path coherence.

In Figures 8.8 and 8.10, we analyze the performance of different path-guiding
approaches, referring to ours as neural path guiding (NPG). We compare our
work to the respective authors’ implementations of practical path guiding (PPG)
by Müller et al. [2017] and the bidirectionally trained gaussian mixture model
(GMM) by Vorba et al. [2014] which are both learning sampling distributions
that are, in contrast to ours, proportional to incident radiance only. We
extended the public GMM implementation to (oriented) spherical domains.
To isolate the benefits of using NICE with piecewise-quadratic coupling
layers, we created a variant of our approach that learns densities proportional
to just incident radiance and disregards MIS (NPG-Radiance). The radiance-
driven neural path guiding outperforms PPG and GMM in 13 out of 16 scenes
and follows closely in the others (BOOKSHELF, COPPER HAIRBALL, and
SPONZA ATRIUM), making it the most robust method out of the three.

The performance of our neural approach is further increased by learning
and sampling proportional to the full product and incorporating MIS into
the optimization—this technique yields the best results in nearly all scenes.
As seen on the COPPER HAIRBALL, our technique can learn the product
even under high-frequency spatial variation by passing the surface normal
as an additional input to the networks. We trained all techniques with the
same number of samples as used for rendering. The SD-tree and our neural
networks used between 5 MB and 10 MB, the gaussian mixture model used
between 5 MB and 118 MB; the references required about 5 GB.

Table 8.1 reports the MAPE metric for a set of 16 tested scenes. We also
visualize the results of all methods using bar charts in Figure 8.11; the height
is normalized with respect to PPG. We exclude GMM results for the GLOSSY

KITCHEN and VEACH DOOR scenes due to crashes and bias, respectively.
Path sampling in PSS typically yields significantly worse results than all
path-guiding approaches. Neural path guiding always benefits (sometimes
significantly) from encoding the inputs with one-blob encoding as opposed
to inputing raw (scalar) values.
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Figure 8.12: Convergence plots of unidirectional path tracing (PT-Unidir), practical path guiding
(PPG) [Müller et al. 2017], the algorithm of Vorba et al. [2014] (GMM), and our radiance- and
product-based neural path guiding (NPG-Radiance and NPG-Product, respectively). We plot
MAPE as a function of samples per pixel (spp) on a logarithmic scale. All guiding methods perform
slightly worse than naı̈ve path tracing initially, but overtake it rapidly on most scenes as they learn
to importance sample. PPG tends to learn slightly faster than our NPG, but falls behind due to
learning a worse distribution. The algorithm of Vorba et al. [2014] only begins converging at the
half-way point due to being trained offline using the first half of the sample budget.
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Empirical Convergence Analysis. Convergence plots in Figure 8.12 pro-
vide further insight into the differences between unidirectional path tracing,
the GMMs by Vorba et al. [2014], PPG (Chapter 7), and our radiance- and
product-based neural-path-guiding algorithms. In most cases, the on-line
path-guiding algorithms quickly learn a superior sampling density compared
to the baseline path tracer. The GMM algorithm is trained offline and there-
fore is inferior in the beginning of rendering. Nonetheless, the GMMs produce
competitive results after the total sample budget is exhausted. Our neural
approaches produce the best results most of the time, with our product-based
approach usually being superior to our radiance-based approach.

Optimizing KL vs. χ2 Divergence. We compare variants of product-driven
neural path guiding optimized using the Kullback-Leibler (KL) and χ2 diver-
gences during training. The squared Monte Carlo weight in the χ2 gradient
causes a large variance, making it difficult to optimize with. We remedy this
problem by clipping the minibatch gradient norm to a maximum of 50. While
the χ2 divergence in theory minimizes the estimator variance most directly
(see Section 8.5.2), it performs worse in practice according to all tested metrics
on all test scenes (see Table 8.1 and Figures 8.8 and 8.10). A notable aspect of
optimizing the χ2 divergence is that it tends to produce results with higher
variance overall, but fewer and less-extreme outliers.

Accuracy of Learned Distributions. We visualize learned radiance distri-
butions in Figure 8.13, comparing our technique against the SD-tree of PPG,
the GMM, and a reference solution. In most cases, NPG learns more accurate
directional distributions than the competing methods in terms of the MAPE
metric. Additionally, NPG produces a spatially and directionally continuous
function.

MIS-Aware Optimization. In Figure 8.15, we demonstrate the increased
robustness of neural path guiding offered by optimizing MIS weights. The
impact is particularly noticeable on the cockpit of the spaceship seen through
specular interactions, which are handled nearly optimally by sampling the
material BSDF. In this region, a standard path tracer outperforms the learned
sampling PDFs. With MIS-aware optimization—including the learning of
MIS weights—the system downweights the contribution of the learned PDF
on the cockpit, but increases it in regions where it is more accurate, resulting
in significantly improved results overall.
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CORNELL BOX COUNTRY KITCHEN SWIMMING POOL

MAPE: 3.17 2.89 0.32 1.42 1.36 1.95 1.53 2.15 0.89

MAPE: 4.68 5.00 1.30 2.87 0.81 0.72 1.32 1.03 0.69

GMM PPG NPG Ref. GMM PPG NPG Ref. GMM PPG NPG Ref.

Figure 8.13: Directional radiance distributions. From left to right: we visualize the distributions
learned by a Gaussian mixture model (GMM) [Vorba et al. 2014], an SD-tree (PPG) [Müller et al.
2017], our neural path-guiding approach trained on radiance (NPG-Rad.), and a spatial binary tree
with a directional regular 128× 128 grid (Reference). The first three approaches were trained with
an equal sample count and require roughly equal amounts of memory in the above scenes (around 10
MB). We used 216 samples per pixel to generate the reference distributions, which require roughly
5 GB per scene. Despite its large computational cost, the reference solution is still slightly blurred
(CORNELL BOX, red).

Weight Reuse Across Camera Views. Figure 8.14 demonstrates the ben-
efits of reusing networks, optimized for a particular camera view, in a novel
view of the scene. We took network weights that resulted from generating
images for Figures 8.8 and 8.10 as the initial weights for rendering images in
the right column of Figure 8.14. Similarly to training from scratch, we keep
optimizing the networks. If the initial distributions are already a good fit, our
weighting scheme by the reciprocal mean pixel variance automatically keeps
initial samples rather than discarding them.

Equal-Time Comparison. Lastly, we analyze the computational overhead
of neural importance sampling in an equal-time comparison of unidirectional
path tracing, PPG, and our product-driven NPG; see Figure 8.16. All tech-
niques utilize a CPU for tracing paths. In addition, PPG uses the CPU for
building and sampling the SD-tree, while our NPG also leverages two GPUs.

The radiance-driven PPG often performs best due to its small computational
overhead, except when light transport is simple and/or the radiance-driven
distribution is a poor fit to the product (e.g. the scenes in the top row). Despite
utilizing two extra GPUs, the product-driven NPG is comparatively slow,
on average constructing only about a quarter of the number of samples
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Figure 8.14: Learned distributions can be reused for
novel camera views to improve performance. The right
column shows results where the network weights were
initialized with weights learned for camera views in Fig-
ures 8.8 and 8.10.

Fixed weights

Learned weights

Figure 8.15: Learning MIS
weights leads to significantly better
results on the SPACESHIP cockpit,
where BSDF sampling is near
optimal.

that PPG constructs. However, since these samples are of “higher quality”,
the technique manages to close most of the performance gap to PPG and
unidirectional path tracing, in some cases producing the best results (e.g. in
SALLE DE BAIN).

8.7 Discussion

Runtime Cost. An important property of practical sampling strategies is
a low computational cost of generating samples and evaluating their PDF,
relative to the cost of evaluating the integrand. In our path-guiding appli-
cations, the cost is dominated by the evaluation of coupling layers: roughly
10% of the time is spent on one-blob encoding, 60% on fully connected lay-
ers, and 30% on the piecewise-polynomial warp. This makes the overhead
of our implementation prohibitive in simple scenes. While we focused on
the theoretical challenge of applying neural networks to the problem of im-
portance sampling in this work, accelerating the computation to make our
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Figure 8.16: Equal-time comparison of unidirectional path tracing (PT-Unidir), practical path
guiding (PPG), and our product-driven neural path guiding (NPG-Product). Despite the large
computation cost of NPG, it performs competitively with PPG and unidirectional path tracing in
scenes with difficult light transport (bottom two rows, sorted by difficulty in ascending order).

approach more practical is an important and interesting future work. We
believe specialized hardware (e.g. NVIDIA’s TensorCores) and additional
computation graph optimization (e.g. NVIDIA’s TensorRT) are promising
next steps, which alone might be enough to bring our approach into the realm
of practicality.

Optimizing for Multiple Integrals. In Section 8.5.1, we briefly discussed
that the ground-truth density may be available only in unnormalized form.
We argued that this is not a problem since the ignored factor F scales all
gradients uniformly; it thus does not impact the optimization. These argu-
ments pertain to handling a single integration problem. In Section 8.6, we
demonstrated applications to path sampling and path guiding, where the
learned density is conditioned on additional dimensions and we are thus
solving many different integrals at once. Since the normalizing F varies be-
tween them, our arguments do not extend to this particular problem. Because
neglecting the normalization factors is potentially negatively influencing the
optimization, we experimented with tabulating F, but we did not experience
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noticeable improvements. This currently stands as a limitation of applying
our work to path guiding/sampling and it would be worth addressing in
future work.

Convergence of Optimization. Although our optimization based on
stochastic gradients has many advantages, it also brings certain disadvan-
tages. Techniques based on stochastic gradient descent do not converge to
local optima, but oscillate around them. This also happens during neural
path guiding. The problem is well known in machine learning literature and
is usually addressed by decaying the learning rate over time. We opted not
to decay our learning rate for simplicity, because finding an optimal decay
schedule is a difficult problem. Solving this issue in the future would likely
improve our results further, perhaps significantly.

Alternative Training Schemes. Dahm and Keller [2017] learn the 5D ra-
diance field by minimizing an approximation (via Q-learning) of the total-
variation divergence. While they cannot sample from the resulting 5D dis-
tribution, they are able to learn near-optimal light selection probabilities for
next event estimation. This optimization strategy and variations thereof are
an interesting alternative to our KL and χ2 divergence loss functions. An-
other attractive goal is a unified optimization across multiple different scenes,
rather than training from scratch for each one. A potentially fruitful extension
our approach would be to apply a higher-level optimization strategy in the
spirit of “learning to learn” Andrychowicz et al. [2016]; Chen et al. [2017].

Failure Cases. In the pathologically difficult YET ANOTHER BOX scene,
the theoretically inferior radiance-based NPG produces slightly better results
than product-based NPG. We suspect that this is caused by the product
distribution being much more complicated and therefore more difficult to
learn than the radiance distribution. Furthermore, in the BOOKSHELF scene,
our approaches perform worse than the GMM algorithm by Vorba et al. [2014].
Although in our experiments our method exhibits fewer of such failure cases
than PPG and the GMMs, a detailed investigation into their causes is still to
be carried out and could gain interesting insights.

Scene Scale. We studied the performance of neural path guiding when all
positions that are input to it are relatively close compared to the scene bound-
ing box. We artificially scaled the positional inputs by 10−5 in the COUNTRY

KITCHEN scene, observing a roughly 2× larger error. While the method
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still outperforms path tracing by a big margin, alleviating this limitation is
promising future work.

Alternative Variance-Reduction Techniques. In this chapter, we studied
the application of neural networks to importance sampling. Other variance-
reduction techniques, such as control variates, could enjoy analogous benefits.
We believe similar derivations to Section 8.5 can be made, leading to an
interconnected gradient-descent-based optimization of multiple variance
reduction techniques.
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C H A P T E R 9
Conclusion

In this dissertation, we presented three data-driven techniques that increase
the efficiency of path-traced light-transport simulation. We conclude by
summarizing the results and findings from each of the techniques, outlining
promising future research directions, and providing an outlook towards the
future of machine learning in the field of light-transport simulation.

9.1 Multiple Scattering in Translucent Materials

Shell Transport Functions. We presented a new technique for render-
ing translucent materials that is based on shell transport functions [Moon
et al. 2007; Lee and O’Sullivan 2007]. Our technique only requires a sin-
gle scene-independent precomputation and has comparable performance to
diffusion-based approximations while yielding significantly higher accuracy.
We achieved scene-independent precomputation of shell transport functions
by introducing a parameterization that allows the usage of white Monte
Carlo [Alerstam et al. 2008] which we imported from the field of biomedical
optics.

Heterogeneous Granular Media. Since our shell transport functions op-
erate on continuous participating media, we were able to apply them to
rendering of heterogeneous granular media by extending previous work by
[Meng et al. 2015; Müller 2016] that can approximate granular media as con-
tinuous media. We additionally introduced an error-analysis-based heuristic
that combines explicit path tracing, proxy path tracing [Müller 2016], and our
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shell tracing in a scene-adaptive manner, resulting in a holistic acceleration
of rendering heterogeneous granular media. Parts of the algorithm were
eventually implemented in Disney’s Hyperion renderer.

Future Work on Shell Transport Functions. The main limitation of our
parameterization of shell transport functions is that it relies on the Henyey-
Greenstein phase function. Incorporating other phase functions would in-
crease the STF dimensionality infeasibly. In the future, it would be interesting
to investigate phase-function representations that are independent from the
underlying model, similar to the BSDF representation of Herholz et al. [2016,
2018], to permit a more general low-dimiensional STF parameterization.

Future Work on Granular Media. The continuous-volume approximation
that we use [Meng et al. 2015; Müller 2016] only supports independently
oriented grains that are situated within non-overlapping bounding spheres.
Real granular media are often packed much more tightly in such a way
that neighboring grains influence each other’s orientation. It is therefore
paramount to take such situations into account in order to synthesize the
granular appearance more accurately. Since it is difficult to parameterize
the mutual physical interactions between large numbers of grains with few
dimensions, it may be worthwhile to investigate the applicability of deep
neural networks, which excel at modeling high-dimensional functions.

9.2 Path Guiding

Our path-guiding algorithms accelerate path tracing by learning from data
to importance sample the rendering equation in such a way that rendering
remains consistent and unbiased.

Practical Path Guiding. The first path-guiding algorithm we introduced
is PPG: a practical and easy-to-implement approach with a low-latency ren-
dering preview. PPG performs path guiding by learning the 5-dimensional
incident radiance field in a spatio-directional tree in an on-line fashion and
does not require tuning of hyper-parameters, owing to several heuristics
that we carefully designed to be as robust as possible. While more sophis-
ticated algorithms may outperform our technique in specific situations, its
high performance and robustness make it appealing for production envi-
ronments. We demonstrated this on a simple unidirectional path tracer that
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outperformed more sophisticated techniques in all our comparisons. Another
benefit is the fairly even spatial convergence, which we expect to increase
the attractiveness of PPG for animation rendering, when combined with a
suitable technique for removing fireflies. Finally, since PPG is largely agnostic
to the underlying path-generation algorithm, our algorithm can be easily ap-
plied to bidirectional path tracing, progressive photon mapping, metropolis
light transport, or other techniques, improving their performance beyond
the demonstrated results. This algorithm has been implemented in several
production renderers, including Disney’s Hyperion.

Neural Importance Sampling. Lastly, we introduced a general technique
for importance sampling Monte Carlo estimators by utilizing neural net-
works. We then used our technique to enhance the PPG algorithm we pre-
sented beforehand. Our neural-importance-sampling approach builds on
prior work on normalizing flows, RealNVP [Dinh et al. 2014, 2016], which we
extended in three novel manners. First, we proposed piecewise-polynomial
coupling transforms that have increased modeling power over prior coupling
transforms. Second, we encoded our network inputs with a novel one-blob
encoding, a generalization of one-hot encoding, that helped our neural net-
works to learn irregular high-frequency signals. And third, we derived an
optimization strategy that directly minimizes the variance of Monte Carlo
estimators that draw samples from trainable probabilistic models such as
ours. After replacing the SD-tree of PPG with an on-line-learned version
of our approach, we obtained higher-quality results—sometimes by signifi-
cant margins—at equal sample counts. Unfortunately, a remaining challenge
of our technique is its large computational cost which limits its usefulness
compared to the highly optimized PPG algorithm in simple settings. We
believe that our work may be beneficial in other high-dimensional Monte
Carlo integration problems beyond the simulation of light transport.

Future Work. Since we ignored volumetric light transport in our path-
guiding methods it would be interesting to investigate path guiding in the
context of rendering participating media. To this end, we anticipate the need
for an adapted data structure that not only learns to importance sample
scattering directions, but also free-flight distances through volumes. In the
realm of neural path guiding specifically, it would be interesting to investigate
computationally cheaper architectures and easier-to-optimize loss functions
that go beyond the simple divergence metrics that we used. Furthermore, due
to the advent of real-time ray-traced graphics [Burnes 2018], we believe fur-
ther research towards path-guiding that can quickly adapt to rapid changes
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in scene geometry and illumination is important. Lastly, we think that the
data-driven approach to path guiding can also be applied to alternative (and
sometimes orthogonal) variance-reduction, for example to the technique of
control variates.

9.3 Outlook

We found machine learning to be a remarkably useful tool to increase the
efficiency of path-traced light-transport simulation. This was the case not
only when we used deep learning, but also when we used simpler models
based on piecewise-linear approximations, suggesting that there still is a large
body of interesting cross-domain applications of existing machine-learning
techniques to be explored. Researchers already began to draw parallels
between reinforcement learning and path guiding [Dahm and Keller 2017,
2018], making us excited to see which other connections may be discovered
in the future.

This is not to say that the recent advances in deep learning are any less
interesting. Given the success of deep learning across many fields, it seems
likely that many more approaches aside from ours will emerge in light-
transport simulation. We hope that our findings are useful stepping stones in
this direction towards the eventual goal of real-time photorealistic rendering.
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A P P E N D I X A
Light Transport in Computer Graphics

A.1 Derivation of the Path Integral

In Section 4.5.4 we claimed that the rendering equation can be expressed as
the path integral

Ixy =
∫
P

Le(x1→x2)T(x)Wxy(xk−1→xk)dΠ(x) (A.1)

T(x) = E(x1↔x2)
k−1

∏
i=2

T(xi−1, xi, xi+1)E(xi↔xi+1) , (A.2)

but we did not provide a proof of the validity of the path throughput T(x).
In this section, we postulate

Ixy =
∫
P

Le(x1→x2)T(x)Wxy(xk−1→xk)dΠ(x) (A.3)

=
∞

∑
k=2

∫
Pk

Le(x1→x2)T(xk)Wxy(xk−1→xk)dΠ(xk) (A.4)

and derive T(x) such that the above integral corresponds to the recursively
expanded rendering equation. We will perform this derivation by induction
over the number of path vertices.

Base case (surface vertices). Let us first consider the base case of k = 2
while restricting the path vertices to surfaces only, then the measurement
equation becomes

Ixy =
∫

∂V

∫
S2

Lex1x2τ(x1↔x2)Wxy(x1→x2)dΩ(ω1,2)dA>ω(x1) . (A.5)
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Our goal is to integrate with respect to dΠ(x) = dA(x1)dA(x2) rather than
dΩ(ω1,2)dA>ω(x1). Using the identities

dA>ω(xi) = dA(xi) |N(xi) ·ωij| = dA(xi) | cos γi| , (A.6)

dΩ(ωij) = dA>ω(xj)
1

‖xj − xi‖2 = dA(xj)
| cos γj|
‖xj − xi‖2 , (A.7)

we can adjust the integral to the desired form

Ixy =
∫

∂V

∫
∂V

Le(x1→x2)τ(x1↔x2)
| cos γ1| | cos γ2|
‖x1 − x2‖2 Wxy(x1→x2)dA(x2)dA(x1)

=
∫
P2

Le(x1→x2)τ(x1↔x2)
| cos γ1| | cos γ2|
‖x1 − x2‖2 Wxy(x1→x2)dΠ(x) . (A.8)

Note, that the change of variables from ω1,2 to x2 allows for mutual occlusion
of surfaces, which we handle by setting τ(x1↔x2) to zero in such cases, i.e.
r(xi, ωij) 6= xj =⇒ τ(xi, xj) = 0.

By pattern-matching with the desired path integral (A.4), we find that

T(x) = τ(x1↔x2) G∂V (x1↔x2) (A.9)

G∂V (xi↔xj) =
| cos γi| | cos γj|
‖xi − xj‖2 (A.10)

where we refer to G∂V (xi↔xj) as the “surface geometry term”.

Base case (volume vertices). Let us now consider the same base case (k =
2) while constraining the path vertices to non-surface (i.e. volume) positions.
Like above, we write the measurement equation for this case

Ixy =
∫
V

∫
S2

∫ d

0
Le(xt→x2)τ(x1↔xt)Wxy(x1→x2)dt dΩ(ω1,2)dV(x1) . (A.11)

Here, our goal is to perform a change of measure from dt dΩ(ω1,2)dV(x1)
to dΠ(x) = dV(x1)dV(x2). To this end, we use the identity

dt dΩ(ωij) = dV(xj)
1

‖xj − xi‖2 , (A.12)

leading to

Ixy =
∫
V

∫
V

Le(x1→x2)τ(x1↔x2)
1

‖x1 − x2‖2 Wxy(x1→x2)dV(x1)dV(x2)

=
∫
P2

Le(x1→x2)τ(x1↔x2)
1

‖x1 − x2‖2 Wxy(x1→x2)dΠ(x) , (A.13)
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where, analogously to the surface case, we define a “volume geometry term”
GV (x1↔x2) to obtain

T(x) = τ(x1↔x2) GV (x1↔x2) (A.14)

GV (xi↔xj) =
1

‖xi − xj‖2 . (A.15)

Base case (any vertices). Equivalent derivations can be performed for
the base cases (k = 2) where x1 ∈ ∂V ∧ x2 ∈ V as well as x1 ∈ V ∧ x2 ∈ ∂V ,
leading to the volume-surface-agnostic expression of T(x) as

T(x) = τ(x1↔x2) G(x1↔x2) = E(x1↔x2) , (A.16)

G(xi↔xj) =
D(xi, ωij) D(xj, ωji)

‖xi − xj‖2 , (A.17)

D(x, ω) =

{
|N(x) ·ω| if x ∈ ∂V
1 otherwise.

(A.18)

The shorthand E(x1↔x2), which we will henceforth call the “edge through-
put”, captures volumetric attenuation and geometric effects along the path
edge.

Induction (surface vertex). Suppose that for paths with some number of
vertices k the path throughput function T(xk) is known and that the first path
vertex resides on a surface (x1 ∈ ∂V). We will derive the path throughput
function of k + 1 vertex long paths by replacing surface emission at x1 with
one-fold surface scattering (i.e. emission happens one vertex beforehand).
To this end, we adjust the above measurement equation for paths of length
k according to the scattering equation (4.15) by replacing Le(x1→x2) with
Ls(x1→x2) and simplifying:

Ixy =
∫
Pk

Ls(x1→x2)T(x)Wxy(xk−1→xk)dΠ(x)

=
∫
Pk

∫
S2

Li(x1, ωi) fs(x1, ωi→ω1,2) | cos γi|dΩ(ωi) T(x)Wxy(xk−1→xk)dΠ(x)

=
∫
Pk+1

Le(x1→x2)E(x1↔x2) fs(x1→x2→x3)T(x2:k+1)Wxy(xk→xk+1)dΠ(x) ,

(A.19)

where we denote xi:j = xi . . . xj. In the last step, we use the same identities as
in the case k = 2, where the exact identities that are used depend on whether
x1 is on a surface or not. It follows that ∀x ∈ {Pk+1 | x2 ∈ ∂V}:

T(x) = E(x1↔x2) fs(x1←x2←x3) T(x2:k+1) . (A.20)
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Induction (volume vertex). Analogously to the surface case, we begin with
the k-vertex measurement equation but instead of assuming the first vertex
is on a surface, we assume it lies in a volume instead. We therefore replace
Le(x1→x2) with Lin(x1→x2) = (ω1,2 · ∇)Lin(x1, ω2) and simplify as follows:

Ixy =
∫
Pk

Lin(x1→x2)T(x)Wxy(xk−1→xk)dΠ(x)

=
∫
Pk

∫
S2

Li(xk→ωi)σs(x1) fp(x1, ωi→ω1,2)dΩ(ωi)T(x)Wxy(xk−1→xk)dΠ(x)

=
∫
Pk+1

Le(x1→x2)E(x1↔x2)σs(x2) fp(x1→x2→x3)T(x2:k+1)Wxy(xk→xk+1)dΠ(x) .

(A.21)

Once again, in the last step, we use the same identities as in the case k = 2,
where the exact identities that are used depend on whether x1 is on a surface
or not. This time, we obtain the recurrence ∀x ∈ {Pk+1 | x2 ∈ V}:

T(x) = E(x1↔x2) σs(x2) fp(x1→x2→x3) T(x2:k+1) . (A.22)

Induction (any vertex). We can now assemble both recurrences together,
yielding ∀x ∈ Pk+1

T(x) = E(x1↔x2) f (x1→x2→x3) T(x2:k+1) , (A.23)

f (xi→xj→xj) =

{
fs(xi→xj→xk) if x ∈ ∂V

σs(xj) fp(xi→xj→xk) otherwise.
(A.24)

Combining this recursion with the base case T(x) = E(x1↔x2), we finally
obtain the desired path throughput T(x), ∀x ∈ P by induction

T(x) = E(x1↔x2)
k−1

∏
i=2

f (xi−1→xi→xi+1)E(xi↔xi+1) . (A.25)
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A P P E N D I X B
Multiple Scattering in Translucent
Materials

B.1 Estimated GSDF Error

In Figure B.1 through Figure B.4, we visualize the estimated approximation
error introduced by our GSDFs in the directional domain e fg(ωi, ωo) for
various grain types. The visualized grains are, in order, “glass sphere”,
“brown sand”, “snowflake”, and “cinnamon” from Figure 6.7.
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Figure B.1: Front-facing directional GSDF approximation error e fg(ωi, ωo) on snowflake grains.
We visualize the 4-dimensional error function by plotting slices through cos βo (vertical) and γo

(horizontal). The individual circular heatmaps encode sin βi as the distance from their center and
γi as their rotational component.
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Figure B.2: Front-facing directional GSDF approximation error e fg(ωi, ωo) on brown sand grains.
We visualize the 4-dimensional error function by plotting slices through cos βo (vertical) and γo

(horizontal). The individual circular heatmaps encode sin βi as the distance from their center and
γi as their rotational component.
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Figure B.3: Front-facing directional GSDF approximation error e fg(ωi, ωo) on cinnamon grains.
We visualize the 4-dimensional error function by plotting slices through cos βo (vertical) and γo

(horizontal). The individual circular heatmaps encode sin βi as the distance from their center and
γi as their rotational component.
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Figure B.4: Front-facing directional GSDF approximation error e fg(ωi, ωo) on dielectric sphere
grains. We visualize the 4-dimensional error function by plotting slices through cos βo (vertical)
and γo (horizontal). The individual circular heatmaps encode sin βi as the distance from their
center and γi as their rotational component.
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A P P E N D I X C
Practical Path Guiding

C.1 Proof of V̂k Being Convex

We want to show, that V̂k is convex, i.e.

2V̂k ≤ V̂k+1 + V̂k−1 . (C.1)

Proof. Let ∀k : Bk > 0, B̂k > 0, τk > 0. We write Eq. C.1 terms of τ as

2τk

B̂k
≤ τk+1

B̂k+1
+

τk−1

B̂k−1
, (C.2)

2τk ≤ τk+1
B̂k

B̂k+1
+ τk−1

B̂k

B̂k−1
. (C.3)

We use the convexity of τk to obtain the tighter inequality

2τk ≤ (2τk − τk−1)
B̂k

B̂k+1
+ τk−1

B̂k

B̂k−1
, (C.4)

2τk ≤ 2τk
B̂k

B̂k+1
+ τk−1

(
B̂k

B̂k−1
− B̂k

B̂k+1

)
. (C.5)

We further tighten the inequality by using τk < τk−1 as

2τk ≤ 2τk
B̂k

B̂k+1
+ τk

(
B̂k

B̂k−1
− B̂k

B̂k+1

)
, (C.6)

2 ≤ B̂k

B̂k+1
+

B̂k

B̂k−1
=

B̂k

B̂k − Bk
+

B̂k

B̂k + Bk−1
. (C.7)
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Through re-arrangement and simplification we obtain

Bk−1 − Bk −
Bk−1Bk

B̂k
≤ 0 , (C.8)

which holds, because the sequence Bk is monotonically increasing and always
positive (see Section 7.3).
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D.1 Determinant of Coupling Layers

Here we include the derivation of the Jacobian determinant akin to Dinh
et al. [2016]. The Jacobian of a single coupling layer, where A = [[1, d]] and
B = [[d + 1, D]], is a block matrix:

∂y
∂xT =

 Id 0
∂C(xB;m(xA))

∂(xA)
T

∂C(xB;m(xA))
∂(xB)

T

, (D.1)

where Id is a d× d identity matrix. The determinant of the Jacobian matrix
reduces to the determinant of the lower right block. Note that the Jacobian
∂C(xB;m(xA))

∂(xA)
T (lower left block) does not appear in the determinant, hence m

can be arbitrarily complex.

For the multiply-add coupling transform Dinh et al. [2016] we get

∂C
(
xB; m(xA)

)
∂(xB)T =

es1 0
. . .

0 esD−d

. (D.2)

The diagonal nature stems from the separability of the coupling transform.
The determinant of the coupling layer in the forward and the inverse pass
therefore reduce to e∑ si and e−∑ si , respectively.
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In our piecewise-polynomial coupling transforms, we maintain separability
to preserve the diagonal Jacobian, i.e.

C
(
xB; m(xA)

)
=
(

C1
(
xB

1 ; m(xA)
)

, · · · , CD−d
(
xB

D−d; m(xA)
))T

,

and therefore, using
∂Ci

(
xB

i ;m(xA)
)

∂xB
i

= qi(xB
i ), we get

∂C
(
xB; m(xA)

)
∂(xB)T =

q1(xB
1 ) 0

. . .
0 qD−d(xB

D−d)

. (D.3)

The determinant thus is the product of the marginal PDFs defining the
piecewise-polynomial warp along each dimension ∏D−d

i=1 qi(xB
i ).

D.2 Adaptive Bin Sizes in Piecewise-Linear Coupling Functions

Without loss of generality, we investigate the simplified scenario of a one-
dimensional input A = ∅ and B = {1}, a single coupling layer L = 1 and the
KL-divergence loss function. Further, let the coupling layer admit a piecewise-
linear coupling transform—i.e. it predicts a piecewise-constant PDF—with
K = 2 bins. Let the width W of the 2 bins be controlled by traininable
parameter θ ∈ R such that W1 = θ and W2 = 1− θ and S = Q1θ + Q2(1− θ),
then

q(x; θ) =

{
Q1/S if x < θ

Q2/S otherwise.
(D.4)

Using Equation 8.17, the gradient of the KL divergence w.r.t. θ is

∇θDKL(p ‖ q; θ) = ∇θ

∫ 1

0

{
p(x) log(Q1/S) if x < θ

p(x) log(Q2/S) otherwise
dx , (D.5)

where—in contrast to our piecewise-quadratic coupling function—the gradi-
ent can not be moved into the integral (see Equation 8.18) due to the disconti-
nuity of q at θ. This prevents us from expressing the stochastic gradient of
Monte Carlo samples with respect to θ in closed form and therefore optimiz-
ing with it.

We further investigate ignoring this limitation and performing the simplifica-
tion of Equation 8.18 regardlessly, resulting in

∇θDKL(p ‖ q; θ) ≈ E

p(X)
(

1− Q2
Q1

)
if X < θ

p(X)
(

Q1
Q2
− 1
)

otherwise

 , (D.6)
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which has the same sign regardless of the value of θ, resulting in divergent
behavior.

A similarly undesirable (albeit different) behavior emerges when normalizing
q in a slightly different way by interpreting Q as probability masses rather
than unnormalized densities:

q(x; θ) =

{
Q1/θ if x < θ

Q2/(1− θ) otherwise.
(D.7)

The KL divergence gradient is then

∇θDKL(p ‖ q; θ) ≈
∫ 1

0

{
p(x)/θ if x < θ

p(x)/(θ − 1) otherwise,
dx

=
1
θ

∫ θ

0
p(x)dx− 1

1− θ

∫ 1

θ
p(x)dx . (D.8)

To illustrate the flawed nature of this gradient, consider the simple scenario
of p(x) = 1, in which the RHS always equals to zero, suggesting any θ being a
local minimum. However, θ clearly influences DKL(p ‖ q; θ) in this example,
and therefore can not be optimal everywhere. Empirical investigations with
other shapes of p, e.g. the examples from Figure 8.4, also suffer from a broken
optimization and do not converge to a meaningful result.

While we only discuss a simplified setting here, the simplification in Equa-
tion 8.18 is also invalid in the general case of piecewise-linear coupling func-
tions, likewise leading to a broken optimization.
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Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin, and Christian P.
Robert. Adaptive importance sampling in general mixture classes. Statistics and
Computing, 18(4):447–459, December 2008.

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. Interactive reconstruction
of monte carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (TOG), 36(4):98, 2017.

S. Chandrasekar. Radiative Transfer. Dover Publications, 1960.

Yutian Chen, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha Denil,
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anisotropic BRDF. In Proceedings of the 22th International Conference on Pattern
Recognition, ICPR 2014, pages 2047–2052, August 2014.
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Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. A
simple and robust mutation strategy for the Metropolis light transport algorithm.
Computer Graphics Forum, 21(3):531–540, 2002.

A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C. Eise-
nacher, and G. Nichols. The path tracing revolution in the movie industry. In
ACM SIGGRAPH Courses, pages 24:1–24:7, New York, NY, USA, 2015. ACM.

Alexander Keller. Quasi-monte carlo image synthesis in a nutshell. In Monte Carlo
and Quasi-Monte Carlo Methods 2012, pages 213–249, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

D. P. Kingma and P. Dhariwal. Glow: Generative Flow with Invertible 1x1 Convo-
lutions. CoRR, July 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. Improved variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Systems, pages 4743–4751, 2016.

Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. Replica exchange light
transport. Computer Graphics Forum, 28(8):2330–2342, December 2009.

Krzysztof C. Kiwiel. Convergence and efficiency of subgradient methods for
quasiconvex minimization. Mathematical Programming, 90(1):1–25, March 2001.

Jan J. Koenderink, Andrea J. van Doorn, and Marigo Stavridi. Bidirectional reflec-
tion distribution function expressed in terms of surface scattering modes. ECCV
’96, pages 28–39, Berlin, Heidelberg, 1996. Springer-Verlag.

Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Compugraphics
’93, pages 145–153, 1993.

Eric P. Lafortune and Yves D. Willems. A 5d tree to reduce the variance of monte
carlo ray tracing. In Rendering Techniques ’95 (Proc. of the 6th Eurographics Workshop
on Rendering), pages 11–20, 1995.

Eric P. Lafortune and Yves D. Willems. Rendering participating media with bidi-
rectional path tracing. In Proc. EGWR, pages 91–100, 1996.

Philip Laven. Mieplot, 2017. http://www.philiplaven.com/mieplot.htm.

226



References

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
444, 2015.

Richard Lee and Carol O’Sullivan. Accelerated light propagation through partici-
pating media. In Proc. Eurographics / Ieee VGTC Conference on Volume Graphics,
pages 17–23, 2007.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras,
Miika Aittala, and Timo Aila. Noise2Noise: Learning image restoration without
clean data. In Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pages 2965–2974,
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Iman Sadeghi, Adolfo Muñoz, Philip Laven, Wojciech Jarosz, Francisco Seron,
Diego Gutierrez, and Henrik Wann Jensen. Physically-based simulation of
rainbows. ACM Trans. Graph., 31(1):3:1–3:12, February 2012.
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line learning of parametric mixture models for light transport simulation. ACM
Trans. Graph., 33(4), August 2014.
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