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Abstract
Volumetric texturing is a popular technique for rendering rich 3-D detail when a polygonal surface representation
would be ineffective. Although efficient algorithms for rendering volumetric textures have been known for years,
capturing the richness of a real-life volumetric materials remains a challenging problem. In this paper we propose
a technique for generating a volumetric representation of a complex 3-D texture with unknown reflectance and
structure. From acquired reflectance data in the form of a 6-D Bidirectional Texture Function (BTF), the proposed
algorithm creates an efficient volumetric representation in the form of a stack of semi-transparent layers each rep-
resenting a slice through the texture’s volume. In addition to negligible storage requirements, this representation
is ideally suited for hardware-accelerated real-time rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Photorealism in computer graphics can only be achieved
with a detailed representation of geometric and photometric
properties of a scene. In general, the appearance of a surface
material can be described with the bidirectional texture func-
tion (BTF) [DvNK99]. This 6-D function of light and view-
ing directions describes the apparent reflectance of a surface
when reprojected onto a fixed plane. A real material can be
sampled and then described with a BTF that implicitly en-
capsulates both the geometry and the reflectance. Although
a BTF can be rendered directly, it requires efficient com-
pression algorithms and rendering schemes for real-time ap-
plications. For many materials, this is the result of complex
geometry, rather than the actual reflectance. Consider some
examples in the lower right corner of Figure 2. Although
these materials have relatively simple reflectance, their BTFs
will be very complex due to geometry alone. By separating
the geometry information from the reflectance data, we ex-
pect to obtain a much simpler representation. As a second
benefit, extracting the geometry information also allows for
a more realistic rendering of a material at grazing angles,
where direct BTF rendering methods cannot reproduce the
occluding contour. Yet, even though various methods have

Figure 1: Three views of a volumetric texture synthesized
from a BTF set. The yellow line indicates the light direction.
Bottom row shows parameter textures for a single layer with
a sample input texture to the left of the line.

been proposed to render volumetric textures, there has been
very little work on how to reconstruct them from image
data. Existing rendering algorithms typically use computer-
generated representations [MN98,Dis98,KK89,Ney98,DL-
HHP01,LPFH01,WTL∗04,FHNK05], or, on rare occasions,
volumes scanned using 3-D scanning techniques [CTW∗04].
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The algorithm proposed in this paper allows volumetric rep-
resentations to be generated from a set of images taken with
an ordinary camera and parametrized as a BTF (see Fig-
ure 1). In addition to geometry, it also captures reflectance
properties as a parametric BRDF model. This results in a
compact representation, effectively compressing a BTF.

In interactive applications we are traditionally limited to
a polygonal representation, which becomes very inefficient
at surface material’s macro scales. The standard solution to
this problem is to approximate geometric detail with tex-
tures. Various texture representations typically offer a trade
off between visual realism and rendering/storage costs. The
complexity of the reproduced material is often the deciding
factor. As such, relatively simple geometry of various rough
materials, such as concrete, wood, painted surfaces, can be
visually reproduced with a normal map. More complex ge-
ometry with a visible macro scale features require a more ad-
vanced representation for the same level of realism. Adding
a displacement texture provides a way to represent materials
for which geometry can be described by a depth map. More
complicated materials typically require volumetric represen-
tations. For rendering, the volume can be re-sampled into
a stack of semi-transparent textures simulating the original
material. For greater realism, the re sampling is often done
at run-time and perpendicular to the viewer’s direction.

The algorithm proposed here focuses on this most generic
form of materials, that can only be faithfully reproduced
with a volumetric representation (refer again to Figure 2 for
some examples). The model used by our algorithm consists
of a stack of semi-transparent slices representing the original
BTF data. At each layer point a vector of BRDF parameters
approximates the local reflectance. The geometry is repre-
sented with volumetric attenuation sampled into each layer.
At runtime, layers are rendered over a surface, giving an im-
pression of a 3-D texture. We will refer to this model as Lay-
ered Volumetric Surface Texture (LVST). Similar volumetric
representation have been shown t be useful for a number of
volumetric textures [MN98, Ney98, LPFH01].

Key advantages of the proposed algorithm can be summa-
rized as follows:

• Addresses an open problem of geometry extraction from
BTFs.

• Works well for textures with complex geometry, re-
flectance, and shadowing.

• Separates the geometry from the reflectance into a very
compact representation.

• Can be used to render the occluding contour in real-time
applications.

2. Related Work

There are several other interesting methods that aim to infer
the geometric structure of a texture. Liu et al. [LYS01] and
Haindl et al. [HFA04] used shape-from-shading to construct
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Figure 2: Appearance complexity space for textures. Hor-
izontal and vertical axes indicate increasing geometric and
photometric complexities. Textures in the lower right corner
have relatively simple reflectance, yet their BTFs are com-
plex due to geometry.

a surface displacement map. Shape-from shading methods
work for BTFs with simple reflectance for which the Lam-
bertian reflectance assumption applies. Another approach
taken by Yu and Chang [YC02] uses shadow graphs for
height map reconstruction. Their method is a combination
of shape-from-shading and shape-from-shadow with con-
straints enforcing consistency between the two. Wang and
Dana [WD04] used a library of geometric textons to re-
construct an approximation of a BTF height map. Although
the focus of their method is actually better reconstruction
of shadowing effects rather than geometry, it generates a
height map as well. It also works for non-Lambertian sur-
faces for which the reflectance model can be approximated
by a known model. Unfortunately, displacement mapping
methods are not very useful for textures with a more com-
plex geometry.

Although volumetric reconstruction into layers has not
attracted much attention in the BTF setting, it has been
explored in the area of stereo reconstruction. Stereo algo-
rithms aim to estimate the depth of a scene using two or
more images taken from different locations. This informa-
tion can then be used to create a volumetric model of the
scene. Over the years steady progress in the area resulted
in improving accuracy and better handling of difficult set-
tings [SS02]. Transparency has recently attracted more at-
tention due to two reasons: some scenes actually contain
transparent objects (glass windows, picture frames, etc.),
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but also in order to reconstruct layers with smoother semi-
transparent boundaries. Of particular interest is the work by
Szeliski and Golland [SG99]. Given a stereo sequence, their
algorithm extracts layers with semi-transparent boundary re-
gions. By performing a global optimization on the color and
transparency value of boundaries, they create smooth, semi-
transparent layer edges. However, as with most stereo re-
construction algorithms, reflectance is not modeled. Here we
should also mention voxel-based reconstruction techniques,
such as voxel coloring algorithms [SD99, SCM∗04]. These
rely heavily on photo consistency and therefore do not work
well for non-Lambertian conditions.

Volumetric decomposition of BTFs can also be viewed as
a compression scheme. Storage requirements typically make
it impractical to use BTFs directly in real-time rendering.
Over the past few years there has been an ongoing work
on better compression and parametrization. Most compres-
sion solutions use some variation of eigen decomposition or
principal component analysis [MMK03b, KMBK03, VT04,
LHZ∗04, MCT∗05]. For additional compression, some also
utilize Laplacian pyramids [HFA04, MCT∗05]. A differ-
ent approach is to view BTFs as a 2-D apparent BRDF
(ABRDF) function [WHON97], that includes the effects of
inter reflection and shadowing. Per-pixel view and lighting
variations can then be approximated by ABRDF clustering
[CD01, TZL∗02, WD04]. ABRDFs can also be modeled us-
ing traditional parametric BRDF representations [MMK03a,
FH04, KSS∗04] or factorization techniques [SvBLD03].

3. The LVST Model

The volumetric model used by the algorithm consists of a
stack of N layers, as pictured in Figure 3a. Each layer is
parametrized with (un,vn), where u and v are the 2-D tex-
ture dimensions, and n is the layer index. We number lay-
ers starting at one for the top layer. The bottommost layer
is always fully opaque. Rendering involves superposition of
each layer by re-projection into the view direction and com-
putation of the reflectance values for each of them. This
composing process can be expressed as a backward warp-
ing operation Wb applied to each layer projecting them into
the viewing direction. This is accomplished using the shear-
warp algorithm [LL94]. Under parallel projection this oper-
ation reduces to simple parallax shifts of layers relative to
each other. The inverse of the backward warping operator
W f , maps the camera view along ~ω into coordinates of a
layer n as:

[
un vn

]T =W f (~ω,n)
[

ũ ṽ
]T (1)

where (ũ, ṽ) are the coordinates in the camera view. In the
composing process of N layers, the total camera-observed
brightness Io for the current viewing direction along ~ω is the
sum of brightness contributions from each individual layer

Il attenuated by the product of the projected attenuation fac-
tors a:

Io(ũ, ṽ,~ω) =
N

∑
n=1

Il,n(un,vn,~ω)
n−1

∏
n′=1

an′(un′ ,vn′ ,~ω) (2)

This composing equation can be viewed as an approxima-
tion to a discretized form of the radiance equation com-
monly used in volumetric rendering. The outgoing radiance
Lo is then equal to the sum of the incoming radiance Li,n in-
scattered at each layer n according to the bidirectional scat-
tering distribution function (BSDF) fs:

Lo(~ω) =
N

∑
n=1

Z
4π

fs,n
(
~ω′→~ω

)
Li,n

(
~ω′)~Nn ·~ω′ d~ω′

n−1

∏
n′=1

an′

(3)
~Nn is the normal vector. All parameters in Equation 3 are
also functions of u and v. From now on, we will omit them
from equations for better readability.

Equation 3 is only a discrete approximation of radiance
transport. Light interactions along the direction~ω are limited
to layer intersection points. Increasing the number of layers
has the net effect of increasing the sampling rate along the
ray. The integral accounts for light contributions from all di-
rections and could be used to approximate arbitrary material.
Yet a more application-specific approximation can lead to a
more efficient implementation. The algorithm presented here
is designed specifically for non-diffusive volumetric mate-
rials with strong light source direction correlation. Under
these conditions, light interactions are dominated by absorp-
tion (as opposed to scattering) and light arriving at the cam-
era is mainly due to the first scattering reflection event. The
integral of the incoming radiance Li,n at each layer can be
approximated with just the primary incoming light direction
~ωi. We also add a constant diffuse radiance term Ld,n to ap-
proximate any higher-order scattering events:

Lo(~ω) =
N

∑
n=1

fr,n(~ωi →~ω)
[
Li,n(~ωi)+Ld,n

]
~Nn ·~ωi

n−1

∏
n′=0

an′
(4)

We replace the BSDF with a more appropriate reflectance
term (BRDF) fr. For BRDF, we are free to choose any para-
metric reflectance model that best suits a particular texture.
BRDF models with fewer parameters have the advantage
of faster conversion. In particular, we have been using the
Lafortune model [LFTG97] which gives a good trade-off be-
tween generality and the number of required parameters.

The proposed LVST model can be summed up as consist-
ing of a stack of layers with spatially-varying parameters.
Each layer location (un,vn) is described by several parame-
ters:
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Figure 3: The LVST model. (a) Layer parameters relate the total outgoing radiance in terms of the reflected illumination and
the total outgoing radiance from layers below. (b) Layers warped into the camera direction. (c) Layers warped into the light
source direction.

• The surface normal ~Nn.
• Parameters of the chosen BRDF fr,n.
• The attenuation factor an.
• The diffuse radiance term Ld,n.

In the next section we will show how to iteratively solve for
these unknown parameters.

4. Estimating the LVST Parameters from a BTF
Dataset

Equation 4 expresses the total outgoing radiance along a sin-
gle ray. A captured BTF samples the outgoing radiance val-
ues Lo for discrete light and camera directions (~ωi,~ω). The
total incoming radiance Li can also be measured. For each
layer n, we would like to find the best estimate for the BRDF
fr,n, attenuation an, surface normal ~Nn, and the diffuse light
term Ld,n, so that the observed error between rendered and
originally measured radiance values is minimized. Globally
we are trying to solve the inverse image synthesis problem
with unknown reflectance and geometry. This problem ap-
pears in vision applications and, in general, is difficult to
solve. For a particular BRDF model with f parameters, we
have to solve for n ·u · v · ( f +4) unknowns. For the trichro-
matic RGB model, the number of unknows is even greater.
Solving for them directly, even for models with just a few
layers, can be prohibitive. Instead, we solve this high di-
mensionality problem by expressing it as a series of local
optimization steps. In particular, we iteratively perform lo-
cal optimizations on individual layers.

4.1. Layer Optimization

Consider the radiance Lo,n leaving a particular layer n to-
ward the camera along ~ω (see Figure 3). By looking back

at Equation 4 we can see, that it is equal to the sum of the
incoming radiance Li,n(~ωi)+ Ld,n reflected by the layer and
the radiance transmitted from the layers below Lo,n+1. We
will denote the reflected radiance with Ll,n:

Lo,n(~ω) = Ll,n(~ω)+anLo,n+1(~ω)

Ll,n(~ω) = fr,n
(
~ωi →~ω

)[
Li,n(~ωi)+Ld,n

]
~Nn ·~ωi

(5)

Lets assume, that all incoming and outgoing radiance val-
ues are known and we are given a set of

(
Li,n,Lo,n+1,Lo,n

)
triplets for K different light and viewing directions. For each
discrete position on a layer n we want to solve for the un-
known parametric BRDF function fr,n, the diffuse radiance
constant Ld,n, the surface normal ~N, and the attenuation co-
efficient an. The least-squares solution can be obtained by
minimizig objective function O of the form:

O =
K

∑
k=1

[
Ll,n,k +anLo,n+1,k−Lo,n,k

]2
wn,k (6)

We have dropped some notation from Equation 5 for read-
ability.

The weighting factor wn,k in the Equation 6 is crucial, as
it provides the means to distribute radiance into appropriate
layers. It is used to penalize data when a layer point is not in
the direct line of sight of the camera and represents visibility.
It can be written as a product of attenuations:

wn,k =
n−1

∏
n′=1

an′ (7)
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Unlike the global problem, the local objective function
is only non-linear in the BRDF model parameters. We will
directly take advantage of that fact later on. The optimiza-
tion process can broken down into a series of layer updates.
For each layer, the algorithm uses the current estimate of
the model to compute necessary layer radiance values. From
each input image in the sampled BTF, we can obtain the out-
going radiance from the top layer Lo,1 = Lo. Similarly, the
total incoming radiance from the light source is the same as
the incoming radiance to the top layer Li,1 = Li. If the cur-
rent state of the LVST model is known, we can also compute
radiance values for other layers. In general, the outgoing ra-
diance Lo,n from layer n is equal to the difference between
the measured radiance Lo and radiance contributions from
layers above n:

Lo,n =
1

an−1

[
Lo−

n−1

∑
n′=1

Ll,n′

n′−1

∏
n′′=1

an′′

]
(8)

In a similar way, we can express the radiance incoming from
below the layer n as the sum:

Lo,n+1 = Ll,n+1 +
N

∑
n′=n+2

Ll,n′

n′−1

∏
n′′=n+1

an′′ (9)

Finally, to compute the radiance due to direct illumination,
we first perform a warping operation similar toW f , but with
respect to the light source direction (see Figure 3c). We can
express the direct illumination reaching the layer n as:

Li,n = Li

n−1

∏
ni=1

sni (10)

The shadowing coefficient sni is eventually equal to the at-
tenuation ani . Initially model optimization is done without
shadowing, which is then estimated in the final pass. The
reasons for that will be explained in Section 4.4.

In summary, the algorithm begins from the bottommost
layer and iterates through all layers until convergence is
achieved. All layers are initialized to be fully transparent.
For each BTF sample image, the layer stack undergoes
viewer and camera direction warping operation W f and the
three layer radiance values are computed. These can then
used to solve the least-squares problem from Equation 6.

4.2. BRDF Model Optimization

The majority of BRDF models are non-linear and there-
fore minimization of the objective function from Equation 6
generally requires a non-linear solution. Unfortunately non-
linear minimization algorithms are also much slower than
their linear counterparts, as they typically require multiple

iterations over the input data. This is problematic, as typical
input BTF data sets are very large, containing on the order
of thousands of images. Iterating over the whole input data
can therefore be very time consuming.

When dealing with large data sets, it is better to use in-
cremental algorithms, such as the Extended Kalman Filter
[Ber96], conceptually equivalent to an incremental version
of the Gauss-Newton method. The idea behind incremen-
tal solvers is to deal with large sets by incrementally iterat-
ing over smaller chunks of data. In particular, an incremen-
tal version of the Gauss-Newton method works by progres-
sively updating the current gradient covariance matrix Cm, as
new data vectors x becomes available. A single iteration over
the parameter vector P is performed every M such updates.
It can be conceptually written it as:

Cm = λCm−1 +∇xm∇xT
m (11)

Pi = Pi−1−C−1
Mi

Mi

∑
m′=M(i−1)

∇xm′xm′ (12)

The parameter vector Pi is updated every M data vectors
x. For faster computation we can also take advantage of
the Sherman-Morrison update formula [GL96] instead of di-
rectly computing the inverse of Cm. The smoothing parame-
ter λ controls “forgetfulness” of the algorithm with respect
to the past data. It is desirable to smoothly decay its value in
the course of the algorithm from some initial constant. This
results in faster initial convergence. For more details on the
algorithm refer to the work of Bertsekas [Ber96].

Given radiance values computed using Equa-
tions 8, 9, and 10, the algorithm evaluates the gradient
of Equation 6 and subsequently updates the incremental
solver. As an example, in Appendix A we will show to
derive the gradient function for the Lafortune model.

4.3. Recovering the Attenuation Parameter

In general, the spatially varying attenuation parameter an is
difficult to recover using the incremental solver directly. The
problem is ill-posed, as multiple combinations of BRDF pa-
rameters and the attenuation can result in many local min-
ima. Since Equation 6 in linear in the attenuation parameter,
we will take advantage of it. We use the non-linear incremen-
tal solver to initially estimate the layer radiance Ll,n, while
an is set to maximum opacity. We use this result to subse-
quently solve a linear problem of the form:

an = argmin
α2

K

∑
k=1

[
α1Ll,n,k +α2Lo,n+1,k−Lo,n,k

]2
wn,k (13)

This equation can be interpreted as a blending optimization
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Figure 4: LVST parameter textures recovered from the carpet BTF set using the Lafortune reflectance model. Each row corre-
sponds to one layer. Parameters are in columns. From left to right, they are: color diffuse term, attenuation coefficient, normal
vector (color represented as (r,g,b) = (Nx,Ny,Nz)), diffuse radiance factor, specular term, specular exponent, and Lafortune
lobe coefficients. Attenuation, diffuse radiance, and specular exponent are scalar values. Refer to Appendix A for more details
on the Lafortune model.

between two one-layer BTF representations at slightly dif-
ferent offsets. α1 is a dummy blending factor for Ll,n that
we do not have to solve for. Once we solve Equation 13 for
α2, Ll,n must be updated making α1 redundant.

Recovering geometry from images can at most be guar-
anteed visual consistency with the originals. Recovering the
attenuation parameter can be viewed as solving a blending
equation for two BTF representations at different depth off-
sets. Yet visual consistency can often be achieved in a non-
unique way, allowing multiple solutions. For example, a con-
stant radiance offset present in the input data could be arbi-
trary distributed between layers. This is the case for flat, fea-
tureless texture regions in the BTF. Although visually con-
sistent with the input data, unexpected artifacts may appear,
when rendered for viewing directions that were not part of
the input. Moreover, as the distance between layers is de-
creased, so will the differences in their appearance, until they
become dominated by noise and re-projection error. Increas-
ing the number of layers can therefore be beneficial only up
to a certain point. We can conclude, that the resolution limit,
defined as the minimum useful separation distance between
layers, is directly related to the strength of the noise present

in the BTF and inversely related to the local texture gradi-
ent measured against the relative warping displacement for
that separation distance. Below this threshold, the attenua-
tion parameter cannot be meaningfully estimated. Alterna-
tively, we could modify the algorithm to achieve better con-
sistency. For example, adding a smoothness constraint based
upon the local neighborhood information, such as the surface
gradient continuity, could lead to a more consistent solution
and is an interesting area to explore.

4.4. Shadows and the Diffuse Radiance Term

Unlike some other phenomena, shadows cannot be easily
parametrized. Shadows are created when light is attenuated
on its way to a surface and depend on geometry. Although
the LVST model stores spatially-varying attenuation param-
eters at each layer, shadows generated that way will rarely
be consistent with the original shadows due to geometry be-
ing flattened into layers. Yet sharp shadow boundaries that
do not match exactly may still look more “natural” to an
observer. Following this argument, we model shadows us-
ing the actual attenuation values stored at each layer. As this
is not consistent with least-squares optimization used to re-
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Figure 5: Images synthesized using the LVST model. The original BTF samples are at the top with corresponding synthesized
equivalents at the bottom.

cover other parameters, shadowing is initially ignored and is
only taken into account in the final pass of the algorithm.

Note, that in a shadowed area, the diffuse radiance Ld,n
becomes the primary source of illumination. In the final
step of the algorithm we solve for the diffuse radiance term,
which essentially serves as a correction factor for shadows.
We again linearize Equation 6 solving for Ld,n:

Ld,n = argmin
α

K

∑
k=1

w′
n,k[

fr,n
[
Li,n,k +α

]
~n ·~ωi +Lo,n+1,k−Lo,n,k

]2
(14)

The main difference this time is that we only consider data
points for which Li,n,k < 1, i.e. at least some shadow is cast
by layers above. Many other ways of rendering shadows are
definitely possible and it can be an interesting area to inves-
tigate.

Summing it up, the algorithm consists of a series of lo-
cal optimization steps that are repeated until convergance is
achieved:

1. Initialize all layers and make them fully transparent.
2. Starting from the deepest layer N, iterate over the layer

stack (with no shadowing):

a. Solve for the attenuation coefficient (Section 4.3):

i. Generate an opaque layer for the current layer lo-
cation.

ii. Solve Equation 13 for the attenuation.

b. Estimate the BRDF and surface normal parameters
(Section 4.2).

3. Solve for the diffuse radiance component and update the
model for shadowing (Section 4.4).

5. Input BTF Data Sets

In our experiments we have been using textures from the
UIUC BTF database [KMBK03]. It contains some complex
volumetric surface textures and a few are shown in Figure 2.
Each BTF was sampled over a range of discrete viewing and
lighting directions resulting in over 10,000 images.

Images required some additional post-processing, most
importantly, inversion of the gamma correction that was au-
tomatically applied by the camera. Some image artifacts,
which could not be corrected for, included video compres-
sion artifacts and camera noise. Errors in geometric align-
ment, including camera and light orientations, lens distor-
tions, approximation of the perspective with parallel projec-
tions, and errors in the BTF rectification process are also
problematic.

6. Results

Although the algorithm could be applied to BTFs with sim-
ple geometry, it does not provide any advantage over other
compression schemes mentioned in Section 2. Since it was
designed to specifically handle textures with complex vol-
umetric structures, we have tested the algorithm on several
captured BTFs with such characteristcs. In addition to BTF
data, the algorithm requires a choice of number of layers
and the height bounds. These can be manually selected by
examining the data. Since all layer updates are independent
of each other in the (u,v) space, we take an advantage of
this parallelism and solve for all layer parameters simulta-
neously. The number of iterations required before conver-
gence conditions are detected depends on the complexity of
the texture and the chosen BRDF, but is on the order of a
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Figure 6: LVSTs tiled on a cylinder and rendered in real-time. The two examples in the left column were fitted using the diffuse
model and the two on the right use the Lafortune model. The yellow line indicates the light direction. Note the 3-D texture at
the occluding contour.

few thousands input BTF samples. Quite often convergence
of a single layer is achieved before the majority of the in-
put data is even evaluated, suggesting significant data redun-
dancy. Depending on the number of layers and their dimen-
sions, our C++ implementation typically takes a few hours
to fully converge when run on a desktop PC.

Several examples of synthesized views along with the
original data are shown in Figure 5. All textures in the fig-
ure have the same spatial resolution as the original BTF data
(192x192, with a possible margin of a few pixels). They are
modeled with four to five layers, except the lichen texture,
which uses six layers. Since the algorithm relies on para-
metric modeling, it cannot represent phenomena not repre-

sented by the model. The resulting reconstructions are typi-
cally blurred versions of the originals. However, a major ad-
vantage of this representation is a more natural interpolation
and even extrapolation from the original data.

The LVST representation can be used to render BTFs on
polygonal meshes. Figure 6 demonstrates smooth changes
in texture appearance on a smoothly-varying surface with
tiled LVSTs. Please note silhouettes visible near the upper
edge of the cylinder. To further improve the visual quality
at grazing angles, the algorithm can be trivially extended to
additionally construct vertical layers.
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6.1. Compression and Real-Time Rendering

The result of the algorithm is a compact texture representa-
tion highly suitable for real-time applications. From the orig-
inal sets of over 10,000 images, corresponding LVST rep-
resentations are on the order of 10-20 textures. Such high
compression ratio and easily parallelizable rendering pro-
cess is perfectly suitable for graphics hardware acceleration.
The rendering process simply involves evaluation of Equa-
tion 4. For each layer, we have to evaluate the BRDF model
stored in several textures and modulate it with the shadow
cast by the layers above. In practice, it can be performed in
a few simple steps:

1. Starting from the bottommost layer N, evaluate the BRDF
for the given light and camera directions.

2. Compute the shadow cast by all layers above the current
layer and use it to compute the final layer radiance.

3. Render the layer into the screen buffer blending it accord-
ing to the attenuation factor.

These three steps can be evaluated usng graphics hardware
in a pixel shader. We have implemented a real-time appli-
cation to demonstrate this. In a vertex program it computes
layer offsets and evaluates the BRDF model in a fragment
program. Figure 7 shows several screen captures of tex-
tured objects using a patch-based texture synthesis algo-
rithm [MK03]. The synthesis is done on vectors of LVST
parameters in a fashion similar to regular texture synthe-
sis, that operates on vectors of RGB color values. In LVST
synthesis, we have used vectors of concatenated values of
attenuation coefficients an and some number of BRDF pa-
rameters from every layer. Typically the diffuse term Kd,n
alone was sufficient. Note, that the texture synthesis algo-
rithm from [MK03] trades-off synthesis quality for speed
and therefore we expect even better visual results from other
synthesis algorithms.

7. Conclusions

In this paper, we have described an algorithm that separates
the geometric information from the reflectance data present
in a BTF. It is especially destined for volumetric surface tex-
tures with complex, opaque microstructure, shadowing, and
unknown reflectance properties. These types of textures are
especially difficult to compress and reconstruct by existing
BTF compression schemes. By contrast, our representation
naturally offers very high compression of the original data
and is fit for real-time rendering applications. On top of that,
by providing a geometric representation, it allows for real-
istic rendering for textures at grazing angles. Even higher
coherence of the rendered texture could be achieved by triv-
ially extending the algorithm to re sample the BTF into ver-
tical layers. At a negligible additional storage cost, textures
could be fully rendered at any orientation to the viewer.

Although we have applied the underlying algorithm to de-
composition of BTFs into layers, its applications could po-
tentially be useful in other areas. The concept of recursively
updating data slices could be used in other volume recon-
struction applications, where transparency, shadowing, and
complicated reflectance properties play an important role.
Finally, it could likely be extended to voxelized represen-
tations as well.
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Appendix A: Solving for the Lafortune Model Parameters

Several LVSTs in the paper were generated using the Lafor-
tune BRDF model. We have used the simplified version with
non-zero values only along the diagonal of the lobe matrix
Cl [LFTG97]. Here we show the explicit form for a one-lobe
approximation (trichromatic color parameters are indicated
in bold):

fr = Kd +Ks(~ωTCl~ωi)
kl (15)

,where Kd and Ks are the diffuse and specular coefficients
and kl is the specular exponent for the lobe. When the spec-
ular coefficient is zero, BRDF reduces to the constant dif-
fuse coefficient. There is a total of 15 unknown parameters,
including the attenuation and the diffuse radiance term.

In order to minimize the objective function from Equa-
tion 6, we need to evaluate its gradient vector, as described
in Section 4.2. The residual in Equation 6 has the form:

Rn = fr
~Nn ·~ωi

[
Li,n +Ld,n

]
+aLo,n+1−Lo,n (16)

The gradient vector ∇x is:

∂O
∂~N

=~ωi

[
Kd +Ks(~ωTCl~ωi)

kl
]
[Li +Ld ] ·Rw (17)

∂O
∂Kd

= ~N ·~ωi [Li +Ld ] Rw (18)

∂O
∂Ks

= (~ωTCl~ωi)
kl ~N ·~ωi [Li +Ld ] Rw (19)

∂O
∂Cl

=~ωT~ωi klKs(~ωTCl~ωi)
kl−1~N ·~ωi [Li +Ld ] ·Rw (20)

∂O
∂kl

= ln(~ωTCl~ωi)Ks(~ωTCl~ωi)
kl ~N ·~ωi [Li +Ld ] ·Rw

(21)

The layer subscript n has been dropped for better readability.
Recall, that w is the weighting factor defined in Equation 7.

© The Eurographics Association 2006.

29




