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Abstract
High-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) allows to take im-
ages at atomic scale with a contrast proportional to the atomic number. STEM acquires an image line-by-line,
pixel-by-pixel leading to characteristic distortions. Furthermore, STEM images of beam sensitive materials have
to be taken with short exposure times, leading to low contrast images with Poisson noise.
In this paper, we propose an extension of Non-local Means (NLM) tailored to STEM images of crystalline struc-
tures. To find similar patches, we introduce an adaptive non-local search strategy that exploits the periodic struc-
ture of the crystal images. Furthermore, we extend the patch similarity measure to take into account the horizontal
distortions typical for STEM images. Moreover, we discuss the Anscombe transform and the Poisson likelihood
ratio to deal with Poisson noise. Finally, the resulting methods are compared to BM3D with Anscombe tranform
and PURE-LET on simulated and real data.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Filtering

1. Introduction

Nowadays, electron microscopes are able to acquire images
at atomic scale and are used in materials science to deter-
mine material properties. An important quality assessment
for such images is the so-called precision, which essentially
describes how precisely the position of atom centers can be
identified in an image. The better the precision, the more
material properties can be understood [HTU06, JUA∗11].

Images in Scanning Transmission Electron Microscopy
(STEM) are acquired by moving a focused electron probe
over a sample from left to right and top to bottom along
a regular grid on the sample surface. In this work, we fo-
cus on images where electrons leaving the material on the
other side within a certain range of scattering angles are
detected. Using this technique, called High-Angle Annular
Darkfield STEM (HAADF-STEM) [BBSB∗12], the number
of detected electrons is proportional to the atomic number
of the material at the imaged positions. The line-by-line se-
quential acquisition, in combination with sample movement
due to environmental and instrumental disturbances, leads

to characteristic horizontal distortions of the visible atoms
in the acquired images [JN13]. Besides this, low frequency
sample drift introduces more global distortions of the oth-
erwise periodic crystalline structures typically observed in
experiments. Additionally, the electron counting statistics in
the detector follow a Poisson distribution. Thus, the intensity
measure in each pixel of the image is affected by Poisson
noise. In many applications images with very poor signal-
to-noise ratio (SNR) have to be used, e.g. in catalysis: both
metallic [OUGB10] and oxide [BBB∗14] catalysts are de-
stroyed by the high-energy electron dose required to achieve
even moderate SNR in a single image.

The correction of disturbances characteristic to STEM
imaging is investigated in both the field of electron mi-
croscopy and mathematics. Jones and Nellist [JN13] pro-
posed a method for the correction of scan noise and drift
in single images. Kimoto et al. [KAY∗10] used a rigid reg-
istration scheme that averages a series of STEM images of
the same object to achieve a significantly improved preci-
sion compared to single shot STEM images. A non-rigid
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registration scheme for STEM series has been developed by
Berkels et al. [BBB∗14] and the best precision achieved so
far with STEM [YBD∗14] is based on this method. However,
the quality of the result of registration approaches depends
on the quality of the individual frames. At very low SNR,
a large amount of frames is required. Thus, the registration
approaches require a very high overall electron dose to be
applied to the material.

A major aspect in the improvement of the quality of the
individual frames is Poisson noise removal. Since Buades
et al. [BCM05] proposed their Non-local Means (NLM) al-
gorithm to remove additive Gaussian white noise from im-
ages, numerous variations have been proposed. One of the
most successful variations is the BM3D filter developed by
Dabov et al. [DFKE07]. Mäkitalo and Foi [MF11] extended
this method to the removal of Poisson noise. Key for their
success was the derivation of an exact unbiased inverse of
the Anscombe variance-stabilizing transformation [Ans48],
which approximately transforms the noise distribution from
Poisson to Gaussian. There also exist competing approaches
that directly deal with the Poisson noise statistics. Deledalle
et al. proposed a probabilistic ansatz to formulate patch sim-
ilarity [DDT09] and developed an NLM variant for the re-
moval of Poisson noise [DTD10]. More recently, Salmon et
al. [SHDW13] introduced a patch-based denoising algorithm
based on an adaptation of PCA for Poisson noise. Apart
from the NLM based denoising algorithms, there has been
extensive development of local filters based on shearlets and
wavelets. One of the most successful adaptations of this con-
cepts to Poisson noise is PURE-LET [LVBU10].

In this paper, we describe an enhanced version of the
NLM algorithm [BCM05] designed to deal with distortions
and Poisson noise typical for STEM imaging and tailored to
images of crystalline lattices at atomic scale. Note that there-
fore the algorithm derived in this paper is limited to inputs
with periodic structure. The classical NLM is the following
weighted non-local average

Dh[u](x) :=
∑y∈I w(x,y)u(y)

∑y∈I w(x,y)
,

w(x,y) := Exp
[
−dist(x,y)/h2

]
,

dist(x,y) := ‖u(Nn(x))−u(Nn(y))‖2
2,a,

(1)

where ‖ · ‖2,a denotes the L2-distance with Gaussian ker-
nel and Nn(y) is the patch of size n× n with center y ∈ I.
In this work we fix n = 11. We focus on extensions of the
L2-distance based patch similarity measure that improve the
recognition of self-similarity in the presence of local hori-
zontal distortions of the type described earlier. Additionally,
we develop an adaptive similarity search that exploits peri-
odic structure and replaces large local search windows by
small non-local ones. We consider a Poisson noise model:

u : I = {1, . . . ,Nx}×{1, . . . ,Ny}→ N0,

u(x) = Yx ∼ Pois(λ(x)),
(2)

where λ(x) ∈R>0 denotes the number of expected counts at
x, i.e. the intensity of an underlying ground truth image. We
compare two approaches of adapting NLM to this model:
Anscombe variance-stabilizing transformation [MF11] and
patch similarity based on Poisson likelihood ratios [DTD10].

The layout of the paper is as follows. Section 2 describes
the periodic search strategy. Section 3 introduces a patch
similarity measure based on patch regularization. In Section
4, we recall the concepts of [MF11] and [DTD10] to extend
NLM to Poisson noise. The performance of the proposed
methods are illustrated with numerical results in Section 5
and compared to PURE-LET and BM3D with Anscombe
transformation. Finally, conclusions are drawn in Section 6.

2. Adaptive periodic search strategy

Performing the full NLM algorithm on the image u requires
the calculation of (Nx ·Ny)

2 weights. In the literature, it is of-
ten suggested to reduce this computational effort by restrict-
ing the search for similar patches to a local search window
for each patch [BCM10]. For images with periodic struc-
tures like crystalline lattices such a local strategy disregards
most of the periodic self-similarities leaving much of the de-
noising capabilities of NLM untapped. To close this gap, we
propose to use a periodic search grid with small non-local
search windows instead. The periodicity analysis necessary
to construct the search grid is based on ideas from [Ber13].

We assume that the periodic structures of interest consist
of an elementary cell that is placed along two axes with an-
gles α1,α2 and spacings or periods ∆x1,∆x2 to produce the
whole pattern. We approximate the parameters as follows.

First, the angles α1,α2 are defined from the positions
x̂1, x̂2 of the two brightest peaks relative to the origin in
the modulus of the discrete Fourier transform of the image
that are (numerically) non-collinear. Then, for each of these
directions, we extract a corresponding 1D intensity profile
from u, where the brightest peak in u used as the common
origin. Fitting a sine function or a sum of sine functions
to these profiles yields the corresponding spacings ∆x1,∆x2.
The spacings could also be estimated from the modulus, but
we found the modulus estimates to be less reliable.

With these parameters, we iteratively define the following
approximately periodic search grid for a reference pixel x∈ I

π
0
1/2(x) := x,

π
±k
1/2(x) := argmax

y∈NS(π
±(k−1)
1/2 (x))

w(x,y)±∆x1/2

(
cosα1/2
sinα1/2

)
,

and extend it to a set of non-local S×S search windows

πn(x) :=

⋃
k1,k2

NS

(
π

k2
2

(
π

k1
1 (x)

))⋂
I.

The argmax locally resets the pattern structure to the pixel
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in the non-local search windowNS(y) with the highest patch
similarity to the reference pixel x. This allows to account for
imperfections in the periodic structure of the observed crys-
tal due to signal distortions or material defects, as well as er-
rors in the estimation of the parameters αi,∆xi. However, in
case the grid parameters are too far off, the adaptive adjust-
ment with the argmax is unable to correct the misprediction.
This leads to a non-matching periodic search pattern result-
ing in a poor reconstruction, which, in the extreme case of a
very high filter parameter h, may produce periodic features
not present in the input image. Nevertheless, the proposed
algorithm is very robust to noise and gives good approxima-
tions of the search grid for all STEM images of crystalline
structures we have tested, cf. Figure 1 for an example.

Figure 1: Detected directions of a GaN lattice (left, blue),
adaptive periodic search grid (right, yellow) with 5×5 win-
dows and locally most similar pixels (red) for an atom-
centered reference pixel (green).

3. A regularized patch similarity measure

In the following, we adapt the NLM patch similarity to lo-
cal distortions aligned with the scan lines in STEM images.
These distortions affect the similarity of patches depicting
originally identical atoms. To resolve this issue the distance
function dist(x,y) in (1) is replaced by a regularized version

distreg(x,y) := ‖u(Nn,reg(x))−u(Nn,reg(y))‖2
2,a,

where Nn,reg(y) denotes an optimally (as defined below)
shifted n×n patch with center y ∈ I.

The patch regularization is based on the optimization of
real-valued line shifts for each patch to increase the regular-
ity of u in vertical direction. For a patch Nn(x) and a vector
of horizontal shifts s ∈ Rn the shifted patch is

Nn,s(x) :=
{(

i+ s j, j
) ∣∣∣ (i, j) ∈Nn(x)

}
.

Note that superscript indices have to be converted to row
indices of the corresponding patch. To evaluate u on shifted
patches, we use piecewise linear interpolation in its first vari-
able, representing the horizontal axis in the image, i.e.

û : R×{1, . . . ,Ny}→ R≥0,

û(t, j) := u(btc, j)+(t−btc) · (u(btc+1, j)−u(btc, j)) .

For simplicity, we assume an infinite support along the hor-
izontal axis (e.g. periodic boundary conditions). On Nn(x),
we define a discrete derivative of û shifted by s with respect
to its second variable as follows

∂̂yû(t, j;s) := û(t + s j, j)− û(t + s j+1, j+1).

Here, sn+1 := 0. This allows us to formulate the patch regu-
larization problem:

Problem 1 (Vertical patch regularization) Let

fi j : Rn→ R≥0, fi j(s) := ‖∂̂yû(·, j,s)‖L2([i,i+1]),

and define the target function Fx : Rn→ Rn2

≥0 by

Fx(s) := ( fi j(s))i, j∈Nn(x).

Then, we define the regularized patch as the optimally
shifted patch, i.e.Nn,reg(x) :=Nn,s∗(x)(x) with

s∗(x) := argmin
s∈Rn,s j∗=0

1
2
‖Fx(s)‖2

2.

Since the patches Nn,reg(x) and Nn,reg(y) are used to com-
pare the similarity of u at x and y the patch central line j∗

must be fixed. Note that shifts larger than the patch size
are not reasonable, but do not occur in practice due to lo-
cal convergence of gradient based optimization and are thus
not constrained here.

In principle, this classical non-linear regression problem
can be approached with standard gradient based iterative
solvers, like Levenberg-Marquardt. However, the constraint
s j∗ = 0 leads to undesirable local minima preventing such
solvers from converging to a desirable solution s∗: Con-
sider a 3× 3 patch within a binary image. Let the columns
2− 3 of row 1 and the columns 1− 2 of rows 2− 3 of the
patch be 1 and the rest 0. Let j∗ = 1. Then, ∇φ(0) = 0
for φ(s) := 1

2‖F(s)‖2
2. So, s = 0 is a local minimum but

s = (0,−1,−1)T is the optimal solution. Fortunately, this
problem can be solved by performing a basis change before
linearizing F . Let e = (e1, . . . ,en) denote the canonical basis
of Rn. Then ê = (ê1, . . . , ên) with

ê j :=


∑

j
l=1 el j < j∗,

e j j = j∗,

∑
n
l= j el j > j∗,

is also a basis of Rn. Note that ŝ ∈ Rn represented by ê can
be transformed to the canonical basis e using:

s j =


∑

j∗−1
l= j ŝl j < j∗,

ŝ j j = j∗,

∑
j
l= j∗+1 ŝl j > j∗.

(3)

If we linearize F according to the variables ŝ in the basis ê in-
stead of s in the canonical basis e, local minima as observed
above vanish. Thus, we can calculate the optimal shift with
Levenberg-Marquardt after the basis transform.
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Evaluating the target function and its derivatives The ap-
proximation errors of a numerical quadrature of the integrals
in ∂

∂sk
fi j(s) lead to discontinuities that prevent proper con-

vergence of gradient based solvers for Problem 1. Thus, we
derive analytical expressions for fi j(s) and ∂

∂ŝk
fi j(s).

Let s ∈ Rn,s j∗ = 0 and set t1 = i, t4 = i+1 and

t2 := i+min{ds je− s j,ds j+1e− s j+1},

t3 := i+max{ds je− s j,ds j+1e− s j+1}.

Then, the discrete derivative ∂̂yû is linear on the intervals
[tl , tl+1] for l = 1,2,3 with slope and intercept given by

al j := ml j−ml, j+1,

bl j(s) := ml js
j−ml, j+1s j+1

+(nl j−nl, j+1−ml jil j +ml, j+1il, j+1),

where il j := b tl+1+tl
2 + s jc, ml j := u(il j, j)−u(il j +1, j) and

nl j := u(il j, j).

Using this, one can calculate the following expression:

fi j(s)
2 =

3

∑
l=1

{
(al jtl+1+bl j(s))3−(al jtl+bl j(s))3

3al j
al j 6= 0,

(tl+1− tl)bl j(s)
2 al j = 0.

(4)

From this we can compute the partial derivatives of fi j(s)
with respect to the variables ŝ in the basis ê:

∂ fi j

∂ŝk
(s) =

∑
3
l=1(ml j δ̂k j−ml j δ̂k j+1)dl j(s)

fi j(s)
,

dl j(s) :=
al j

2
(t2

l+1− t2
l )+bl j(s)(tl+1− tl),

(5)

where from (3) we have

δ̂k j :=
∂

∂ŝk
s j =

{
1 if j ≤ k < j∗ or j∗ < k ≤ j,
0 else.

Note that (5) is not well-defined for s ∈ Rn with fi j(s) = 0.
Thus, we regularize the problem by replacing fi j(s) in
(4) and (5) by f ε

i j(s) := ‖∂̂yû(·, j;s)‖L2((i,i+1)),ε, where

‖u‖L2(Ω),ε :=
√∫

Ω
u(x)2 + ε2 dx denotes a regularized L2-

norm that is differentiable at zero for u ∈ L2(Ω) and Ω⊂ R.

Regularization of the optimal shifts Numerical tests in-
dicate that the patch regularization works well for patches
that contain a significant portion of an atom. However, it
does not perform well for patches that contain atomic sig-
nal only in single lines that were shifted into the patch due
to horizontal distortion. To counter this effect, we regularize
the optimal shifts obtained for all patches across horizon-
tally neighboring patches. This assumes that the distortions
are irregular in vertical but regular in horizontal direction,
which is in line with the effects of the rastering used to ac-
quire STEM images. Theoretically, it would be possible to
incorporate the regularization into Problem 1 by locally cou-
pling these problems via a regularization term in the shift

parameters. However, this would significantly increase the
computational effort of the method. Thus, we simply post-
process the obtained optimal shifts via a weighted average
across horizontally neighboring patches:

s̄(x) :=
bn/2c

∑
k=−bn/2c

w(x,k)s(x1 + k,x2)

/ bn/2c

∑
k=−bn/2c

w(x,k),

where

w(x,k) := e−|k|/neū(x1+k,x2) and ū(x) :=
1
n2 ∑

y∈Nn(x)
u(y).

The weights w encode the observation that shifts are most
reliably detected for patches containing most atomic signal.

4. Adaptation of NLM to Poisson noise

The classical NLM algorithm (1) was designed to remove
additive Gaussian white noise (AGWN), i.e.

u(x) = u∗(x)+X , X ∼N (0,σ2). (6)

Especially in the low signal-to-noise regime, this model dif-
fers significantly from the Poisson noise model (2) that ap-
plies especially to low dose electron microscopy. In the fol-
lowing, we recall two strategies that can be used to adapt the
NLM weights to the Poisson noise model.

Anscombe variance-stabilizing transformation The ma-
jor difference between the noise models with Poisson (2) and
Gaussian (6) distribution is that for Poisson noise the vari-
ance is different in each pixel, whereas for Gaussian noise
it is constant over the entire image. This can be approxi-
mately corrected for by applying the Anscombe transforma-

tion [Ans48] A(k) := 2
√

k+ 3
8 to the image intensities. A is

known to transform an image with Poisson noise model (2)
into an image with noise that is similar to AGWN with uni-
tary variance. Then, any model suitable for AGWN can be
used to denioise the transformed image. Afterwards, the im-
age is transformed back by inverting the Anscombe trans-
formation. It has been pointed out in [MF11] that both the
direct algebraic inverse A−1

A (D) :=
(D

2
)2− 3

8 and the asymp-

totically unbiased inverse A−1
B (D) :=

(D
2
)2− 1

8 introduce a
significant bias at low counts. Thus, using these as inverse
transformations often results in poor quality of the denoised
images when the input has low SNR.

Recently, an exact unbiased inverse of the Anscombe
transformation has been proposed, which is based on map-
ping the denoised values Dh[A(u)]≈ E{A(u)|u∗} to the de-
sired ones [MF11]: A−1

C : E{A(u)|u∗} 7→ E{u|u∗}. Here,
E{X |Y} denotes the expected value of X under the assump-
tion Y . It has been shown that this inverse transformation is
unbiased under the assumption that Dh[A(u)] =E{A(u)|u∗}.
Otherwise, a bias may still remain within the estimation er-
ror. Nevertheless, in numerical experiments the proposed
exact unbiased inverse of the Anscombe transformation in
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combination with the previously proposed BM3D method
for AGWN removal has proven to be competitive with other
methods specifically designed for Poisson noise removal.

Maximum likelihood ratio based weights Instead of stabi-
lizing the variance of the noise, it was proposed to base the
NLM weights on a stochastic likelihood ratio that directly
accounts for the particular noise distribution [DDT09]. For
Poisson distributed observations k1,k2 the likelihood ratio
for the hypothesis that they share an identical mean value,
versus the hypothesis that their mean values are independent,
is given by [DTD10]:

f (k1,k2) :=− log
maxλ p(k1|λ)p(k2|λ)

maxλ p(k1|λ)maxλ p(k2|λ)

= k1 logk1 + k2 logk2− k1+k2
2 log

(
k1+k2

2

)
,

p(k|λ) :=
λ

ke−k

k!
.

(7)

In order to adapt NLM (1) to Poisson noise, the authors pro-
posed to replace the L2-distance by

distP(x,y) := ∑
z∈Nn(x)

f (u(z),u(z− x+ y)).

Note: The implementation of (7) has to ensure, that k logk is
evaluated to zero for k = 0 (Recall: k logk→ 0 for k→ 0).

5. Results and Discussion

We have performed numerical experiments with all possible
combinations of the previously described modifications to
the NLM algorithm, as well as PURE-LET [LVBU10] (us-
ing the implementation of S. Palakkal) and a variation of
BM3D using the Anscombe transformation [MF11] (using
the implementation of the BM3D authors). All algorithms
were tested on STEM images from both measurements and
simulations, with varying SNR, i.e. with different electron
dose per pixel, and two different structures: single (Gallium-
Nitrogen) and double (Silicon) atom elementary cell.

A perfect noise removal algorithm should preserve the
horizontal distortions caused by STEM imaging; correct-
ing these is a different problem. The original NLM algo-
rithm was not capable of preserving the horizontal distor-
tions. In the bottom row of Figure 2, one can clearly see how
in the left image (without patch regularization) the atoms
are blurred while in the two other images (with patch reg-
ularization (middle) and regularization of shifts (right)) the
characteristic scan line distortions are retained. Comparing
these results to the ones shown in the middle row, we see
that BM3D (left) introduces less blurring of the scan noise
than the original NLM, but more than NLM with patch regu-
larization and Anscombe transform (middle and right). Note
that the borders of the NLM denoised images are masked be-
cause pixels with patches exceeding the image were not de-
noised. The peak signal-to-noise ratio (PSNR) values shown

in Table 1 indicate that at moderate SNR the patch regular-
ization does improve the performance of NLM, but only if
the shifts are regularized. At low SNR however, the patch
regularization has less effect or even reduces the quality of
the reconstruction. Most likely the optimal shifts were not
detected reliably enough to cope with the extreme noise level
in this setting.

The periodic search was developed with the intention to
speed up the computations. Indeed, in our experiments, the
periodic search based approach was up to 15 times faster
than the full search NLM. Our proposed algorithm is still
much slower (up to 50 times) than the BM3D implementa-
tion by the original authors, which runs within seconds on
the images used here. This is because BM3D uses a sliding
step that skips 8/9 of the pixels; a smaller patch size (8× 8
instead of 11×11); and a smaller search region (39×39 in-
stead of ∼ 4500 pixels). Besides the speed-up, we observed
that our adaptive periodic search strategy also significantly
improves the PSNR compared to the full search NLM re-
sults, cf. Table 1. This is because the periodic strategy trun-
cates weights by omitting pixels that are not on the periodic
search pattern, whereas the full NLM algorithm averages
even highly different patches albeit with a small weight.

Table 1 lists the PSNR values for the NLM methods (mid-
dle columns) with Poisson likelihood ratio based similarity
measure (top cell value) and with Anscombe transform (bot-
tom cell value). They indicate that for inputs with high to
moderate PSNR (15.1dB - 22.8dB) the Anscombe transform
performs better, while at low PSNR (9.6dB - 12.6dB) the
Poisson likelihood ratio is superior. Note that the overall
runtime using the Poisson likelihood ratio is up to 6 times
slower than using the Anscombe transformed L2-distances.
Our NLM method with periodic search (with and without
patch regularization) consistently outperforms PURE-LET
at all PSNRs. At the lowest presented PSNR, our proposed
NLM with adaptive periodic search strategy and Poisson
likelihood ratio based patch similarity measure outperforms
BM3D. At higher PSNR however, BM3D with Anscombe
achieves the highest PSNRs of all tested algorithms.

Nevertheless, Figure 3 indicates that the PSNR alone is
not a sufficient measure. The figure shows an experimentally
acquired STEM image of a Gallium-Nitrogen lattice (top
left), denoised versions obtained from the NLM algorithm
with patch regularization and regularization of the optimal
shifts (bottom row), PURE-LET (top center) and BM3D
(top right). While the scan lines are not blurred as much by
PURE-LET and BM3D as in the example shown in Figure 2,
both filters produce significant artifacts in the void between
the atoms. The artifacts introduced by BM3D in this case
may not have a noticeable effect on a measure like PSNR,
but are very problematic for an analysis of the image from a
materials science perspective. In contrast, the denoised im-
ages calculated by our method are free of these artifacts and
thus better for the intended application. Note that the lattices
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shown in Figures 1 and 3 are not perfectly periodic with re-
spect to the detected axes. Instead, each second atom along
the almost diagonal axis of the lattices has a slight offset.
Both the accuracy of the adaptive search grid shown in Fig-
ure 1 and the quality of the denoised images (e) and (f) in
Figure 3 indicate that the proposed adaptive periodic search
strategy manages to cope with such slight irregularities.

6. Conclusions

We have presented two major modifications to the classi-
cal NLM algorithm that exploit characteristic features inher-
ent to STEM images of crystals, namely periodic structure
and local horizontal distortions. Adaptive periodic search
based on a Fourier analysis improved both the computa-
tional cost and the denoising performance of NLM. Further-
more, we have presented results indicating that patch reg-
ularization is a promising ansatz to prevent blurring of scan
noise. While it already performs very well at moderate SNR,
this technique has to be improved to deal with low SNR as
well. Our comparison of the two patch similarity measures
based on the L2-distance of the Anscombe transformed in-
tensities and the Poisson likelihood ratio has revealed that
the inaccuracy of the Anscombe transform in the low count
regime is high enough such that the otherwise well perform-
ing Anscombe transform is inferior to the Poisson likelihood
ratio at low signal-to-noise ratio. For the lowest regarded
PSNR image treated in this paper (9.6dB) the BM3D method
with Anscombe tranformation is outperformed in PSNR by
our proposed NLM method with Poisson likelihood ratio.

Based on the performance of BM3D on STEM crystal im-
ages, as well as the promising results achieved by our pro-
posed adaptive periodic search and patch regularization, we
plan to merge our proposed modifications with features in-
cluded in BM3D such as hard thresholding (which could
also further improve the speed-up of the periodic search) and
pre-processing, as well as sparsity analysis of the matched
patches. Furthermore, due to the improvement caused by
the regularization of the shifts, we plan to investigate more
global formulations of the regularization problem.
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(a) Simulated Si-lattice (b) Ground truth + Poisson noise (c) PURE-LET

(d) BM3D + Anscombe (e) full RR-NLM + Anscombe (f) periodic RR-NLM + Anscombe

(g) periodic NLM + likelihood ratio (h) periodic R-NLM + likelihood ratio (i) periodic RR-NLM + likelihood ratio

Figure 2: (a) Simulated Silicon lattice image (5.3−66.4 average counts per pixel), (b) Ground truth with Poisson noise (0−88
counts per pixel), Denoised with (c) PURE-LET, (d) BM3D with Anscombe transformation, (e) full search NLM with patch
regularization, regularization of shifts and Anscombe transformation, (f) periodic search (S = 5) NLM with patch regularization,
regularization of shifts and Anscombe transformation, (g) periodic search (S = 5) NLM with Poisson likelihood ratio (no patch
regularization), (h) periodic search (S = 5) NLM with patch regularization and Poisson likelihood ratio (no regularization of
shifts), (i) periodic search (S = 5) NLM with patch regularization, regularization of shifts and Poisson likelihood ratio
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Non-local means

Full search Periodic search (S = 5)

Noisy Silicon lattice NLM R-NLM RR-NLM NLM R-NLM RR-NLM PURE-LET BM3D

22.8848
28.6314 28.8152 29.2262 28.866 29.0804 29.4047

21.5062 31.351
28.8981 29.1689 29.7389 29.1757 29.4107 29.9286

22.7499
29.2409 29.2420 29.6975 29.8343 29.8840 30.3547

25.929 31.2158
29.4898 29.5418 30.0692 29.9642 30.0368 30.6024

15.1247
23.2631 23.3462 23.5858 26.3926 26.1856 26.4841

23.3226 27.0712
23.3659 23.2740 23.5635 26.3595 25.9913 26.3662

12.5788
19.1668 19.2129 19.3624 24.5369 24.3904 24.5579

22.0077 25.7354
18.4766 18.4854 18.5833 23.9472 23.7169 23.9050

9.6277
15.9968 15.9895 16.0559 23.8700 23.7243 23.8404

20.3441 23.7002
15.0249 15.0018 15.0613 22.5414 22.3267 22.5080

Table 1: Peak signal-to-noise ratios (PSNR) of the different methods applied to a simulated Si-lattice image with varying total
electron dose. NLM is Non-Local Means without patch regularization, R-NLM with patch regularization (no regularization of
shifts), and RR-NLM with patch regularization and regularization of shifts. The top number in each cell indicates usage of the
Poisson likelihood ratio and the bottom number indicates usage of the Anscombe transformation.

(a) Noisy GaN-lattice (29Mx) (b) PURE-LET (c) BM3D + Anscombe

(d) full RR-NLM + likelihood ratio (e) periodic RR-NLM + likelihood ratio (f) periodic RR-NLM + Anscombe

Figure 3: (a) Original Gallium-Nitrogen lattice image (29Mx magnification, 24− 117 counts per pixel), denoised with (b)
PURE-LET (c) BM3D with Anscombe transformation, (d) full search NLM with Poisson likelihood ratio, (e) periodic search
(S = 5) NLM with Poisson likelihood ratio, (f) periodic search (S = 5) NLM with Anscombe transformation; (d) - (f) with patch
regularization and regularization of shifts
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