Eurographics Symposium on Parallel Graphics and Visualization (2019)
H. Childs, S. Frey (Editors)

Screen Partitioning Load Balancing for Parallel Rendering on a

Multi-GPU Multi-Display Workstation

Yangzi Dong ! and Chao Pengli

! Computer Science Department, The University of Alabama in Huntsville, USA

Abstract

Commodity workstations with multiple GPUs have been built by engineers and scientists for real-time rendering applications.
As a result, a high display resolution can be achieved by connecting each GPU to a display monitor (resulting in a tiled
large display). Using a multi-GPU workstation may not always produce a highly interactive rendering rate due to imbalanced
rendering workloads among GPUs. In this work, we propose a parallel load balancing algorithm based on a screen partitioning
strategy to dynamically balance the amount of vertices and triangles rendered by each GPU. Each GPU renders a screen region
whose size may be different from the screen regions of other GPUs, but the amounts of vertices and triangles in those screen
regions are balanced. It is possible that a screen region rendered by a GPU has to be displayed by another GPU. We propose a
frame exchanging algorithm that allows GPUs to exchange screen regions efficiently. The inter-GPU communication overhead

is very small since the data transferred between GPUs are a small amount of image pixels.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics; 1.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

1. Introduction

Large 3D models are typical output in many research areas such as
scientific simulation and computer-aided design. To increase stor-
age efficiency, a model is usually divided into many objects where
each object is a self-contained mesh composed of vertices and tri-
angles and with intertwined details and complicated topologies.
In a visualization application, demands are not only high render-
ing performance but also a high rendering resolution on a large
screen [CSR*03], so that intensive graphical contents can be pre-
sented with a sufficient number of pixels. Such demands motivate
us to build a multi-GPU multi-display commodity workstation for
parallel rendering, in which each GPU connects to one or multiple
display monitors, and together they form a large tiled display at low
costs.

As we know, hardware approaches for multi-GPU rendering are
commercially available (e.g., Nvidia SLI [NVI11] and AMD Cross-
fire [AMDI17]). A common load balancing strategy provided by
hardware approaches is to make successive frames (in their entirety
or fractions) rendered by different GPUs. However, the hardware
approaches cannot configure a workstation with a per-GPU per-
display setting. When the SLI or Crossfire is enabled, one GPU has
to be treated as the master device; and other GPUs become workers.

T yangzi.dong @uah.edu
chao.peng@uah.edu

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

DOI: 10.2312/pgv.20191111

Only the master GPU is capable of driving display monitors. Soft-
ware approaches for multi-GPU rendering are also available. For
example, the Equalizer [EMP09, ESP18] is a state-of-the-art paral-
lel rendering framework. It supports a per-GPU per-display setting;
however, it requires input meshes to be represented in a hierarchical
structure such as a k-d tree, and has to perform recursive traversal of
the tree at the runtime in order to balance workloads among GPUs.
Major drawbacks of Equalizer are that the hierarchical structure for
a complex model usually consumes a large amount of memory, and
the traversal is usually hard to be parallelized on the GPU.

Contributions. Advancing the existing hardware and software
approaches, our parallel rendering approach supports a per-GPU
per-display setting and does not require a hierarchal structure for
data representation. In our approach, a novel load balancing algo-
rithm is developed. It performs a fine-grained parallelization on the
GPU at an object level and balances the vertices and triangles as-
signed to GPUs upon the dynamic change of the camera’s view-
point. Also, a novel frame exchanging algorithm is developed to
identify and transfer portions of a rendered frame between GPUs,
rather than transferring the full screen or geometry data, which re-
duces the inter-GPU communication overhead.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 provides a system overview. Section 4
explains the algorithm to configure GPUs settings. Section 5 de-
scribes our parallel load balancing algorithm. Section 6 explains

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

https://doi.org/10.2312/pgv.20191111

70 Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

our frame exchanging algorithm. Section 7 shows the evaluation
results. Section 8 concludes our work and proposes future work.

2. Related Work

Recently, many computing systems have been built with multi-
GPU workstations or GPU clusters for high-performance applica-
tions. Related to our work, we review parallel rendering approaches
with a single workstation and a distributed system. One pioneer
work in parallel rendering was proposed by Whitman [Whi94].
In that work, a parallel algorithm took the advantages of lo-
cally cached memory and increased execution efficiency. Eile-
mann [Eil07] wrote a white paper summarizing middleware so-
lutions for parallel rendering, including OpenGL Multipipe SDK
[BREO5], Chromium [HHN*02], CAVELib [Pap97], and Equal-
izer [EMP09]. Those middleware solutions require data replica-
tions and lack functionality to incorporate with mesh simplification
techniques.

Nvidia SLI [NVI11] and AMD Crossfire [AMD17] are hard-
ware solutions for parallel rendering with multiple GPUs in a sin-
gle workstation. They configure the GPUs as one hardware entity.
The hardware solutions support two rendering modes: (1) assigning
split regions of the screen to different GPUs (SFR/Scissors) and (2)
switching GPUs after each frame (AFR). Both modes require data
replications and use a master-slave model which requires that the
display monitors connect to the master GPU.

Allard and Raffin [AROS5] utilized a graphics cluster to perform
distributed rendering tasks using hardware shaders on networked
PCs. However, their approach does not consider load balancing is-
sues and requires the entire dataset to be retained on the GPUs.
Liu et al. [LWW™11] separated the rendering stage and composit-
ing stage. Their approach adopts a data-partitioning strategy that
assigns an arbitrary data portion to each GPU, and each GPU has
to render the full frame. Wang et al. [WLL"11] presented a “com-
positeless” algorithm which removes the compositing stage from
the pipeline. In their approach, the screen is divided into tiles, and
each GPU is assigned with the data in the corresponding tile. Their
approach does not balance the workload distribution among GPUs.
Eilemann et al. [EBA*12] analyzed the asynchronous parallel ren-
dering system on hybrid Multi-GPU clusters and evaluated the op-
timizations for improving the scalability of the system.

Parallel rendering approaches can be classified into three cate-
gories [MCEF94]: sort-first, sort-middle, and sort-last. A sort-first
approach distributes primitives before the stage of rendering. A
sort-middle approach distributes the primitives during the stage of
rendering. A sort-last approach distributes the rendered-frame after
the stage of rendering. Samanta et al. [SZF*99] introduced a sort-
first parallel rendering system running on a PC cluster. Each pro-
cessor of the system rendered a balanced workload corresponding
to a virtual tile on a projector. Moreland et al. [MWPO1] presented
a sort-last method for the parallel rendering of large data sets on a
tiled display. Their method evenly distributed polygons among all
processors in a PC cluster and composed the rendered images for
each tile. They presented parallel composition strategies to opti-
mize sort-last rendering performance. Abraham et al. [ACCC04]
proposed a sort-first method along with a time-guided load bal-
ancing strategy. The screen partitioning position of the current

Initialization | Run-time

[2 AR
Load : . Frame : .
‘ Balancing ‘ Rendering Exchanging Display

GPU
Configuration

Load Renderin Frame Displa
Balancing 9 Exchanging play
[} LN

Y ad

—» CPU-GPU Data on Data on
l data transfer(:)the GPU -the CPU

Figure 1: The execution sequence of components in our approach
illustrated with two GPUs.

frame is adjusted according to the rendering time spent on the
previous frame. Moloney et al. [MWMSO07] described a scalable
sort-first algorithm for dynamic load balancing. The data set was
evenly divided into uniform bricks and distributed between nodes
based on the pre-calculated rendering cost on each pixel. Erol et
al. [EEP11] presented the cross segment method for load balanc-
ing. Their method evaluated the computational time of each GPU
spent on the rendering of previous frames and assigned more ren-
dering tasks to the GPUs that had less computational time so that
all GPUs could be balanced in terms of computational time. Steiner
et al. [SPEP16] distributed rendering tasks to client nodes. Their
method is adapted to either sort-first and sort-last rendering. In
this work, our approach is a hybrid of sort-first and sort-last. The
load balancing algorithm is executed in the sort-first phase, and the
screen partitioning algorithm is executed in the sort-last phase.

3. System Overview

Figure 1 illustrates the general execution sequence of components
in our approach. At the initialization, the GPU Configuration com-
ponent organizes GPUs of the system into the form of a binary
search tree (see Section 4). Each GPU is controlled by a CPU core
and connects to a display monitor. Each CPU core is controlled
by a process. The GPUs conduct to both general-purpose compu-
tation and standard triangle rasterization tasks. We also compute a
bounding volume for each object of the model. Bounding volumes
are used by the Load Balancing component at the runtime. In order
to render the model, bounding volumes, vertices, and triangles are
sent to the GPUs at the initialization, and then they are kept in the
GPU memory.

During the runtime, the Load Balancing component identifies
appropriate screen partitioning positions and updates the number of
triangles that would be rendered on the GPU it serves for (see Sec-
tion 5). The Rendering component renders the triangles assigned to
the GPU into pixels and stores them in the GPU’s Framebuffers.
In the Frame Exchanging component, for the GPU that renders the
screen region larger than the region it displays, it sends the extra
screen regions to other GPUs (see Section 6). The Display compo-
nent presents the composed rendering results to the display monitor
that the GPU connects to.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation 71

nci: the number of GPUs
in the left child

e ~x==32»GPU+’s Parlnfo, = {“vertical”,
_v ¥\ “vertical” 2, 4}
\ partitions [5 | 4

ne:: the number of GPUs

0
‘— ‘ in the right child
1 3 | 5 |Fmm '
(b)

“horizontal”
partitions

“none”
pamtlons

Figure 2: A GPU tree example of six GPUs in the format of 2 X 3.
(a) shows the building of the tree. The nodes in the red zone are in
accordance to the results of vertical screen partitioning. The nodes
in the blue zone are in accordance to the results of horizontal screen
partitioning. Each leaf node in the green zone contains a single
GPU. (b) shows the first ParInfo of GPUy4, where the values are
recorded from the split of the root node.

The GPUs may finish the Frame Exchanging component asyn-
chronously due to differences on rendered frame sizes and inter-
GPU communication time. In our approach, the GPU-GPU Syn-
chronization is done through shared memory. It forces faster GPUs
to wait until all GPUs finish their rendering tasks, and ensures the
rendered frame is composed properly on the GPU before it can be
displayed.

4. Multi-GPU Configuration

We configure the physical installation of GPUs and their display
monitors in a matrix format, denoted as m X n, where m is the row
dimension, and » is the column dimension. For example, given a
total of six GPUs, the column-major order gives possible configu-
rations of 2 X 3,3 x 2, 1 x 6, or 6 x 1. Furthermore, we label those
GPUs in column-major order.

We use a binary search tree to group GPUs. Each internal node
of the tree contains a subset of consecutive labels of GPUs. The
internal nodes are further split to the next level until reaching the
leaf level, where each leaf node contains a single GPU. At each
non-leaf level, the screen region associating to a tree node (a subset
of GPUs) can be partitioned either horizontally or vertically. Let’s
define the total number of GPUs as K. We initialize the tree’s root
node to contain all GPUs, denoted as the set {GPU}§ ~!, where
the subscript is the label of the first GPU in the set, and the super-
script is the label of the last GPU in the set. The left and right child

K_
nodes of the root are denoted as {GPU}§ " and {GPUYET! re-

spectively. We recursively build the tree in favor of splittin”g a tree
node by partitioning the screen vertically. Figure 2-(a) gives an ex-
ample of the GPU tree which is built from six GPUs in the form of
2 x 3. If the column dimension of the GPUs in a tree node is equal

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

to 1, the node will be split horizontally, as shown in the blue region
of Figure 2-(a).

Every leaf node contains a single GPU, and its depth in the tree
indicates the number of screen partitioning operations the GPU will
perform. This is essential information in order to obtain the screen
region for each GPU to render (see details in Section 5). For each
GPU, we traverse the tree in a depth-first manner and find the list
of screen partitioning operations involving this GPU; and then, we
store them in an array structure, denoted as ParInfo. The size of
ParInfo is the depth of the GPU in the tree. At the ith iteration of
tree building, ParInfo; = {paritionMethod ,nc;,nc,}, where nc; is
the number of GPUs in the left child of the current node containing
this GPU, and nc, is the number of GPUs in the right child of the
current node containing this GPU, as shown in see Figure 2-(b).

5. Load Balancing

We describe a novel parallel algorithm which computes balanced
rendering workloads among GPUs. The algorithm takes the view
frustum and the triangle counts in objects as input. Each GPU ex-
ecutes an instance of the algorithm. The view frustum corresponds
to the full screen projected on the entire tiled display, so all GPUs
have the same input view frustum. The triangle counts in objects
are presented in an array structure, denoted as 7', where T; is the
number of triangles of the ith object. The load balancing algorithm
crops the view frustum into a sub-frustum for the GPU, and cor-
respondingly modifies the values of the T array for the GPU. As
a result, only the objects inside the sub-frustum of the GPU will
remain their triangle counts in the 7 array. In other words, if the
ith object is outside the sub-frustum of the GPU, the algorithm will
change T; to zero.

The sub-frustums of all GPUs may be in different sizes, but their
triangle counts are balanced. The balancing process is performed
in screen space on the near plane of the view frustum. We first
introduce the idea of screen and frustum strips in Section 5.1. We
then describe the load balancing algorithm and its parallelization in
Section 5.2.

5.1. Screen and Frustum Strips

Let’s start with the method to partition a screen. The essential oper-
ation of screen partitioning is to specify a partitioning line, which
cuts through the screen either horizontally or vertically. The choices
to specify a partitioning line are limited to the screen resolution. For
example, given a dual-GPU workstation with the 1 x 2 configura-
tion for their monitors, the full-screen will be partitioned vertically.
If the screen resolution of each GPU is 1024 x 768 pixels, the full
screen resolution is 2048 x 768 pixels. Thus, there are a total of
2048 possible partitioning lines, with each at one pixel on the width
dimension. On the near plane of the view frustum, those partition-
ing lines produce screen strips, which are small screen regions of
the same size. Then, we use the screen strips to subdivide the view
frustum into frustum strips, which are small truncated pyramid vol-
umes created from the screen strips and the viewpoint position of
the camera. Like the example illustrated in Figure 3, the screen is
evenly partitioned into four screen strips, and correspondingly four
frustum strips are created.

72 Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

The screen on the near
plane of the view
frustum

Viewpoint

Figure 3: Four frustum strips generated by evenly partitioning the
screen into four regions. The red rectangle on the near plane is the
bounding rectangle of the projected object’s bounding volume.

We define a parameter called stripNum, ranging in (2,Q), to
control the number of frustum strips on each screen axis, where
Q is the total number of pixels along this axis. A higher value of
stripNum gives more and narrower strips, and the load balancing
algorithm can, therefore, use them to produce a finer balancing re-
sult.

5.2. Load Balancing Algorithm and Parallelization

The goal of load balancing algorithm is to find an appropriate par-
titioning line so that for the objects projected on the partitioned
regions of the screen, their triangle counts are balanced. As men-
tioned in Section 4, GPUs are hierarchically grouped into a binary
search tree. This requires a repetitive execution of a partitioning op-
eration in order to progressively update the modified triangle counts
T (denoted as T”) and sub-frustums in descendent tree nodes, as
shown in Algorithm 1. The number of partitioning operations that
a GPU should perform is equal to the depth of this GPU (the corre-
sponding leaf node) in the tree. In order to ensure all GPUs receive
the balanced workload, the intermediate partitioning operation for a
non-leaf node is weighted based on the number of GPUs that its two
child nodes contain. Here, we introduce a term for such weighting
called balRatio, so we have balRatio = %, where i is the
ith partitioning operation that associates to the non-leaf node. After
each iteration of screen partitioning, the value of balRatio needs to
be recalculated (see line 4 in Algorithm 1). The partitioning oper-
ation takes the computed balRatio, the sub-frustum, bounding vol-
umes of objects, and triangle counts as input, and then finds the
screen partitioning position (p-pos of this non-leaf node (see line 5
in Algorithm 1). As a result after all iterations of screen partition-
ing, we obtain an array of p-pos values, where each p-pos value
corresponds to the result of a screen partitioning operation.

Here, we want to explain the single step algorithm executed at
each iteration of screen partitioning. Figure 4 illustrates the exe-
cution of the algorithm using an example composed of 16 frustum
strips and 10 objects. Note that the triangle count of each object is
already known and retrieved from 7;. The GPU allocates two ar-
rays in the memory whose sizes are equal to the number of frustum
strips. The first one is called Start array, denoted as S; and the sec-
ond one is End array, denoted as E. S; is the sum of triangle counts
of the objects intersecting with the ith strip, and this ith strip must
be the first strip the objects intersect with. E; is also the sum of tri-

Algorithm 1 Load Balancing executed according to the GPU’s
depth in the GPU Tree

Balancing(

Input: ViewFrustum, BoundingVolumes, T, stripNum, depth;
Output: 77, an array of p-pos)

1: T/« T;

2: sub-frustum < ViewFrustum;
3: for the ith level of the depth do
4
5

. Parlnfo;.nc .
balRatio < ParTnforney s

(T', p-posi, sub-frustum} < SingleStepPartitioning(sub-
frustum, BoundingVolumes, T', balRatio, stripNum);
6: end for

> also see Section 4

Objy - Objz
Objo
T4=10 =
. 1 ‘ To=5 To=12
Objs Obijg Objs Obijg
Tg=20 T4=15 T5=30 Te=18
Objg Objz Objg
To=2) T7=23 Tg=8
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
S
20 12 | 23 | 15 5 30 30 8
T3 T1+To| T7 Ta To Ts [To+Te| Tsg
E
22 10 15 | 28 30 18 12 8
Ta+Tg| T4 T4 [To+T7 Ts Ts | T2 Tg
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
Prefix-sum operation @

55 | 70 | 70

‘20‘20|20‘32 75’105‘105|135‘143‘143|143‘143‘143‘
E
‘ 143 ‘ 143 | 143 ‘ 143 ‘ 121 | 121 ‘ m | 96 ’ 68 ‘ 68 | 38 ’ 38 ‘ 20 | 8 | 8 ‘ 8 ‘

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
Diff
“"00 ‘ 0.86 | 0.86 ‘ 0.86 ‘ 0.74 | 0.55 ‘ 0.37 | 0.27 ‘ 0.10 ‘ 0.54 | 1.76 ‘ 255 ‘ 6.15 |16,88‘16.88‘18.88‘
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15

Figure 4: An example of the load balancing algorithm for a non-
leaf node in the GPU tree. A total of 10 objects are projected on
the screen. The stripNum is set to 16. Assume that the number of
GPUs in two child nodes of this non-leaf node is same , so that the
value of balRatio is equal to 1.0.

angle counts of the objects intersecting with the ith strip, but this ith
strip must be the last strip the objects intersect with. In Figure 4, we
have S3 = T} + Ty because only Obj; and Ob jg use the third strip
as the first intersected strip. If an object crosses the left boundary
of the screen, we assume the first strip is the left-most strip (e.g.,
Ob j3 in Figure 4). Similarly, if an object crosses the right boundary
of the screen, we assume the last strip is the right-most strip (e.g.,
Objs in Figure 4).

Algorithm 2 shows the single step of screen partitioning with
object-level parallelization. The algorithm returns the modified tri-
angle counts 7’, the screen partitioning position (p-pos), and the
sub-frustum that will be used by the next level of partitioning. The
value of p-pos is a normalized value ranging in [0, 1]; so if the value
of p-pos is equal to 0.5, it indicates the view frustum is divided at
the middle. The algorithm first needs to find out the strips that an
object interests with. As shown in Figure 3, the intersection test is
performed in screen space using the bounding rectangle of the ob-

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation 73

Algorithm 2 A Single Step of Screen Partitioning with Object-
Level Parallelization

SingleStepPartitioning(

Input: ViewFrustum, BoundingVolumes, T, balRatio, stripNum;
Output: 7', p-pos, sub-frustum)

1: Initialize S, E, Diff, p-pos;

2: BoundingRectangles <— compute the bounding rectangles in
parallel;

3: for ith element in BoundingRectangles in parallel do

4 Find the range of intersected screen strips — [min, max];

5 Smin +=Tj;

6: Emax +=Ti;

7: end for

8: S < Prefix sum of S;

9: E < Postfix sum of E;

10: for ith element in Dif f in parallel do

11: if S; or E; == 0 then

12: Dif f; < 4o0;

13: else

14: if i == 0 then

15: Dif f; < 4o0;

16: else

17: Diff; ||3=L — balRatio|;

18: end if ‘

19: end if

20: end for

21: index < find the Dif f element having the minimum value in
parallel;

22: p-pos < index/stripNum;
23: sub-frustum < compute the sub-frustum using ViewFrustum

and p-pos;
24: for ith element in BoundingVolumes in parallel do
25: if ith BoundingVolumes is outside sub-frustum then
26: T/ +0;
27: else
28: T/« T;
29: end if
30: end for

ject’s projected bounding volume. According to the theory of per-
spective projection in computer graphics, if the bounding rectangle
of an object intersects with a screen strip, the bounding volume of
this object will intersect with the corresponding frustum strip. We
parallelize the execution of Algorithm 2 by assigning one object
to one GPU thread. Each thread finds the x-value range or y-value
range of the bounding rectangle, uses them to identify a continuous
sequence of overlapped screen strips, and then updates correspond-
ing elements in the array S and E (lines 3-7 in Algorithm 2). It is
possible that multiple threads access the same element in S or E.
For example, multiple objects may start intersecting with the same
frustum strip. To avoid such a race condition, when the thread is
updating an array element, we use atomic functions from CUDA to
prevent the interference from other threads.

After array S and E are generated, Algorithm 2 applies the prefix
sum to S and the postfix sum to E (lines 8-9). The implementation is
done with CUDA Thrust library [BH11]. As a result, each element

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Algorithm 3 Determine and send screen portions that need to be
displayed by other GPUs
ExchangingScreenRegion(
Input: depth, an array of RS, an array of p-pos;
Output: T/, Xmins Ymin» Xmax> Ymax)
1: Xpin < 0;
20 Ymin < 0;
3: Xmax < width;
4: Ymax < height;
5: for the ith level of the depth do
6
7
8
9

if RS; == “left” then
Xmax < (xmin + (xmax — Xmin) X P-POS;);

else if RS; == “right” then

: Xmin < (xmin + (Xmax _xmin) X p-pos;);
10: else if RS; == “bottom” then
11: Ymax < (Ymin + (Ymax — Ymin) X P-posi);
12: else if RS; == “top” then
13: Ymin < (ymin + ())max _ymin) X p-pos;);
14: end if
15: end for

16: Check intersection between the screen region of
[(cmins Ymin)y (Xmax, ymax)] and other GPUs’ display regions;

17: if there are intersections then

18: Send intersected portions of the screen region to other
GPUs, on which they should be displayed;

19: end if

20: Receive the portions of the screen regions which are rendered
by other GPUs but should be displayed by this GPU;

in S contains the total number of triangles to its left (including the
element itself); and each element in E contains the total number
of triangles to its right, as shown in the third step in Figure 4. We
compute an array of ratio difference, denoted as Diff, which is
equal to HSE' — balRatio||. We then find the minimum value in
the array Diff. The strip index whose corresponding element in
Diff has the minimum value is used to compute the value of p-
pos. (see lines 10-22 of Algorithm 2). The sub-frustum is generated
based on the value of p-pos. At the end, Algorithm 2 modifies T".
If the object is outside the sub-frustum, the object’s corresponding
element in T is set to zero (see lines 24-30 of Algorithm 2).

6. Frame Exchanging between GPUs

We denote the screen region rendered by a GPU as the
pixel index range of [(Xin, Ymin), (Xmax, Ymax)]. The recorded
partitionMethod (“vertical” or “horizontal”) in each element of
ParIn fo indicates the configuration relationship between the GPUs
in the current node and the GPUs in the sibling node. Such re-
lationship is one of enumeration types of {“left”, “right”, “top”,
“bottom”}. We denote this relationship as RS. Algorithm 3 shows
the process to find the screen region that needs to be rendered by a
GPU. Initially, the size of the screen region of the GPU is set to the
full-screen size. At each screen partitioning operation, a boundary
of the screen region is modified by using the corresponding element
in the array of p-pos. (see lines 5-15 of Algorithm 3).

At the end of the algorithm, the GPU sends the potions of the

74 Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

(width,height)

GPUo GPU2 GPU4 GPUs

[o] [2] 6]
GPU1 GPUs GPUs GPU7

LIFEIEEEEE G ®) @)

Figure 5: An example of identifying the GPU,’s screen region that
it should render. There are a total of eight GPUs. GPUs and their
display monitors are configured with the column-major order. They
are grouped into a binary search tree that has three tree node levels
(log, 8 = 3), as the GPU tree shown in the left image. In the right
image, the red screen region will be rendered by GPU,. (a) is the
vertical partitioning line with the ratio to partition the full screen.
The first-level node that GPU, belongs to obtains the screen re-
gion of [(0,0),(x(a>,height)]. (b) is the vertical partitioning line
with the ratio to partition the screen region generated from (a). The
second-level node that GPU, belongs to obtains the screen region
of [(x(b>70), (x(a),height)]. (c) is the horizontal partitioning line
with the ratio to partition the screen region bounded between (a)
and (b). GPU,, which is now at the leaf level, obtains the screen

region of [(X(p),¥(c)): (X(a) s height)].

screen region that should be displayed on other GPUs. In the mean-
time, the GPU receives the screen regions which are rendered by
other GPUs but should be displayed on its display monitor (see
lines 16-20). Figure 5 illustrates an example showing the frame
exchanging among 8 GPUs. The arrows indicate GPU, transfers
portions of the rendered screen region to GPUy, GPUs, GPUg and
GPU;.

We use framebuffers to exchange and composite screen regions
among GPUs. The data transferred among GPUs are RGB pix-
els. Each GPU is assigned with N framebuffers, including one full
screen-size framebuffer to hold the rendered frame and (N — 1)
monitor-size framebuffers to receive the screen portions from other
GPUs. In the extreme case that one GPU renders the full screen,
the GPU has to send a monitor-size framebuffer to all other GPUs.

7. Evaluations

‘We built a workstation with an Intel 17-5930K 3.50GHz CPU (12
cores), 64 GBytes of RAM, PCI Express x16 Gen3, and four
Nvidia GeForce GTX980 Ti 6 GB GPUs. The experimental soft-
ware was implemented on the 64-bit Linux Mint MATE 18.1 sys-
tem using C++, CUDA 9.2, and OpenGL with the Nvidia driver
version 396.26. We used Open MPI version 2.1.0 to create pro-
cesses. Figure 6 shows the workstation we built for the experi-
ment. We ran the experimental system that has one, two (1 X 2),
three (1 x 3), and four (2 x 2) GPUs with the column-major dis-
play settings. Different from the hardware support techniques such
as Nvidia SLI and AMD Crossfire, our system is not configured as
a master-worker model. Thus, the display resolution can scale up
as more GPUs are added to the system.

We used a large scene composed of up to 20 copies of the UNC
Power Plant model. As a result, the scene is composed of 120.12

million vertices, 254.09 million triangles, and 3.02 million objects,
and consumes 5.38 GB memory for storage (including vertices, tri-
angles and bounding volumes).

7.1. Performance

We created a walkthrough camera path that produces 1200 frames
for the scene. We first set the resolution of each display monitor to
be 1024 x 1024. Table 1 shows the performance breakdowns. The
columns of “# of vertices” and “# of triangles” are the numbers of
vertices and triangles of the entire scene, respectively. The column
of “Frame Time” is the averaged computational time at a frame.
The number of executions of the load balancing algorithm is equal
to the logarithm of the number of GPUs. Thus, more GPUs cause
more execution time of Load Balancing component. Although the
load balancing algorithm has been executed multiple times, the
Load Balancing component never becomes a performance bottle-
neck. The Rendering component uses OpenGL to rasterize trian-
gles into pixels. We generated OpenGL buffer objects to store ver-
tices, triangles and colors on GPUs. The Rendering component is
the most time-consuming component. Its execution time increases
as the number of triangles increases, and decreases as the num-
ber of GPUs increases. The execution time of the Synchronization
component is small and does not vary much with different num-
ber of GPUs. The execution time of the Frame Exchange compo-
nent is sensitive to the number of GPUs. The more GPUs are used
in the system, the more data sending and receiving operations are
involved to exchange screen portions among GPUs. Transferring
those screen regions among GPUs has little cost. The Display com-
ponent ports the composited frame to the monitor, which is very
fast.

Then, we tested the system performance at different screen res-
olutions by rendering a total of 15 Power Plant models, as shown
in Table 2. We chose the maximum possible number of strips at
each resolution, as listed in the column of “# of strips” of the ta-
ble, so that the system can achieve the most balanced workload.
As shown in the table, the averaged computational time at a frame
increases as the screen resolution increases. The Frame Exchange
component has a major impact on the overall performance of the
system. A higher resolution is chosen for the system, more pix-
els are transferred among GPUs to exchange frames; consequently,
more execution time is spent on this component. Also, as the screen
resolution increases, more time is spent on the Display component
due to the need of displaying a larger size of the rendered frame, but
the execution of Display component is efficient and the execution
time is always less than 1 millisecond.

7.2. Efficiency of Load Balancing

We compared our approach to the approach without load balancing.
Without load balancing, each GPU renders the vertices and trian-
gles inside its corresponding display monitor. Thus, the frame size
for each GPU to render is perfectly balanced, but the number of ver-
tices and triangles assigned to each GPU may not be balanced. The
approach without load balancing does not need a Frame Exchange
component. We used the quad-GPU system for this comparison.
We set stripNum to be 2048 in our approach.

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

Figure 6: The workstation we built with four GPUs and four display monitors. It supports the customized rendering of complex polygonal

models using one, two, three, or four GPUs, where each GPU connects to one display monitor.

Table 1: Performance breakdowns for the system with stripNum = 2048. The values are averaged over 1200 frames.

Configurations Frame Component Execution Times (millisecond)
#of # of vertices | # of triangles | # of Time FPS Load Rendering | Synchronization Frame Displa
Power Plant | (million) (million) | GPUs | (millisecond) Balancing g1y Exchange piay

One 52.36 19.10 — 50.39 — — 0.03

Two 39.17 25.53 2.48 26.47 3.67 1.84 0.27

6 17.25 3930 e | 3463 2888 .18 19.08 522 209 | 023
Four 31.89 31.36 3.87 15.98 3.67 2.50 0.20

One 66.38 15.06 — 63.98 — — 0.03

Two 45.55 21.95 2.98 33.77 2.96 1.84 0.23

10 23.25 53.30 Three 39.19 25.52 3.70 24.03 3.66 2.43 0.33
Four 3493 28.63 4.44 19.94 4.44 2.44 0.25

One 92.39 10.82 — 89.47 — — 0.04

Two 60.16 16.62 3.75 47.52 2.97 1.75 0.24

15 3281 75.86 Three 48.05 20.81 4.68 32.25 4.12 2.61 0.29
Four 44.98 22.23 5.32 26.63 5.67 2.36 0.26

One 96.85 10.33 — 93.62 — — 0.04

Two 67.41 14.83 4.36 53.12 3.32 2.08 0.25

20 38.90 9055 Three 53.11 18.83 5.32 36.21 4.12 2.61 0.29
Four 48.34 20.69 6.26 30.35 5.37 2.51 0.30

Table 2: Performance breakdowns for the system at different screen resolutions. A total of 15 Power Plant models (32.81 million vertices

and 75.86 million triangles) are rendered, and the values in the table are averaged over 1200 frames.

© 2019 The Author(s)

. Frame Component Execution Times (millisecond)
Resolution #of .
(width x height) | strips Time FPS Load Rendering | Synchronization Frame Display
(millisecond) Balancing Exchange
[512x512 [512 | 4113 [2414] 539 | 2620 5.69 | 049 [007 |
| 1024x1024 [1024 | 4207 [2377] 513 | 2624 6.25 | 088 | 014 |
[2048x2048 [2048 [4360 [2249] 532 [26.63 5.67 | 236 | 026 |
| 4096x4096 [4096 [49.15 [2035] 580 | 27.06 5.65 | 540 | 040 |

Eurographics Proceedings © 2019 The Eurographics Association.

76 Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

Frames Per Second (FPS)
32

30
28
26
24
22

=== \\ith load balancing
= Without load balancing

0 100 200 300 .~ 400 500

7007 800 900 \ 1000 1100 1200
Frames

Rendering at frame 350

Rendering at frame 730

Rendering at frame 920

Figure 7: Performance with and without load balancing over 1200 frames of the walkthrough camera path. The scene is composed of 20
Power Plant models. The three images at the bottom are the rendering results at specific frames.

Figure 7 shows the performance comparison over the total of
1200 frames on the walkthrough camera path. We used the quad-
GPU system. The scene used for this comparison is composed of 20
Power Plant models. Our approach achieved 20.95 FPS on average,
while the approach without load balancing achieved 15.95 FPS on
average. At the bottom of Figure 7, there are three examples of ren-
dered frames. The overall performance of the system is determined
by the GPU that renders the largest amount of triangles. At the
frames 350 and 730, the FPS of our approach is much higher than
the approach without load balancing. Our approach partitions the
screen unevenly in order to balance the amount of triangles among
GPUs. The same scenario has also occurred in the frame ranges
of frame 0-420, frame 650-900, and frame 1060-1200. At frame
920, our approach partitions the screen near to the middle. In this
case, the approach without load balancing also achieves a nearly
balanced workload. Thus, its FPS in such a case raises to a value
close to ours.

We compared our approach with the state-of-the-art dynamic
load balancing techniques implemented in Equalizer, including
cross segment, 2D (sort-first), and dynamic DB (sort-last). We ran
the eqPly mesh renderer application on our quad-GPU system.
Both our approach and egPly application rendered a scene com-
posed of 15 Power Plant models and used a circular path that pro-
duces 300 frames. The path ensures that all triangles are inside the
view frustum so that our approach and eqPly application always
balance the same amount of data. Equalizer took more than 20 min-
utes to build the k-d tree for the scene of 15 Power Plant models.
Different from that, our approach does not require a spatial hier-

l;zramcs Per Second(FPS)

4ms

6.2
~ Glsms n
(fﬁg/’u) (12.80%) (12:99%)

631ms 6 Yoms

G267 (12560

6.41ms (12.75%)
Gasms (1233%)

(11.95%)

6.35ms

(11.11%)

(9.80%)

15{ 629ms
(9.34%)
2 4 8 16 32 64 128 256 Si2 1024 2048

stripNum

Figure 8: The influence of different stripNum values on the frame
rate on the quad-GPU system for the scene composed of 20 Power
Plant models. Each data point associated with the execution time
of the load balancing algorithm. The value in the parenthesis is the
percentage that the algorithm’s execution time takes out of the total
execution time.

archy to represent input data. In our experimental results, our ap-
proach achieved an average of 22.16 FPS. The Equalizer’s egPly
application achieved an average of 11.71 FPS when using the cross
segment, 17.65 FPS when using the 2D, and 10.72 FPS when us-
ing the dynamic DB. Thus, our approach resulted in better render-
ing performance than those dynamic load balancing techniques in
Equalizer.

Figure 8 illustrates how different vaules of stripNum influence
the overall frame rate. As the value of stripNum increases, the time
to execute the load balancing algorithm does not vary significantly

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation 77

(diff. < 0.5ms), and is always below 13% of the total execution
time. Thus, a more balanced workload distribution (a larger value
of stripNum) results in a higher frame rate. The total screen res-
olution of the quad-GPU system is 2048 x 2048, so the largest
stripNum is equal to 2048, which means one strip corresponds to
one pixel offset. When the stripNum is 2, the system can only parti-
tion the screen once at the middle, and would lead to an unbalanced
workload. As the value of stripNum increases, the workload among
GPUs becomes more balanced, and subsequently the overall frame
rate increases.

8. Conclusion and Future Work

In this paper, we proposed an approach to balance the workload
among multiple GPUs for rendering complex models composed of
hundreds of millions of vertices and triangles. Our load balanc-
ing and screen partitioning algorithms are designed with a fine-
grained parallelization on the GPU, and support the rendering on
a large tiled display. The algorithms provide good scalability on
the different number of GPUs. GPUs in our system perform inde-
pendent computing and rendering tasks, and they are synchronized
for screen composition and display. The GPU-to-GPU communi-
cation is only for transferring portions of the rendered frame rather
than transferring 3D geometries so that the communication over-
head does not become a performance bottleneck.

In this work, we demonstrated the efficiency of our approach
using CAD models, where objects are individual design compo-
nents that are usually crafted by engineering designers. Our ap-
proach can also be applied to a surface model after partitioning it
into grids of primitives in 3D space. In the future, we would like
to employ a grid-based spatial partitioning technique to preprocess
surface models and incorporate them into our rendering system.

Our approach has great potential to be integrated with level-of-
detail (LOD) and out-of-core techniques. The integration will boost
the system’s capability to handle a larger dataset that cannot even be
stored in the GPU memory. While this paper presents the contribu-
tion related to load balancing, we have started looking for possible
LOD and out-of-core techniques suitable for GPU architectures.
When a dataset requires a storage size beyond the GPU’s mem-
ory capability, it can be stored in the CPU main memory. With a
given GPU memory budget, a LOD selection component could be
applied to objects and determine a simplified version of the mesh
(fewer vertices and triangles), and then fetch them from CPU to
GPU using an out-of-core algorithm. We will implement this idea
of integration, and evaluate the rendering quality and performance.

In the future, we will test our approach using more GPUs on a
cluster system. In that case, the workload would not only be bal-
anced among GPUs within a single workstation but also be bal-
anced among cluster nodes. Furthermore, besides testing with CAD
models, we would like to experience with other model types such
as volume data and point cloud data, in which the parallelization
would distribute data at a finer primitive level.

Acknowledgements
This work was supported by the National Science Foundation Grant
CNS-1464323. We thank Nvidia for donating the GPU device that

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

has been used in this work to run our approach and produce ex-
perimental results. The Power Plant model is brought through the
courtesy of the University of North Carolina at Chapel Hill.

References

[ACCC04] ABRAHAM F., CELES W., CERQUEIRA R., CAMPOS J. L.:
A load-balancing strategy for sort-first distributed rendering. In Proceed-
ings. 17th Brazilian Symposium on Computer Graphics and Image Pro-
cessing (Oct 2004), pp. 292-299. doi:10.1109/SIBGRA.2004.
1352973.2

[AMD17] AMD: AMD crossfire technology,
https://www.amd.com/en/technologies/crossfire, 2017. URL:
https://www.amd.com/en/technologies/crossfire.
1,2

[ARO5] ALLARD J., RAFFIN B.: A shader-based parallel rendering
framework. In Visualization, 2005. VIS 05. IEEE (2005), IEEE, pp. 127-
134. 2

[BH11] BELL N., HOBEROCK J.: Thrust: A productivity-oriented library
for cuda. GPU computing gems Jade edition 2 (2011), 359-371. 5

[BREO5] BHANIRAMKA P., ROBERT P. C., EILEMANN S.: Opengl mul-
tipipe sdk: A toolkit for scalable parallel rendering. In Visualization,
2005. VIS 05. IEEE (2005), IEEE, pp. 119-126. 2

[CSR*03] CZzERWINSKI M., SMITH G., REGAN T., MEYERS B.,
ROBERTSON G. G., STARKWEATHER G. K.: Toward characterizing
the productivity benefits of very large displays. In Interact (2003), vol. 3,
pp. 9-16. 1

[EBA*12] EILEMANN S., BILGILI A., ABDELLAH M., HERNANDO J.,
MAKHINYA M., PAJAROLA R., SCHURMANN F.: Parallel Rendering
on Hybrid Multi-GPU Clusters. In Eurographics Symposium on Par-
allel Graphics and Visualization (2012), Childs H., Kuhlen T., Marton
F., (Eds.), The Eurographics Association. doi:10.2312/EGPGV/
EGPGV12/109-117.2

[EEP11] EROL F., EILEMANN S., PAJAROLA R.: Cross-Segment Load
Balancing in Parallel Rendering. In Eurographics Symposium on Par-
allel Graphics and Visualization (2011), Kuhlen T., Pajarola R., Zhou
K., (Eds.), The Eurographics Association. doi:10.2312/EGPGV/
EGPGV11/041-050. 2

[Eil07] EILEMANN S.: An analysis of parallel render-
ing systems. White Paper: http://www. equalizergraphics.
com/documents/ParallelRenderingSystems. pdf (2007), 1-8. 2

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equalizer:
A scalable parallel rendering framework. IEEE Transactions on Visu-
alization and Computer Graphics 15, 3 (May 2009), 436-452. doi:
10.1109/TVCG.2008.104. 1,2

[ESP18] EILEMANN S., STEINER D., PAJAROLA R.: Equalizer 2.0 —
convergence of a parallel rendering framework. [EEE Transactions on
Visualization and Computer Graphics (2018), 1-1. doi:10.1109/
TVCG.2018.2870822. 1

[HHN*02] HUMPHREYS G., HOUSTON M., NG R., FRANK R., AH-
ERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium: A stream-
processing framework for interactive rendering on clusters. ACM
Trans. Graph. 21,3 (July 2002), 693-702. doi:10.1145/566654.
566639. 2

[LWW=*11] LiuH., WANG P., WANG K., CA1 X., ZENG L., L1 S.: Scal-
able multi-gpu decoupled parallel rendering approach in shared memory
architecture. In 2011 International Conference on Virtual Reality and Vi-
sualization (Nov 2011), pp. 172-178. doi:10.1109/ICVRV.2011.
46.2

[MCEF94] MOLNAR S., Cox M., ELLSWORTH D., FUCHS H.: A sort-
ing classification of parallel rendering. IEEE Computer Graphics and
Applications 14,4 (July 1994), 23-32. doi:10.1109/38.291528.
2

https://doi.org/10.1109/SIBGRA.2004.1352973
https://doi.org/10.1109/SIBGRA.2004.1352973
https://www.amd.com/en/technologies/crossfire
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV11/041-050
https://doi.org/10.2312/EGPGV/EGPGV11/041-050
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.1109/TVCG.2018.2870822
https://doi.org/10.1109/TVCG.2018.2870822
https://doi.org/10.1145/566654.566639
https://doi.org/10.1145/566654.566639
https://doi.org/10.1109/ICVRV.2011.46
https://doi.org/10.1109/ICVRV.2011.46
https://doi.org/10.1109/38.291528

78 Yangzi Dong & Chao Peng / Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation

[MWMSO07] MOLONEY B., WEISKOPF D., MOLLER T., STRENGERT
M.: Scalable sort-first parallel direct volume rendering with dynamic
load balancing. 2

[MWPO1] MORELAND K., WYLIE B., PAVLAKOS C.: Sort-last parallel
rendering for viewing extremely large data sets on tile displays. In Pro-
ceedings of the IEEE 2001 Symposium on Parallel and Large-data Vi-
sualization and Graphics (Piscataway, NJ, USA, 2001), PVG *01, IEEE
Press, pp. 85-92. URL: http://dl.acm.org/citation.cfm?
1d=502125.502141.2

[NVI11] NVIDIA: SLI best practices. Tech. rep., Tech-
nical report, NVIDIA Corporation, 2011. URL: http:
//developer.download.nvidia.com/whitepapers/
2011/SLI_\Best_Practices_2011_Feb.pdf. 1,2

[Pap97] PAPE D.: pfcave cave/performer library (cavelib version 2.6).
Online documentation from the Electronic Visualization Laboratory,
University of Illinois at Chicago, USA (1997). 2

[SPEP16] STEINER D., PAREDES E. G., EILEMANN S., PAJAROLA R.:
Dynamic work packages in parallel rendering. In Proceedings of the
16th Eurographics Symposium on Parallel Graphics and Visualization
(Goslar Germany, Germany, 2016), EGPGV ’16, Eurographics Associa-
tion, pp. 89-98. do1:10.2312/pgv.20161185. 2

[SZF*99] SAMANTA R., ZHENG J., FUNKHOUSER T., L1 K., SINGH
J. P.: Load balancing for multi-projector rendering systems. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (1999), ACM, pp. 107-116. 2

[Whi94] WHITMAN S.: Dynamic load balancing for parallel polygon
rendering. IEEE Computer Graphics and Applications 14,4 (July 1994),
41-48. do1:10.1109/38.291530. 2

[WLL*11] WANG P., L1u H., L1 S., ZENG L., CAI X.: Multi-gpu com-
positeless parallel rendering algorithm. In 2011 12th International Con-
ference on Computer-Aided Design and Computer Graphics (Sept 2011),
pp. 103-107. doi1:10.1109/CAD/Graphics.2011.66. 2

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

http://dl.acm.org/citation.cfm?id=502125.502141
http://dl.acm.org/citation.cfm?id=502125.502141
http://developer.download.nvidia.com/whitepapers/2011/SLI_\Best_Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_\Best_Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_\Best_Practices_2011_Feb.pdf
https://doi.org/10.2312/pgv.20161185
https://doi.org/10.1109/38.291530
https://doi.org/10.1109/CAD/Graphics.2011.66

