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Figure 1: Main window. On the left, a canvas allows visualizing the input mesh(es) and the bottom text box reports some logs. On the right,
an advanced panel allows setting multiple parameters to both guide the dataset generation according to desired geometric features and start
the geometric analysis. Also, a button is provided to quickly start the PEM solver and run the simulation.

Abstract
Partial differential equations can be solved on general polygonal and polyhedral meshes, through Polytopal Element Methods
(PEMs). Unfortunately, the relation between geometry and analysis is still unknown and subject to ongoing research to identify
weaker shape-regularity criteria under which PEMs can reliably work. We propose a graphical framework to support the
analysis of the relation between the geometric properties of polygonal meshes and the numerical performances of PEM solvers.
Our framework, namely PEMesh, allows the design of polygonal meshes that increasingly stress some geometric properties,
by exploiting any external PEM solver, and supports the study of the correlation between the performances of such a solver
and the geometric properties of the input mesh. Furthermore, it is highly modular, customisable, easy to use, and provides the
possibility to export analysis results both as numerical values and graphical plots. The framework has a potential practical
impact on ongoing and future research activities related to PEM methods, polygonal mesh generation and processing.

CCS Concepts
• Software and its engineering → Open source model; • Computing methodologies → Mesh geometry models; • Mathe-
matics of computing → Partial differential equations;
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1. Introduction

Over the last fifty years, computer-based simulation has dramati-
cally increased its impact on research, design, and production, and
is now an indispensable tool for development and innovation in sci-
ence and technology. In particular, Partial Differential Equations
(PDEs) offer a broad and flexible framework for modelling and an-
alyzing several phenomena arising in fields as diverse as physics,
engineering, biology, and medicine. Computer-based simulation of
PDEs also relies on a suitable description of geometrical entities,
such as the computational domain and its properties. However, the
representation of geometric entities has been studied mainly in the
field of geometric modelling, and often the requirements of shape
design are different from those of numerical simulation.

In this context, Polytopal Element Methods (PEMs) allow solv-
ing differential equations on general polygonal and polyhedral
meshes, thus offering great freedom in the definition of mesh gen-
eration algorithms. Similarly to Finite Elements Methods (FEMs),
the performance of PEMs (i.e., accuracy, stability, and effective-
ness of preconditioning) depends on the quality of the underlying
mesh. Differently from FEMs, where the relation between the geo-
metric properties of the mesh and the performances of the solver is
well known [She02; Cia02; BKK08], the definition of the quality
of polytopal elements is still subject to ongoing research [Lip13;
MWW15; ABB*21].

The proposed graphical framework is intended to support the
analysis of the relation between the geometric properties of the
mesh and the numerical performances of the solver, in terms of ba-
sis degree, conditioning number of the stiffness matrix, etc. To this
end, our work covers several aspects, such as the design and gen-
eration of meshes to increasingly stress geometric properties, the
study of the performances of PEM solvers, and the correlation be-
tween such performances and the main geometric properties of the
input meshes. Each step is performed by exploiting existing tools
mainly coming from two related but independent research areas:
geometric design and numerical methods for PEMs. Indeed, these
tools rely on different representations of the same domain, and re-
searchers are often required to be skilled programmers and expert
tool users to allow such tools to be part of the same experimental
pipeline.

We introduce PEMesh (Fig. 1), as an open-source software tool
designed to help researchers to perform experiments on the analysis
and design of polytopal meshes for PEM solvers. It is an advanced
graphical tool that seamlessly integrates geometric design pipelines
and PEM simulations. Specifically, it supports the design and gen-
eration of complex input polygonal meshes by stressing geomet-
ric properties while providing the possibility to solve PEMs on the
generated meshes. Furthermore, PEMesh allows the user to corre-
late one or more geometric properties of the input polytopal mesh
with the performances of PEM solvers, and to visualize the results
through customisable and interactive plots.

The proposed tool is highly modular and customisable. It allows
researchers to simulate any PEM solver, by simply calling the PEM
solver executable from an internal command line and providing
possibly additional input parameters other than the geometric data
set. To the best of our knowledge, our proposal is the first graphical
tool to generate complex discrete polytopal meshes and to support

a study of the correlation between their geometric properties and
numerical PEMs solvers. Indeed, it has a potential practical impact
on research activities on this subject.

The paper is organised as follows. We briefly review previous
work on PEMs and existing tools both to perform PEM simulations
and to design geometric data sets (Sect. 2). Then, we describe the
structure of our framework and its capabilities (Sect. 3), with tech-
nical details about its implementation (Sect. 4). Finally, we discuss
some directions for future research (Sect. 5).

2. Background and related work

We briefly review previous work on numerical FEM solvers and
libraries (Sect. 2.1) and meshing tools (Sect. 2.2).

2.1. Numerical FEM solvers and libraries

Main PEMs include Mimetic Finite Differences [BLM14;
BLS05], Discontinuous Galerkin-Finite Element Method (DG-
FEM) [ACC*16; CGH14], Hybridisable and Hybrid High-Order
Methods [CDG08; DE15], Weak Galerkin Method [WY13], BEM-
based FEM [RW13], Poly-Spline FEM [SDG*19], and Polygo-
nal FEM [ST04]. Main existing tools for the numerical solution
of PDEs include (i) VEMLab [OAH*20], which is an open-source
MATLAB library for the virtual element method and (ii) Veamy,
which is a free and open source C++ library that implements the
virtual element method (C++ version of [OAH*20]). The current
release of this library allows the solution of 2D linear elasto-
static problems and the 2D Poisson problem [OAH*19]. Other li-
braries are (iii) the 50-lines MATLAB implementation of the low-
est order virtual element method for the two-dimensional Poisson
problem on general polygonal meshes [Sut17], and (iv) the MAT-
LAB implementation of the lowest order Virtual Element Method
(VEM) [Mas18].

As a matter of example, we demonstrate how a PEM solver can
be integrated into our framework. Our use case exploits the Virtual
Element Method (VEM) [BBC*13], which can be considered as an
extension to FEM for handling general polytopal meshes.

2.2. Mesh generation tools

Nowadays, meshes are commonplace in several applications rang-
ing from engineering to bio-medicine and geology. Depending on
the application field, automatic mesh generation may be a difficult
task, due to specific geometric requirements to be satisfied.

Concerning simulation with FEMs, the principle behind mesh-
ing algorithms in commercial FEM solvers is described in [OK18],
and an open-source tool is provided. Free-FEM [Hec12] is a pop-
ular 2D and 3D partial differential equations (PDE) solver used by
thousands of researchers across the world, including its mesh gen-
eration module. Although it provides plenty of functionalities, it
is based on its language and it has no graphical interface. Simi-
larly, the MATLAB R© suite provides its own FEM mesh genera-
tor [Oro20]. Both solutions focus on FEM requirements and enable
the possibility to generate triangle meshes, but they do not allow
the generation of generic polygon meshes.

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

12



D. Cabiddu & G. Patané & M. Spagnuolo / A Graphical Framework to Study the Correlation between Geometric Design and Simulation

Concerning PEM methods, available Voronoi-based meshing
tools (e.g. [DFG99; TPPM12]) are not suited for our study, because
they produce convex elements that are not challenging enough to
stress PEM solvers. Recent works [HSL*21; SBMS22] propose
ad-hoc polyhedral mesh datasets, specifically designed for their ex-
perimental phase. The dataset generation procedures are well de-
scribed, but they are not easily modifiable to fit analyses other than
the proposed approach. To the best of our knowledge, the bench-
mark proposed in [ABB*21] is the only one providing a polygonal
mesh generation approach specifically designed for PDE solvers.
Unfortunately, the proposed approach is not easily customisable
and allows the generation of polygon meshes having a single non-
triangle element.

Our framework provides an advanced mesh generation module
which enables the creation of generic polygonal meshes specifi-
cally designed for PDE solvers.

3. Proposed framework

Our framework is aimed at evaluating the dependence of the
performances of a PEM solver on the geometrical properties of
the input polygonal mesh, which is either generated by using the
framework itself or provided as an external resource. Mainly, the
framework is composed mainly of four modules, each of which is
provided as a specialized window.

Polygon mesh generation & loading allows the user to load one
or more existing meshes or generate a new one from scratch by
exploiting a set of provided polytopal elements or providing an
external one. The generation of new meshes is highly customisable,
and the user is allowed to play with a large set of options and
parameters (Sect. 3.1).

Geometric analysis allows the user to perform a deep analysis
of the geometric properties of the input polygonal meshes and to
correlate each of them with the others. Results of such an analysis
are shown through advanced plots (Sect. 3.2).

PEM solver allows the user to run a PEM solver and analyse its
performances on input polygonal meshes. Any PEM solver may
be exploited, as long as it can be run from the command line and
provides its output according to a specific textual format. Both the
solution and the ground-through of the PEM are shown directly
on the meshes, while the performances of the solver are visualized
through linear plots (Sect. 3.3).

Correlation visualization supports the analysis of the correlation
between the geometric properties of the polygonal meshes and the
numerical performances of the selected PEM solver. Results are
made available in the form of customizable scatter plots (Sect. 3.4).

The framework provides the possibility to show the results of
each analysis step on the display, customize visualization aspects
of plots (i.e., colour, font sizes, etc.) and interactively analyze them
by clicking on visualised points and lines to show data values in

the selected point. Furthermore, such results can be saved on disk
as images and as textual files, to be possibly re-used by other appli-
cations.

3.1. Polygonal mesh generation & loading

This module is started as soon as the application is run (Fig. 1). It
provides the possibility to load an existing polygonal mesh or gen-
erate a new one from scratch. The mesh generation method takes a
cue from the approach described in [ABB*21], where the domain is
supposed to be a squared canvas, and the area of the domain which
is not covered by a polygon is filled with triangles using [She96].

Differently from [ABB*21], our framework supports the gener-
ation of meshes with more than one non-triangle polygon, whose
position, scale and rotation are chosen by the user before apply-
ing the triangulation of the external domain (Fig. 2). Furthermore,
triangulation parameters are set according to the user needs (e.g.,
fixing the area of the triangles or the minimum angle) and the mir-
roring approach proposed in [ABB*21] can be eventually applied
after the triangulation.

Figure 2: Meshes generated by selecting the same set of polygons,
but editing each element differently.

An additional feature is the aggregation of the generated trian-
gles to create generic polygons (Fig. 3). This feature allows the
generation of generic polygonal meshes where the number of tri-
angles is reduced almost to zero and some geometric properties are
stressed all over the discretised domain. The aggregation criterion
guarantees that the diameter of the polygons generated by aggrega-
tion is at most equal to the diameter of the smallest user-selected
polygon.

3.2. Geometric analysis

When one or more polygonal meshes are available, either gener-
ated from scratch or loaded from disk, our framework allows deep
geometric analysis and provides a visual summary of geometric
properties. Specifically, our approach considers a set of polygonal
metrics (Table 1, Fig. 4), also considering their minimum, maxi-
mum and average values.

Our polygonal metrics are classified into 6 main classes:

• edges: number of edges (nE) of the input polygon, shortest edge
(SE);

c© 2022 The Author(s)
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Figure 3: Mesh with aggregated triangles.

Table 1: Proposed polygonal metrics. For scale invariant mea-
sures, the fourth column indicates whether optimal values are at the
top (↑) or bottom (↓) of the definition range. Polygon measures: in-
scribed circle (IC), circumscribed circle (CC), polygon area (AR),
kernel area (KE), minimum angle (MA), shortest edge length (SE),
and minimum point-to-point distance (MPD).

Metric Abbr. Range Scale
inv.

] Edges nE (1,+∞) – Yes
Inscribed radius IC (0,∞) – No
Circumscr. radius CC (0,∞) – No
Circle ratio CR [0,1] ↑ Yes
Area AR [0,∞) – No
Kernel-area KE [0,∞) – No
Kernal-area ratio KAR [0,1] ↑ Yes
Perimeter-area ratio PAR (0,∞) ↑ Yes
Min. angle MA (0,π) ↑ Yes
Max. angle mA (0,π) ↑ Yes
Shortest edge SE (0,∞) – No
Edge ratio ER (0,1] ↑ Yes
Min p2p distance MPD (0,∞) – No
Normal. point dist. NPD (0,1] ↑ Yes
Shape regularity SRG (0,1] ↑ Yes

• angles: ratio MA/mA, with MA, mA minimum, and maximum
inner angle of the polygon, respectively;
• areas: area (AR) of the polygon, kernel area (KE), kernel-area

ratio (i.e., the ratio between the area of the kernel of the polygon
and its whole area), area-perimeter ratio (APR);
• radii: inscribed circle radius (IC), circumscribed circle radius

(CC), circle ratio (CR:=IC/CC);
• distances: minimum point to point distance (MPD), normalized

point distance (NPD) (i.e., normalized version of MPD);
• shape regularity (SRG), as the ratio between the radius of the

circle to the circumscribed polygon and the radius of the circle
inscribed in the kernel of the element.

Three different visualizations of the results of the geometric analy-
sis are available, thus enabling the possibility to either analyze each
mesh as a standalone object or to consider each mesh as a part of a
full data set (when more polygonal meshes are available).

The former visualization focuses on the polygonal mesh as a
standalone object (Fig. 5). On each available mesh, it visually high-
lights the element (either triangle or polygon) where the minimum
and the maximum values are located, together with textual infor-

(a) (b)

Figure 4: (a) Geometric metrics of a polygon. (b)
Minimum geometric metrics on a polygonal mesh:
#1 satisfies min(MPD) and min(KAR); #2 satisfies
min(IC),min(CC),min(AR),min(KE),min(MPD),min(SE);
#3 satisfies min(CR); #4 satisfies min(KAR); #5 satisfies min(mA).

Figure 5: Graphical visualization of geometric polygonal metrics.
Given a polygonal mesh and a selected geometric metric, the mesh
element (either a triangle or a non-triangle polygon) satisfying the
metric is highlighted in the canvas. Numerical values are reported
in the bottom text box.

mation about them (e.g., the numerical values). This visualization
enables the detection of possible geometric degeneracies.

The other two visualization approaches consider the full data
set as a single object and plot how the evaluated geometric met-
rics evolve in the data set, and how they correlate with each other.
Specifically, a former window (Fig. 6) shows the variation of the
minima and maxima of each geometric metric. Each one of these
linear plots corresponds to a single geometric metric, and it is gen-
erated by setting its x-axis to the indices of the meshes in the data
set and its y-axis to the minimum and the maximum values. The
second window is specialized in correlating two user-defined geo-

c© 2022 The Author(s)
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Figure 6: Screenshot of the window visualizing the variation of the minima and maxima of each geometric metric through line plots. By
double-clicking on a single plot, the selected plot detaches from the window and enables a full-screen visualization. On the right side, a
specialized panel allows graphical settings and image saving.

metric metrics with each other. The correlation is shown by scatter
plots, each of them built by setting its axes to the two selected met-
rics, respectively (Sect. 3.4). In both windows, plots are interactive:
a single click on a point or line in the plot shows the value corre-
sponding to such a point. Also, both windows are highly customis-
able by enabling the user to set plot colours and point/line sizes.
Furthermore, plots can be stored on disk as images, and numerical
information can be stored as textual files.

3.3. PEM solver

PEMesh provides the possibility to solve PEMs on a polygonal
mesh of the input domain and to visualize the performances of any
PEM solver. To this end, the PEM solver is not part of the tool but
is rather considered an external resource that is invoked from the
graphical interface. Without loss of generality, our framework as-
sumes that the selected PEM solver takes an input mesh and returns
both the solution and the ground truth (if any) of a PDE, together
with statistics (e.g., approximation error, conditioning of the stiff-
ness matrix) on the numerical solvers (Sect. 4.3).

When the results of the PEM solver are available, a specialized
window graphically shows both the solution and the ground truth
on the mesh through a colour map, while numerical and geomet-
ric metrics are represented by customisable linear plots (Fig. 7).
A double click on each plot detaches the plot itself from the win-
dow and enables a full-screen visualization. On the right side of
the window, a set of visualization options is provided to customize
both colour maps and linear plots.

3.4. Correlation visualization

PEMesh is intended to be a support for the investigation of possible
correlations between geometric and solver performance metrics. To
reach the goal, it provides specialized windows for the graphical
visualization via scatter plots of such correlations (Fig. 8). A scatter
plot is a plot displaying the relationship between two quantitative
variables measured on the same input. The values of one variable
appear on the horizontal axis, and the values of the other variable
appear on the vertical axis. This representation allows us to analyse
if the two variables are correlated. In the former case, it describes
the relationship’s direction, form, and strength. Direction can be
either positive (rising) or negative (falling), while the form can be
linear or curvilinear. Finally, the strength is derived from the plot’s
slope, indicating if the relationship is strong, moderate or weak.

PEMesh provides visualization of possible correlations between
two different geometric properties and between a geometric met-
ric and a solver performance evaluation. The former is enabled
when both geometric metrics and PEM performance evaluations
are available.

Given two variables G and G′ computed on the same set of input
polygon meshes, where G is a geometric metric and G′ may either
be a geometric metric or a PEM performance evaluation, this mod-
ule visualizes their correlation through a specialized scatter plot,
with G-values on the x-axis and G′-values on the y-axis. Similarly
to any other plot in the application, these scatter plots are highly
customisable in terms of the point colour, size, and labels, and can
be exported as images.

c© 2022 The Author(s)
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Figure 7: Screenshot of the window visualizing PEM solver results. On the top, both solver output and ground truth are colour-mapped on
the input polygon meshes, while on the bottom a set of linear plots show how solver performances vary in the data set.

(a)

(b)

Figure 8: Examples of scatter plots. (a) Positive strong correlation.
(b) Negative strong correlation.

4. Implementation

PEMesh is a standalone multi-platform desktop application im-
plemented in C++ and exploits Qt libraries for the design and
implementation of the graphical user interface (Fig. 1) and Cino-

lib [Liv19] to generate and visualize meshes. The software we de-
veloped is open-source and publicly available. We now discuss the
supported data formats (Sect. 4.1), the family of parametric poly-
gons available for the generation of polygonal meshes (Sect. 4.1),
and a description (Sect. 4.3) of the PEM solver used for the exper-
iments on the interplay between geometry and analysis.

4.1. Supported data formats

As mentioned, PEMesh provides the possibility to either load an
existing data set or generate a new one from scratch. In both cases,
it supports the most widely used file formats for the exchange of
polygonal meshes, namely OBJ, OFF and STL. Furthermore, an
additional output format is provided and produces .node and .ele
files encoding vertices and polygons respectively. This latter mesh
format is provided to support a large amount of PEM solvers re-
quiring this kind of input.

4.2. Input polygons

To generate new polygon meshes from scratch, the user is asked
to select one or more polygons to be added to the domain. Two
types of predefined polygons are made available for user selection:
parametric and random [ABB*21]. When a set of random polygons
is selected, the generated data set is made of a single mesh; if at
least one parametric polygon is chosen, then a family of meshes
D = {M(0), . . . ,M(1)}, is generated, where M(0) contains all the
parametric polygons at its initial phase (e.g., they do not present
critical geometric features (Fig. 9(a)) and they are progressively
made worse by a deformation, controlled by the parameter t ∈ [0,1]
(Fig. 9(b)). In the latter case, the number of generated meshes is
user-defined.

c© 2022 The Author(s)
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(a) t = 0 (b) t = 1

Figure 9: Multi-parametric polygon meshes.

Other than the predefined parametric polygons, the user is al-
lowed loading polygons from a file. Such a polygon is automati-
cally scaled and translated to be placed inside the domain, and ad-
ditional editing can be applied by the user. Users are allowed to save
the polygon configuration into a CSV file to be possibly reloaded
during any following experimental session. The CSV stores, for
each polygon, any data necessary to rebuild the configuration (i.e.,
position, scale, rotation).

4.3. PEM solver

As aforementioned, PEMesh does not include PEM solvers but
is intended to be a support for the analysis of any kind of PEM
solvers, with no limitation. The only requirement to be satisfied is
related to the solver output format, which must be available accord-
ing to a very simple text file format. Specifically, both the numerical
solution computed by the VEM solver and the ground-truth solu-
tion (if any) must be as a list of their values at the mesh vertices.
Finally, these two arrays are saved in a .txt file whose name is com-
posed of the input filename and an additional ending to indicate
which output it encodes (i.e. either “-solution” or “-ground-truth”
respectively). For each performance evaluation, an additional .txt
file is generated and its name is composed of the input filename
and an additional string to indicate the performance name. The sin-
gle value representing the solver performance must be written in
the file.

4.3.1. Example of an Application

As a matter of example and test, we exploit the family of paramet-
ric and random polygon meshes defined in [ABB*21] as an input
dataset and the Virtual Element Method (VEM) [BBC*13] as an
external PEM solver. Specifically, we considered a test problem
corresponding to solutions to the Poisson equation in the domain
Ω = (0,1)2. For our test case, the ground truth is the Franke func-
tion, namely

u2(x,y) :=
3
4

e−((9x−2)2+(9y−2)2)/4 +
3
4

e−((9x+1)2/49+(9y+1)/10)

+
1
2

e−((9x−7)2+(9y−3)2)/4 +
1
5

e−((9x−4)2+(9y−7)2)

(1)

The MATLAB R© code of the method computes the PDE solu-
tion, provides the solution ground truth and also computes some
evaluations of PEM solver quality, such as

• L1 condition number κ1(S) = ‖S‖1‖S−1‖1 of the PEM stiffness
matrix S;
• relative error εS := ‖u−uh‖S/‖u‖S, with weighted norm
‖v‖2

S = v>S v;
• relative L∞-error ε∞ := ‖u−uh‖∞/‖u‖∞, between the

ground-truth u and the computed uh solutions.

To enable the visualization of the results and the correlation
between PEM solver performances and geometric properties, we
wrap the code into a MATLAB function to be called from a com-
mand line and we redirect the output of the Virtual Element Method
to file, according to the file format described in Sec. 4.3. The MAT-
LAB function requires both the input mesh and the output direc-
tory as parameters. These two simple operations are sufficient to
make our framework and the Virtual Element Method communi-
cate. Fig. 7 shows how PEMesh visualizes PEM solver perfor-
mances, while scatter plots in Fig. 10 are generated by PEMesh and
show the correlation between two geometric metrics (area perime-
ter ratio and minimum angle) and the conditioning number of the
stiffness matrix of the PEM solver.

(a)

(b)

Figure 10: Scatter plot of the correlation between geometric prop-
erties and performance metrics of the PEM solver: correlation be-
tween (x-axis) (a) the area-perimeter ratio and (b) the minimum
angle with (y-axis) the conditioning number of the stiffness matrix
of the PEM solver.
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5. Discussion and conclusions

We presented a novel tool helping researchers to perform experi-
mental design and analysis of polygonal meshes for PEM solvers.
Its easy-to-use graphical interface simplifies the execution of ex-
perimental pipelines, from the design of polygon meshes stress-
ing specific geometric properties to the analysis of performances
of user-provided PEM solvers. It also allows correlating geometric
properties with PEM solver performances and provides advanced
visualization modalities of the results of such an analysis. PEMesh
is available as an open-source project (https://github.com/
DanielaCabiddu/PEMesh) and we expect it can be employed
in several research activities.

Current limitations and future works There are several direc-
tions in which our framework can be improved. First, the current
implementation allows the definition of polygon meshes by loading
already exiting polygons, possibly designed by exploiting external
tools. Since our proposal is intended to support activities in sev-
eral research fields, additional features, such as the possibility to
draw polygons freehand, would simplify the mesh generation pro-
cess for users coming from fields other than mesh design. A deeper
analysis, including user studies, can support the development of an
improved version of the tool according to user needs.

Also, PEMesh supports 2D meshes, but the entire architecture
is agnostic to the dimension of the geometric input. It is almost
trivial to extend the graphical user interface to support 3D meshes,
but future investigations are necessary on 3D mesh generation ap-
proaches and the definition of geometric properties that would be
likely to be of interest to the research community.

Finally, PEMesh is designed as a desktop application exploit-
ing RAM to both generate meshes and run PEM solvers. At each
run of the application, the complete input dataset is kept in core to
improve efficiency. Nevertheless, the power of PEMesh is RAM-
bounded and it is not robust enough to support arbitrary large input
datasets (i.e. made up of a large number of large meshes). Future
activities will be addressed to improve the underlying architecture
and guarantee efficiency independently of the input dataset size.
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