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Abstract

Representing and efficiently managing scalar fields and morphological information
extracted from them is a fundamental issue in several applications including terrain
modeling, static and dynamic volume data analysis (i.e. for medical or engineering
purposes), and time-varying 3D scalar fields. Data sets have usually a very large
size and adhoc methods to reduce their complexity are needed. Morse theory offers
a natural and mathematically-sound tool to analyze the structure of a discrete scalar
field as well as to represent it in a compact way through decompositions of its do-
main. Starting from a Morse function, we can decompose the domain of the function
into meaningful regions associated with the critical points of the field.

Such decompositions, called ascending and descending Morse complexes, are char-
acterized by the integral lines emanating from, or converging to, some critical point
of a scalar field. Moreover, another decomposition can be defined by intersecting
the ascending and descending Morse complexes which is called the Morse-Smale
complex. Unlike the ascending and descending Morse complexes, the Morse-Smale
complex decomposes the domain into a set of regions characterized by a uniform
flow of the gradient between two critical points. In this thesis we address the problem
of computing and efficiently extracting Morse representations from a scalar field.

The starting point of our research is defining a representation for both ascending and
descending Morse complexes. We have defined a dual representation for the two
Morse complexes, called Morse incidence graph. Then we have fully investigated
all the existing algorithms to compute a Morse or Morse-Smale complex. Thus, we
have reviewed most important algorithms based on different criteria such as discrete
complex used to describe the domain, features extracted by the algorithm, critical
points used to perform the extraction and entities used by the segmentation process.
Studying such algorithms has led us to investigate the strengths and weaknesses of
both the Morse theory adaptations to the discrete case, piecewise-linear Morse theory
and the discrete Morse theory due to Forman. We have defined and investigated two
dimension-independent simplification operators to simplify a Morse complex and
we have defined them in terms of updates on the Morse complexes and on the Morse



incidence graph.

Thanks to such simplification operators and their dual refinement operators, we have
defined and developed a multi-resolution model to extract morphological represen-
tations of a given scalar field at different resolution levels. A similar hierarchical
approach has been used to define and develop a multi-resolution representation of a
cell complex based on homology-preserving simplification and refinement operators
which allows us to extract representations of a cell complex at different resolutions,
all with same homology of the original complex, and to efficiently compute homol-
ogy generators on such complexes.
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Introduction

The aim of this thesis is the study of methods, rooted in Morse theory, for the topological anal-
ysis of scalar fields. Topological analysis of discrete scalar fields is an active research field in
computational topology and in scientific data visualization. We will consider scalar fields M
described as a pair (M, f) where M is a geometric object and f a function which defines a scalar
value for any point in M. The manifold domain M of function f will be discretized through
geometric objects represented as composition of simple cells or simplexes. The size and the
complexity of available data sets defining scalar fields are increasing, and thus the definition of
compact topological representations is a first step in building tools capable of analyzing large
data sets effectively and efficiently. In the continuous case, Morse and Morse-Smale complexes
have been recognized as convenient and theoretically well-founded representations for modeling
both the topology of the manifold domain M, and the behavior of a scalar field f over M. Morse
and Morse-Smale complexes have been introduced in geographic data processing and in com-
puter graphics for the analysis of 2D scalar fields, and specifically for terrain modeling. In tho
case, the domain is a region in the plane, and the scalar field is the elevation function. Recently,
Morse and Morse-Smale complexes have been considered as a tool for analyzing 3D functions.
They are used in scientific visualization, where data are obtained through measurements of scalar
field values over a volumetric domain, or through simulation. With an appropriate selection of
the scalar function, Morse and Morse-Smale complexes are also used for segmenting molecular
models to detect cavities and protrusions, which influence interactions among proteins. Morse
complexes of the distance function have been used in shape matching and retrieval. Scientific
data, obtained either through measurements or simulation, is usually represented as a discrete set
of vertices in a 2D or 3D domain M, together with function values given at those vertices. In this
thesis we will consider mainly simplicial meshes as topological structures computed on a set of
vertices on which f has been defined.

Our final goal is the development of multi-resolution techniques for scalar field analysis based on
discrete Morse decompositions. We can describe the main contributions of these thesis in terms
of four topics, necessary to the definition of a multi-resolution model: computation, representa-
tion, simplification and multi-resolution representation of Morse and Morse-Smale complexes.



We have started our investigation by studying the algorithms proposed in the literature for com-
puting Morse and Morse-Smale complexes. Algorithms for extracting an approximation of
Morse and Morse-Smale complexes, from a scalar field defined on the vertices of a simplicial
mesh Y, have been extensively studied in 2D. Recently, some algorithms have been proposed for
dealing with scalar data in higher dimensions. They can be classified based on many criteria: the
dimension on which they work, the Morse or Morse-Smale complexes they compute or the com-
binatorial manifold used to discretize the domain. We will classify them based on the approach
used to extract the Morse and Morse-Smale cells, indicating them as region-based, boundary-
based, watershed-based or Forman-based. Through theoretical and experimental comparisons
we have analyzed their properties and drawbacks and we have adapted, the two most promising,
for working with scalar fields defined on tetrahedral meshes. We have extended a watershed-
based algorithm based on simulated immersion [VS91] and a Forman-based algorithm for com-
puting a Forman gradient [RWS11]. We have adapted both of them to the simplicial case in 2D
and 3D [CFI10, FIMS13, WIFF13] evaluating, through experimental comparisons, their perfor-
mances [FIMS13].

We have then addressed the problem of representing Morse complexes in a compact way by
exploiting their natural duality. We have focused on representing Morse and Morse-Smale com-
plexes computed on unstructured simplicial meshes discretizing the domain of a scalar field.
We have defined a dimension-independent data structure, where the topology of both the Morse
complexes,I', and 'y, is represented by encoding the immediate boundary and co-boundary re-
lations of I';, and I'; in the form of an incidence graph [Ede87]; the structure, called a Morse
Incidence Graph (M IG), stores the top cells of both the ascending and descending Morse com-
plexes. Then, we have proposed a new definition for the cells of the Morse complexes computed
on a simplicial mesh [WIFF13]. We used a duality argument to define the cells of the descend-
ing Morse complex in terms of the primal simplicial mesh and the cells of the ascending Morse
complex in terms of its dual mesh. The Morse-Smale complex is described, combinatorially,
as collection of cells from the intersection of the primal and dual meshes. The description is
entirely independent of the dimension of the complex. Inspired by this representation we have
defined and implemented a simple compact encoding for the gradient field attached to the top
simplexes of the primal mesh. The encoding is suitable to be combined with any data structure
for the mesh which encodes just the vertices and the top simplexes. We have implemented this
approach in combination with a common topological data structure, the Indexed data structure
with Adjacencies (IA data structure).

Although Morse and Morse-Smale complexes represent the topology of M and the behavior of
f in a much more compact way than the initial data set at full resolution, the simplification of
these complexes is a necessary step for the analysis of noisy data sets. All the approaches known
in the literature to the simplification of Morse and Morse-Smale complexes are based on the
cancellation operator defined in Morse theory [Mat02]. In 2D, a cancellation eliminates critical



points of f, reduces the incidence relation on the Morse complexes, and eliminates cells from the
Morse-Smale complexes. The major problem with using cancellation is that it may increase the
size of the Morse-Smale complex in three and higher dimensions, when the cancellation does not
involve a minimum or a maximum, thus causing memory problems when dealing with large-size
data sets. We have addressed the problem of simplifying Morse and Morse-Smale complexes
and developed an approach based on an atomic simplification operator, called remove [CF11],
which is entirely dimension-independent, never increases the size of the Morse or Morse-Smale
complexes, and defines a minimally complete basis for expressing any simplification operator on
such complexes.

We have studied the effect of remove operator on the M /G and showed that it is simple to im-
plement, in a completely dimension-independent way, and its effect on the M /G is always local
[CFI11]. We have also implemented the cancellation operator on the M /G in the 3D case and
compared it with the 3D instances of the remove operator [CFI13b]. We have shown that the
size of the simplified M I G produced by remove is always smaller than the graph produced by
cancellation. In addition to the remove operator, we describe the dual insert operator defined
for refining a Morse complex. We present its effect in updating the ascending and descending
Morse complexes and on the MI(G. Simplification operators, together with their inverse re-
finement ones, form a basis for the definition of a multi-resolution representation of Morse and
Morse-Smale complexes.

A multi-resolution representation of the topology of a scalar field is crucial for interactive anal-
ysis and exploration of terrain, static and time-varying volume data sets, in order to maintain and
analyze their characteristic features at different levels of detail and reduce the size of their repre-
sentation. Some approaches for building such multi-resolution representations in 2D have been
proposed. In higher dimensions, such hierarchies are based on a progressive simplification of the
initial full-resolution model. We have proposed a dimension-independent, graph-based model
for multi-resolution representation of Morse and Morse-Smale complexes, which describes the
topology of scalar fields in arbitrary dimensions [CFI12]. We call this model a Multi-Resolution
Morse Incidence Graph (M MIG). An M MIG is generated from the iterative simplification of
the M IG at full resolution, and consists of the M /G representing the complexes at the coars-
est resolution, of a set of refinement modifications reversing the simplification ones applied in
the generalization phase, and of a dependency relation among such modifications. Note that an
M M IG provides also a multi-resolution description of the Morse-Smale complex. An MM IG
is capable of supporting the extraction of the graph which best approximates the topology of the
field under given requirements, which depend on the specific application. It is possible to select
from an M MG subsets of refinement modifications consistent with the partial order defined
by the dependency relation. Their application on the graph at the coarsest resolution produces
a variety of graphs in which the resolution (defined by a suitable error criterion) is uniform or
varies over the domain of the scalar field.



The M M IG however, provides a multi-resolution description of the topology of a scalar field
My, = (X, f), which is only a component of an effective tool for the analysis of M. Thus, we
have defined and developed a new multi-resolution model able to inspect a scalar field both from
a geometric and morphological point of view. The model, called the Multi-Tessellation based on
Forman gradient, developed for triangulated terrains, is built from a sequence of edge-collapse
operators, reducing the size of the triangle mesh, and from a sequence of remove operators,
reducing the topology of ML

Inspired by the multi-resolution Morse complex, we have defined a hierarchical model that we
call a Hierarchical Cell Complex (HCC') based on a set of homology-preserving operators
[CFI13c]. We have used such model to compute the homology and homology generators on
various cell complexes efficiently. We describe, in Chapter 6, a set of modeling operators and
we prove that they form a minimally complete basis for simplifying and refining cell complexes
in arbitrary dimensions in a topologically consistent manner. We distinguish between operators
that maintain the homology of the complex, and operators that modify it in a controlled manner.
Homology-preserving operators add (or remove) a pair of cells of consecutive dimension, but
they do not change the Betti numbers of the complex. Homology-modifying operators add (or
remove) an ¢-cell, and increase (or decrease) the ith Betti number. We compare our modeling
operators with other operators on cell complexes proposed in the literature, and we show how
these latter can be expressed in terms of the former.

In our work, we have also investigated the use of the HC'C model for homology computation
[CFI13c]. We show that the HC'C' based on the homology-preserving operators enables us to
obtain the homology (with coefficients in Zy) of all the complexes encoded in the model by
computing the homology of the complex at the coarsest resolution using standard techniques
[Ago05]. Moreover, we are able to construct homology generators of a complex at any inter-
mediate resolution by computing generators on the coarsest complex and using the hierarchical
model to propagate the computed generators to all the complexes at intermediate resolutions.
Unlike approaches based on pyramids on n-maps and n-G-maps [DGDP12, PIH*07], the ver-
sion of the HC'C' based on homology-preserving operators can be applied to general complexes,
not only to quasi-manifolds and it supports the extraction of homology generators at variable
resolutions.

The last chapter of the thesis deals with the analysis of hypersurfaces in 4D space by computing
Morse decompositions based on discrete 3D discrete distortion. Discrete distortion is defined
by considering the graph of the discrete 3D field, which is a tetrahedral hypersurface in R*, and
measuring the distortion of the transformation which maps the tetrahedral mesh discretizing the
scalar field domain into the mesh representing its graph in R%. We analyze the 3D field by using
a multi-resolution model based on clusters of tetrahedra, called diamonds, which enables the
analysis of the field through crack-free approximations encoded as tetrahedral meshes. One im-
portant aspect of using mesh-based multi-resolution models is that the scale field can be analyzed
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by using much fewer samples than in the data set at full resolution. This facilitates our analysis of
large 3D volume datasets by using significantly fewer resources. The aspect we will through our
experiments is the utility of discrete distortion in analyzing approximated scalar field, thus giving
good insights about the field behavior already at low resolutions [FIM*12]. We then present a
new discrete operator generalizing a discrete estimator for mean curvature, called extrinsic dis-
tortion to nD and deriving a weighting that can be provably used to compute mean curvature on
such hypersurfaces. We analyze the behavior of the operator on 3-manifolds in 4D, comparing it
to the well known Laplace-Beltrami operator, using ground-truth analytic surfaces with varying
conditions of resolution, sampling distribution, and noise. We also investigate it in the context
of an application that uses the mean curvature field to obtain a volumetric segmentation, exam-
ining the stability of the segmentations under increasing noise. In each case, we have shown that
extrinsic distortion behaves similarly or better than the Laplace-Beltrami operator, while being
intuitively simple and easy to implement [SFIM13].

This thesis is organized as follow. In Chapter 1 we will introduce some basic notions , fun-
damental for the understanding of the rest of the document. We will introduce the notion of
cell and cell complex as well as those of simplex and of simplicial complex. Moreover, we will
present Morse theory as the tool used to describe the morphology of a scalar field and the two
approaches proposed in literature extending Morse theory to the discrete case;: piecewise linear
Morse theory formalized by Banchoff [Ban67, Ban70] and discrete Morse theory, presented by
Forman [For98, For02]. A Morse complex can also be defined using concepts related to the wa-
tershed transform [RMOO0]; we will introduce here its definition in terms of catchment basin and
watershed. In Chapter 2, the state of the art on scalar field analysis, based on Morse theory, is
presented. Here, we deal with three main topics: computation, simplification and hierarchical
representation of Morse and Morse-Smale complexes. In Chapter 3 the actual contribution of
our work is presented starting form the description of the Morse Incidence Graph. We present
a characterization of the Morse complexes in terms of cells of the primal/dual mesh as well as a
description of the Morse-Smale complex in terms of cells of the dually subdivided mesh obtained
from the intersection of the primal and dual meshes. In Chapter 4, we present the remove and
insert operators, we describe their behavior in terms of updates on the Morse complexes and the
corresponding updates on the M /G structure. Moreover, we present the results we have obtained
by comparing such operators with the cancellation operator defined in Morse theory. In Chap-
ter 5 we describe the multi-resolution model for the morphology of a scalar field M. Beyond
the description of the model, called the Multi-resolution Morse complex (M RMC'), we describe
a practical implementation of the M RMC'. The representations of the Morse complexes, that
can be extracted from the M RMC', are encoded as a Morse Incidence Graph; thus we call the
implemented multi-resolution model, Multi-resolution Morse Incidence Graph (MM IG). At
the end of this chapter we present the results obtained for 2D and 3D scalar fields as well as
a comparison with a similar model presented in [BHEPO4]. As improvement of the M MIG
tool used to inspect only the morphology of a scalar field, in Chapter 7 we present the Multi-
tessellation based on Forman gradient (M T F'(); such model encodes different representations
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of a two-dimensional scalar field both from the morphological and geometrical point of view.
We present a formal description as well as the encoding used to implement the model. We will
also compare our model to the only multi-resolution model known, having similar properties,
the Multi-resolution Morse Triangulation (M MT') described in [DDFMV10]. In Chapter 8 we
will present our results in the analysis of 3D scalar fields by computing Morse decompositions
based on 3D discrete distortion. We will present a new discrete 3D curvature estimator, the ex-
trinsic distortion, and the results obtained applying distortion-based segmentations to scalar field
analysis. Finally in Chapter 9, we present concluding remarks and discuss current and future
developments of the work of this thesis. Appendix A contains a summary of the datasets used
during our work.
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Chapter 1

Background Notions

In this thesis we consider scalar fields M which can be described as a pair M = (M, f) where
M is a manifold and f a function which defines a scalar value on the graph of M. Although
manifolds exist in the continuum, we need discrete models in order to handle them computation-
ally. In our work we consider discretizations of manifolds with pieces of simple geometry like
simplexes or, more in general, cells.

We introduce the notions of cell complex and simplicial complex as well as a particular instance
of a cell, the simplex. In Section 1.2 we present Morse theory, a tool used to described the mor-
phology of a scalar field in the continuum studying its critical points, integral lines and their
regions of influence.

In literature there are two approaches that extend the results of Morse theory to the discrete case:
piecewise-linear Morse theory formalized by Banchoff [Ban67, Ban70] and discrete Morse the-
ory, presented by Forman [For98, For02]. Piecewise-linear Morse theory transposes the results
obtained on smooth functions to piecewise-linear functions. It has been widely used with two-
dimensional scalar fields and adapted to three dimensions. We will present the main results
provided by this theory in Section 1.3. Discrete Morse theory, extends Morse theory to the dis-
crete case through a combinatorial point of view assigning a function value to all the cells of a
regular cell complex I' on which the original scalar field is defined. We will present the interest-
ing results provided by discrete Morse theory in Section 1.4.

A Morse complex can also be defined using concepts related to the watershed transform [RMOO].
The watershed transform induces a subdivision of the domain of a C? function in regions of
influence associated with critical points. If f is a Morse function the regions of influence of
the critical points are equivalent to the cells of the Morse complex. We will introduce the basic
notions of the watershed transform in Section 1.5.

13



1.1 Cell complexes and Simplicial complexes

In algebraic topology many tools are defined to associate certain algebraic invariants to a space.
The basic tool for computing these invariants consists of breaking a topological space into pieces
(cells or simplexes) generating a combinatorial structure [LW69, HatO1].

A topological space is a mathematical structure used to extend concepts from the Euclidean
space R? to arbitrary sets of points. Continuity, closeness, limits are all example of concepts
well defined on an Euclidean space R? and generalized to a set of points using relationships
between sets.

Definition 1.1.1. A topological space is a set X, together with a collection S of subsets of X
called open sets, satisfying the following axioms:

e () and X are open,
e arbitrary union of open sets is open,

e finite intersection of open sets is open.

The collection S is also called a topology of X.

Definition 1.1.2. A topological space in which distinct points have disjoint neighborhoods is
called Hausdorff space.

An example of a Hausdorff space is the manifold. Intuitively, a manifold is a topological space,
locally Euclidean, such that around each point there is a neighborhood that is topologically the
same as the open unit ball in R¢. More formally,

Definition 1.1.3. A ropological Hausdorff space M is called an n-dimensional manifold (7-
manifold) if there is an open cover {U;},., of M such that for each i € A there is a map
¢i : Uy — R™ which maps U; homeomorphically onto the open n-dimensional disk D" =
fo € R |Jo]| < 1.

Definition 1.1.4. An n-manifold with boundary is a Hausdorff space in which each point has
an open neighborhood homeomorphic either to the open disk D" or the half-space R"™' x
{z, € R|z, > 0}.

Many examples of topological spaces exist and some of them, such as cell and simplicial com-
plexes, are also used in several application domains. Cell complexes and simplicial complexes
are examples of topological spaces obtained through the structured composition of simple ele-
ments (cells or simplexes, respectively).

14



(a) (b) ©) (d)
Figure 1.1: An example of (a) O-cell; (b) 1-cell; (c) 2-cell and (d) 3-cell.

Definition 1.1.5. A closed Euclidean cell -y of dimension k in E* with 0 < k < d, also called a
k-cell, is a subspace of the Euclidean space E* homeomorphic to the k-dimensional ball B¥ =

{z e R[lz[] <1}

Attaching the k-cell  to a space X by the continuous map ¢ : S*! — X, with S¥! =
{z € R*|||z|| = 1} the boundary of B*, requires taking X U B¥, where each point z € S*~! is
identified with the point ¢(z) € X. The space obtained is denoted X Uy 7.

Definition 1.1.6. A Euclidean cell complex I' of dimension n is the space X obtained by sub-
sequently attaching finitely many cells.

This means that there exists a finite nested sequence ) C Xy C X;... C X; = X such that, for
each h = 1,2, ...,7 X; is the result of attaching a cell to X;_;.

In Figure 1.1 different examples of a cell are shown. In Figure 1.1(a) a O-cell (a point) is shown.
In Figures 1.1(b) and (c) a 1-cell and a 2-cell are shown, respectively. In Figure 1.1(d) a 3-cell is
shown.

A cell is called regular if it has one attaching map ¢ bijective on all £%. A cell complex is
regular if all its cells are regular. A cell complex is finite or countable if its set of cells is finite
or countable, respectively.

In Figure 1.2(a) a regular cell complex is shown. In Figure 1.2(b) an irregular cell complex,
composed of one regular O-cell, one regular 2-cell and an irregular 1-cell, is shown.

Let I a cell complex, subcollection of a cell complex I', we say that I is a subcomplex of T.
Let £ < dimlI, the collection of all cells of I' of dimension at most k is a subcomplex of T', it is
called the k-skeleton of I and it is denoted by I'*. The 0-cells of collection I'? are called vertices
of I'. Moreover, for k > 0, I';, C T'*, where I}, is the set of k-cells € .
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Figure 1.2: (a) A regular cell complex and (b) an irregular cell complex.

The combinatorial boundary of a cell v € T', denoted as B(7), is the set of cells 7/ € I" such that
~'N~y =~". Let~" a k-cell on the boundary of v then +' is said to be a k-face of ~ or incident in .
The immediate boundary of a k-cell v, denoted b(y), is the set of i-cells v/ € B(~y) withi = k—1.

The combinatorial co-boundary (or star) of a cell v € T, denoted C'B(7) is the set of cells 7/ €
I" that have v in their combinatorial boundary. Let 7" a k-cell on the co-boundary of v then 7' is
said to be a k-coface of . The immediate co-boundary of a k-cell v, denoted cb(y), is the set of
i-cells ' € CB(y) withi = k + 1.

A k-cell  is said to be adjacent to a k-cell 4/ if they share a k — 1-face.

The link of a cell v € I, denoted as Lk(7y) is the set of cells forming the combinatorial boundary
of the cells in C'B() and that do not intersect .

A cell v € T', which is not on the combinatorial boundary of any other cell 4" € T, is said to be
a top cell. 1f v has also the same dimension of I' it is called a maximal cell. An n-dimensional
complex I is called pure if all its top cells are n-cells. Thus, in a pure cell complex, maximal
cells and top cells are equivalent.

At this point we still need to relate the cellular structure of a cell complex to a topology on the
set X. The result is called CW complex [LW69].

Definition 1.1.7. A fopological space X is a CW complex if and only if there is a sequence of
closed subspaces Xy C X C ... C X such that X = U; X, and:

e cevery subset of X is open,
e for each 1, X; is obtained by attaching i-cells;

o the space X has the weak topology with respect to the closed sets X;
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(a) (b) (©) (d)
Figure 1.3: (a) A O-simplex, (b) 1-simplex, (c) 2-simplex and (d) 3-simplex.

Although cell complexes represent a wide class of spaces, more restrictive classes with a stronger
combinatorial nature are often preferred. One of the most relevant example of a combinatorial
structure defined on a topological space is the simplicial complex, a complex obtained buy gluing
together simple elements called simplexes [Mun84].

A set of points {vy, Vs, ..., v } in RY is said to be geometrically independent, if for any real value
t;, the equations

k k
1=0 1=0

istrue only if tg = t; = ... = t;, = 0. This is equivalent to requiring that vectors v; —vy, ..., U — g
are linearly independent over R.

Definition 1.1.8. Let P = vy, vy, ..., vy, be a geometrically independent set in R%. A k-dimensional
simplex o spanned by vy, vy, ..., Vg, also called k-simplex, is defined as the convex hull of k + 1
points of P in R, also called vertices of o, such that,

k k
T = Z tiv;  where Zti =1,
1=0 =0

and t; > 0 for all i. The numbers t; are uniquely determined by x and are called barycentric
coordinates of the point x of o with respect to vy, vy, ..., Up,.

In Figure 1.3 different examples of a simplex are shown. In Figure 1.3(a) a O-simplex also called
point is shown. In Figures 1.3(b) and 1.3(c) a 1-simplex, also called edge and a 2-simplex, also

called triangle are shown, respectively. In Figure 1.3(d) a 3-simplex, also called tetrahedron is
shown.

Definition 1.1.9. A Euclidean simplicial complex X is a collection of simplices in R™ such that:
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e cvery face of a simplex of X is in %,

e the intersection of any two simplices of Y. is a face of each of them.

A simplicial complex can be seen as an instance of a cell complex in which all the cells are
simplexes. Thus, the dimension of a simplicial complex ¥, denoted dim?2., is defined as the
dimension of the largest simplex of > and an n-simplex o € X is called maximal simplex if
dim3 = n. A simplex of ¥ which is not a proper face of any other simplex in . is called rop
simplex. A maximal simplex is also a top simplex while the converse does not hold in general.

Let us consider a simplicial n-complex . An h-path between two (h + 1)-simplices in %,
where h = 0,1,--- ,n — 1 is a path formed by an alternating sequence of adjacent h-simplices
and (h + 1)-simplices.

A complex Y is said to be h-connected if and only if there exists an h-path joining every pair of
(h + 1)-simplices in ¥. Any maximal h-connected subcomplex of a n-complex ¥ is called an
h-connected component.

Definition 1.1.10. A regular (n—1)-connected n-complex in which the star of any (n—1)-simplex
consists of at most two n-simplices is called a n-pseudo-manifold.

Definition 1.1.11. A n-pseudo-manifold is called n-manifold complex if its underlying space in
E?isa n-manifold (with or without boundary), n < d.

It can be easily shown that a simplicial n-complex is a manifold n-complex if and only if the link
of every vertex is homeomorphic to the (n — 1)-sphere S"~! or to the (n — 1)-disk D"~! (see
[Ago05]).

In the rest of this thesis we will work always with combinatorial simplicial complexes that we
will call simplicial meshes. A simplicial meshes is called triangle mesh in the 2D case and a
tetrahedral mesh in the 3D case.

Simplicial complexes are a natural choice to represent geometric objects computationally be-
cause they can be easily implemented by encoding the top simplexes. Form the top simplexes
of a simplicial complex ¥ we will combinatorially generate all simplexes in > , it is sufficient
to take all their proper faces to construct the complex. Differently from other pure complexes,
such as cubical complexes, simplicial complexes are particularly suitable to describe geometric
objects defined by finite set of points irregularly distributed.

We recall that a scalar field M is defined, in the continuum, as a pair (M, f) where M is a
manifold and fa function which defines a scalar value for any point in M/. Working in a discrete
domain M will be replaced by a cell complex I', or a simplicial mesh >.. Thus, a scalar field
defined on a discrete object will be indicated as a pair M = (T, f) or as a pair My = (%, f),
when the object is discretized through a cell or simplicial complex, respectively. In both cases,
function f will be defined on the vertices of the complex.
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Figure 1.4: (a) A cell complex decomposing a torus; (b) a simplicial complex decomposing the
same torus.

1.2 Morse Theory

Morse theory [Mil63, Mat02] studies the relationships between the topology of a manifold M
and the critical points of a scalar function defined on it.

Definition 1.2.1. Let f be a C*-differentiable real-valued function defined over a domain M
C R% A point p € R is a critical point of f if and only if the gradient <J f of f vanishes on p,
Le.,

vf(p) =0.

Definition 1.2.2. The Hessian matrix of f, denoted Hess(f), is the matrix of the second-order
partial derivatives of the function f:

of o ... _f
8:c§1 Ox10x2 0210y
oy err L, >’ f
2
H@SS(f) _ Oxo0x1 Ox3 Ox20xn
o*f 2fr L. 2f
0rn0r1  OxrnOxo ox2

The Hessian matrix gives fundamental information on the critical points of a function f. If the de-
terminant of the Hessian matrix of f in p is either positive or negative (i.e. det(Hess,(f)) # 0),
then p is a non-degenerate critical point. Then, the number of negative eigenvalues of Hess,(f)
is called the index ¢ of a critical point p and p is called an ¢-saddle, with 0 < 7 < n. A 0-saddle
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Figure 1.5: Classification of non-degenerate critical points in 2D. (a) A regular point, (b) a local
maximum, (c) a local minimum and (d) a saddle. Arrows represent gradient arrows, red regions
contain points with higher function value and blue regions contain points with lower function

value.
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Figure 1.6: Classification of non-degenerate critical points in 3D. (a) A regular point, (b) a local
maximum, (c) a local minimum, (d) a 1-saddle and (e) a 2-saddle. Arrows represent gradient
arrows, red regions contain points with higher function value and blue regions contain points
with lower function value.

.
=

is usually called minimum and an n-saddle maximum. The corresponding eigenvectors show the
directions in which f is decreasing.

Figures 1.5 and 1.6 illustrate a neighborhood of a non-degenerate critical point in two and three
dimensions, respectively. In both Figure 1.5(a) and Figure 1.6(a) a regular point is shown. It
is characterized by a single region of incoming gradient arrows and a single region of outgoing
gradient arrows. In Figures 1.5(b) and 1.6(b) a minimun is shown: all the gradient arrows are in-
coming. In Figures 1.5(c) and 1.6(c) a maximum is shown: all the gradient arrows are outgoing.
In the 2D case, a saddle is characterized by two different regions of incoming gradient arrows
and two regions of outgoing gradient arrows (see Figure 1.5(d)). In the 3D case there are two
kinds of saddle, 1-saddles and 2-saddles, shown in Figure 1.6(d) and Figure 1.6(e), respectively.
A 1-saddle is characterized by two regions of outgoing arrows and a single region of incoming
arrows, while a 2-saddle has the opposite set of arrows.

Consider a scalar field Ml = (M, f) where M is a manifold of dimension n and f is a C?-
differentiable real-valued function defined on M which associates a real value to each point of
M.
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Figure 1.7: Example of a Morse function and three critical points on it, a saddle (b), a maximum
(c) and a saddle (d).

Definition 1.2.3. Function f is said to be a Morse function if and only if all its critical points
are not degenerate.

In Figure 1.7 an example of a Morse function is shown with the neighborhood of three critical
points highlighted.

Morse Lemma [Mil63]. For a Morse function, there is a neighborhood of a critical point p =
(P1y vy D), in wWhich f can be expressed in a local coordinate system (z1, ..., x,) as

f(xla 7xn) = f(ph 7pn) - SL’% e T xzz + ‘Tzerl +.t .1'721

where i is the index of p in f.

Thus, a Morse function can be expressed as a canonical quadratic form in some neighborhood of
a critical point.

As a consequence of Morse Lemma, we see that non-degenerate critical points are isolated.
Therefore, it is always possible, for a critical point p, to find a neighborhood of p not containing
other critical points. In Figure 1.7 an example of a Morse function is shown with the neighbor-
hood of three critical points highlighted.

Let M an n-manifold and §; the 7th Betti number of M, that measures the number of independent
non-bounding i-cycles in M (see Section 6.1). Then the Euler characteristic of M, denoted

X(M), is x(M) = 32 (=1)"B:.

Critical Point Theorem [Ban67]. If we denote with c; the number of critical points of f with
index i, and with x (M) the Euler characteristic of M, then
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X(M) =Y (=1)'m,.
i=0
Definition 1.2.4. An integral line of a function f is a maximal path everywhere tangent to the
gradient of f. An integral line [ starts from a point p = lim;_, . [(t) called the origin of | and
ends to a point ¢ = lim;_,, [(t) called the destination of .

Thus, an integral line follows the direction in which the function has the maximum increasing
growth and two integral lines are either disjoint, or they are the same.

Definition 1.2.5. An integral line which connect a critical point p of index i to a critical point q
of index © + 1 is called separatrix line.

The integral lines cover the entire domain of f and they can be collected in cells corresponding
to each critical point.

Definition 1.2.6. Integral lines that converge to a critical point p of index i form an i-cell called
the descending manifold of p.

Definition 1.2.7. Integral lines that originate from a critical point p of index i form an (n—1)-cell
called the ascending manifold of p.

The ascending/descending manifolds are pairwise disjoint and decompose the domain of M into
open cells. The collection of all the cells form a cell complex since the boundary of each cell is
the union of lower-dimensional cell.

Definition 1.2.8. The collection of all the descending manifolds form the descending Morse
complex, [';.

Definition 1.2.9. The collection of all the ascending manifolds form the ascending Morse com-
plex, I',.

The descending Morse complex is completely dual to the ascending Morse complex.

In Figure 1.8 red dots indicate maxima, green dots saddles and blue dots are minima. Black lines
in Figures 1.8(a) and 1.8(b) represent the integral line and the separatrix lines of the dataset.
Red dots indicate maxima, green dots saddles and blue dots are minima. In Figure 1.8(c) the
descending Morse complex I'; is represented. For each maximum, the set of integral lines con-
verging to it define a 2-cell. For each saddle the set of integral lines converging to it define a
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Figure 1.8: (a) The set of integral lines converging to a maximum and forming the (red) de-
scending cell. (b) The set of integral lines originating from a minimum and forming the (yellow)
ascending cell. The set of all the descending and ascending cells forming the descending Morse
complex I'; (c) and the ascending Morse complex I, (d).

V=
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i«\w)

(a) (b)

Figure 1.9: (a) The set of integral lines converging to the 2-saddles (purple dots) and forming
three descending 2-cells. In (a) and (b) the Morse complexes, ascending and descending respec-
tively, computed from Morse function f(x,y, z) = sin(x) + sin(y) + sin(z).

1-cell represented as a black line. For each minimum the corresponding descending Morse cell
is the point itself. In Figure 1.8(d), the ascending Morse complex I', is represented. For each
minimum the set of integral lines originating from it define a 2-cell. For each saddle, the set of
integral lines originating from it define a 1-cell represented as a black line. For each maximum,
the corresponding descending Morse cell is the point itself.

In Figures 1.9(b) and 1.9(c) the two ascending and descending Morse complexes, computed
for the analytic Morse function f(x,y,2) = sin(x) + sin(y) + sin(z), are shown. In Figure
1.9(a) a subset of the integral lines generating three descending 2-manifolds are shown. In the
descending Morse complex I'; for each maximum the set of integral lines converging to it form
a 3-cell (colored cubes shown in Figure 1.9(b)). For each 2-saddle (purple dots in Figure 1.9(a))
the set of integral lines converging to them form a 2-cell. For each 1-saddle (green dots in Figure
1.9(a)) the descending manifold is the 1-cell (separatrix line) connecting them to two minima
(blue dots in Figure 1.9(a)) and for each blue point the corresponding descending manifold is the
0-cell itself.
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Figure 1.10: (c) The Morse-Smale complex originated from the intersection of the descending
and ascending Morse complexes, (a) and (b) respectively. (d) The 1-skeleton of the Morse-Smale
complex.

Dually, in the ascending Morse complex I',, for each minimum the set of integral lines originat-
ing from it form a 3-cell. Moreover there is an ascending 2-cell for each 1-saddle, a 1-cell for
each 2-saddle and a O-cell for each maximum. In 2D it is often called critical net.

Definition 1.2.10. A Morse function f is called a Morse-Smale function if and only if the
descending and ascending Morse complexes intersects transversally,

Thus each connected component originated by the intersection of a descending ¢-cell and an
ascending (n — j)-cell, ¢ > j, is an (i — j)-cell.

Definition 1.2.11. The connected components of the intersection of descending and ascending
cells of a Morse-Smale function f decompose M int a Morse-Smale complex, denoted I y;s.

If f is a Morse-Smale function, then there is no integral line connecting two different critical
points of f of the same index. Each 1-saddle is connected to exactly two minima and each
(n—1)-saddle is connected to exactly two maxima. The I-skeleton of the Morse-Smale complex
is the sub-complex composed of 0-cells and 1-cells.

In Figure 1.10 an example of a Morse-Smale complex is shown. Each cell of the descend-
ing and ascending Morse complex in Figures 1.10(a) and 1.10(b) are intersected forming the
Morse-Smale complex illustrated in Figure 1.10(c). For each critical point, the corresponding
descending and ascending cells intersect at the critical point only. The cells of the Morse-Smale
complex are always bounded by critical points. The 0-cells are the critical points. The 1-cells are
the separatrix lines connecting pair of critical points (represented as black lines in Figure 1.10).

The 2-cells, also called quads, have critical points on their boundary (i-saddle, (i — 1)-saddle,
(1 — 2)-saddle, (i — 1)-saddle). In the 2D case, as shown in Figure 1.10(c), a quad is always
bounded by the sequence (maximum,saddle,minimum,saddle).
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In the 3D case a 3-cell, also called crystal, can be bounded by an arbitrary set of (maximum,2-
saddle,1-saddle,2-saddle) or (2-saddle,1-saddle,minium,1-saddle) quads. However each crystal
contains in its boundary only one maximum and one minimum. Only 1-saddles and 2-saddles
are present, on the boundary of a crystal, in arbitrary number. The distinctive feature of Morse-
Smale cells is the gradient flow: inside each cell of the Morse-Smale complex the gradient flow
is uniform from one critical point to another.

In the literature two extension of Morse theory to a discrete domain can be found. Piecewise-
linear Morse theory [Ban67, Ban70] transposes the results from smooth functions to piecewise-
linear functions, while discrete Morse theory [For98, For02] considers a Morse function (also
called a Forman function) defined on all the cells of a cell complex.

1.2.1 Simplification of Morse complexes

Simplification of Morse functions is achieved by applying an operator called cancellation. The
cancellation operator, that we call i-cancellation, is a simplification operator defined in Morse
theory [Mat02]. Let us consider a scalar field Ml = (M, f), an i-cancellation transform the Morse
function f into a new Morse function g by removing two critical points, p and ¢, and modifying
the gradient field of f around the integral lines of p and q.

Let p an (7 + 1)-saddle and ¢ and i-saddle, 7 = 0, - - - ,n — 1, critical points pair can be canceled
if and only if there is a unique integral line connecting p and q.

After an i-cancellation(p, q) the two critical points p and ¢ are removed from the function and
the integral lines originated/converging into them are modified as follows:

- the set of integral lines converging at p or g before the i-cancellation are transformed into
a set of integral lines converging to critical points of index j > i, that were the destination
of integral lines starting at p before the cancellation,

- the set of integral lines that originated at ¢ or p before the i-cancellation are transformed
into a set of integral lines originating at critical points v of index £ < ¢ + 1 that were the
origin of integral lines ending at ¢ before the cancellation.

In Figure 1.11, two examples of an i-cancellation are shown. In Figure 1.11(a) a 0-cancellation
is performed on a 0-saddle p and a 1-saddle ¢. The set of integral lines that converged to p and ¢
are redirected into a set of integral lines converting to critical points connected with p. In Figure
1.11(b), a 1-cancellation is preformed on a 1-saddle ¢ and a 2-saddle p. The set of integral lines,
originated at p and g before the cancellation, are redirected into a set of integral lines originated
at critical points connected with p.
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Figure 1.11: Processing of the lower star of vertex 9 using the algorithm in [RWS11].

An i-cancellation transforms a Morse-Smale complex and the corresponding two Morse com-
plexes into similar complexes with fewer cells. Recall that two cells in the Morse complexes of f
are incident if and only if the corresponding critical points are connected through an integral line.
An i-cancellation in 2D consists of collapsing a maximum and a saddle pair into a maximum
(maximum-saddle cancellation), or a minimum and a saddle into a minimum (minimum-saddle
cancellation). In 3D, we have three kinds of cancellation:

- 0-cancellation, collapsing a minimum and a saddle pair into a minimum (minimum-1-
saddle cancellation)

- l-cancellation, collapsing a 1-saddle and a 2-saddle pair into a 1-saddle (/-saddle-2-
saddle cancellation)

- 2-cancellation, collapsing a maximum and a saddle pair into a maximum (maximum-2-
saddle cancellation)

Let p an (i 4 1)-cell and ¢ and i-cell of a descending Morse complex ['y, ¢ = 0,--- ,n — 1, an
i-cancellation is performed on I if and only if i-cell ¢ is incident in (i + 1)-cell p only once.
i-cancellation(p, q) removes the cells p and ¢ from the descending Morse complex changing the
connectivity of the remaining cells as follows,

e all i-cells in the immediate boundary of cell p will become part of the immediate boundary
of each (i + 1)-cell incident in g,

e all the remaining cells in the neighborhood of p and ¢ simply loose such cells from their
immediate boundary/co-boundary.
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Figure 1.12: Effects of a 1-cancellation(p, q) applied on a descending Morse complex I, before
(a) and after the simplification (b). (c) The corresponding ascending Morse complex I', and (d)
the effects of the same operator on I',.

Dually, let p an (i — 1)-cell and ¢ and i-cell of a Morse complex 'y, i = 0,--- ,n — 1, the same
i-cancellation is performed on I, if and only if i-cell ¢ is incident in (i + 1)-cell p only once.

The i-cancellation removes cells p and g from the ascending Morse complex I', changing the
connectivity of the remaining cells as follows:

e all the (i — 1)-cells in the boundary of cell p will become part of the immediate boundary
of each (7 — 1)-cell incident in g,

e all the remaining cells in the neighborhood of p and ¢ simply loose such cells from their
immediate boundary/co-boundary.

In Figure 1.12, the effect of a 1-cancellation(p, q) on the descending and ascending Morse
complexes is shown. When applying the cancellation on the descending Morse complex I'; il-
lustrated in Figure 1.12(a) the 2-cell p and the 1-cell ¢ are removed from the complex. 1-cells on
the boundary of p (corresponding to the green dots), are moved to the boundary of the maximum
adjacent to p and the 0-cells (blue dots) in b(q) are removed from the boundary of g. The same
cancellation applied on the ascending Morse complex I', in Figure 1.12(c) has a dual effect: 0-
cell p is collapsed into O-cell adjacent to p and the 1-cell g is deleted as well. All the 1-cells in
the coboundary of p are extended to p’ and ¢ is removed from the boundary of all 2-cells in its
coboundary (corresponding to blue dots).

1.3 Piecewise-linear Morse Theory

The first attempt to adapt Morse theory to the discrete case is provided by Piecewise-linear Morse
theory [Ban67, Ban70] which extends all the results of Morse theory to polyhedral surfaces. The

27



"' A\ e =
q m\ ‘\“
MV“ N %
i AVA A
@ ‘*"Wwﬁa :
‘f)\"!huu

“E 705 AJ‘;
: s:‘
qﬁl\\\\\yﬂﬁ‘!’y‘ ’

=
\1% ﬁ’: 0;"4!‘ ,J?f%:

N ’*'»"»‘f Y
% ,gNP
L
KX
i2

Figure 1.13: (a) Set of points, vertices of the simplicial complex > shown in (b).

i

(b)

Figure 1.14: (a-b) the plane does not intersect the triangles incident in the
maximum(red)/minimum(blue); (b) the plane intersects four triangles incident in the sim-
ple saddle;

basic assumption made by Banchoff is that every pair of points on the polyhedral surface have
distinct field values. In Figure 1.13(a) a set of points sampled on a 2D grid and raised according
the elevation at each of them (height function) is shown. In Figure 1.13(b) a simplicial complex
built on this set of points is shown.

As described in [BFFT08], Banchoff first introduces the definition for a critical point by using a
geometric characterization [Ban67, Ban70]. Let us consider a triangle mesh as an example of a
polyhedral surface. In order to define the conditions of a vertex v to be critical, the set of triangles
incident to v is considered. A small neighborhood around a local maximum or a local minimum
never intersects the tangent plane to the surface, intersecting the surface in v. A similar small
neighborhood of a saddle is instead split into four pieces. The number of intersections is used to
associate an index with each discrete critical point (see Figure 1.14).

Consider a triangle mesh X in R? with height function f : R?* — R; f is called general for ¥ if
f(v) # f(w) whenever v and w are distinct vertices of . Then, critical points may occur only
at the vertices of the triangles and the number of times that the plane, perpendicular to f, cuts the
link of v is equal to the number of 1-simplexes in the link of p with one vertex above the plane
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Figure 1.15: Classification of the critical points on a simplicial complex X.. A regular point (a)
maximum (b), minimum (c), simple saddle (d) and a multi saddle (e). Vertices surrounded by
blue/red areas have lower/higher function value than the vertex in the center.

and one below.

In other words, the number of intersections identify the index of v. If there are no intersections
v 1s a maximum or a minimum. If the plane divides the set of triangles in two sets the vertex is
regular otherwise v is a saddle. The saddle can be simple if the plane divides the triangles in four
pieces, otherwise it is multiple if the plane divides the triangles into six or more parts and it is
called multiplicity of a saddle half of the number of these parts.

Formally, denoting n,, the number of triangles incident in v that intersect the plane, the index of
v 18 defined as follows [Ban67]:

, n
iy =1— ?U
The critical points are defined as points with index different from 0. In particular, the index is
equal to 1 for maxima and minima and an arbitrary negative integer value for saddles.

In Figure 1.15, the classification of the non-degenerate critical points is shown. In Figure 1.15(a)
a regular point is shown, characterized by a sequence of vertices in the link with lower function
value (vertices surrounded by blue area) and by a sequence of vertices with higher function value
(vertices surrounded by red area). In Figure 1.15(b) a maximum has only vertices in the link
with lower function value and dually a minimum (see Figure 1.15(c)) has only vertices in the
link with higher function value. Saddle points are characterized by multiple sequences of ver-
tices with lower and higher function value in the link. A simple saddle, shown in Figure 1.15(d),
has two sets of vertices with lower function value and two sets of vertices with higher function
value. A multiple saddle, often called monkey saddle, shown in Figure 1.15(e), has an arbitrary
number, greater than two, of sets of vertices with higher/lower function value.
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Moreover, Banchoff proved the critical point theorem [Ban67], as discrete counterpart of the
critical point theorem described in Section 1.2, which holds for general height functions defined
on polyhedral surfaces:

vEXD

Note that the theorem holds under the assumption that f is general and it also includes the case
of isolated degenerate critical points, such as monkey-saddle, not considered by Morse theory.

The characterization provided by Banchoff correctly distinguishes critical points in dimension 2
and 3, while for higher-dimensional spaces the Betti numbers of the lower link provide a more
complete characterization of discrete critical points as discussed in Section 2.1.1.

In [EHZO01, EHNPO3] the notion of Quasi Morse-Smale ((QM S) complex is introduced as a
piecewise-linear counterpart of the Morse-Smale complex. The QM .S is defined for 2D and 3D
simplicial meshes. The QMS has the same combinatorial structure of a Morse-Smale complex;
however the 1-cells in 2D and the 1-cells and 2-cells in 3D are not necessarily those of maximal
ascent, or descent. The idea behind a QMS, called simulation of differentiability is that of ex-
tending the smooth notions to the piecewise-linear case so as to guarantee that the complex has
the same structure of its smooth counterpart, and to achieve numerical accuracy via local trans-
formations that preserve the structure of the complex. The QMS is a splittable quadrangulation
of M whose vertices are the critical points of f and whose arcs are strictly monotonic in f. The
0-cells of a QMS complex are the critical points of f, the 1-cells connect minima to saddles (1-
saddles in 3D), maxima to saddles (2-saddles in 3D), and, in the 3D case, 1-saddles to 2-saddles
[EHNPO3]. Once the QMS complex is computed, a series of operations, called handle slides, can
be applied to turn the QMS into a Morse-Smale complex. For 2-manifolds, it is possible to find
such a sequence of handle slides, while for 3-manifolds this is still an open question [EHNPO3].

1.4 Discrete Morse Theory

The main purpose of discrete Morse theory [For98, For02] is to develop a discrete setting in
which the main results from smooth Morse theory are extended to cell complexes. This goal is
achieved by considering a function F' defined on all the cells (and not only on the vertices) of a
cell complex I'. Since simplicial complexes are a subclass of cell complexes, all the results of
discrete Morse theory on a cell complex I' hold for simplicial complexes as well. We repeat here
results from discrete Morse theory on simplicial complexes.

Let > be a n-dimensional simplicial complex. A function F' : > — R, defined on Y, is a
discrete Morse function if for every i-simplex o € X, all the (i — 1)-simplexes on the immediate
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boundary of ¢ have a lower function value than o, and all the (i + 1)-simplexes in the immediate
co-boundary of o have a higher function value than o, with at most one exception.

Definition 1.4.1. A discrete Morse function satisfies, for each i-simplex o, both equations:

#{r € b(o)|F(r) < F(o)} < 1

#{T € b(o)|F(1) 2 F(o)} <1

where # denotes the number of simplexes in the set.

Definition 1.4.2. Given a discrete Morse function F, an i-simplex o € X is said to be critical if
and only if

#{T € cb(o)|F(r) < F(0)} =0

#{r € b(0)|F(1) > F(0)} =0
and the index of o is 1.

From these two definitions it follows that an ¢-simplex ¢ is not critical if and only if exists an
(¢ —1)-simplex 7 such that F'(7) > F(o) or if exist an (¢ — 1)-simplex [ such that F'(5) < F(o).
These two possibilities are exclusive; they cannot be true simultaneously for a given simplex o
and thus o can be paired either with a non-critical simplex that is a co-face of ¢ or with one of its
faces. A pair can be viewed as an arrow formed by a head (i-simplex) and a tail ((i — 1)-simplex).
A simplex that is not a head or a tail of any arrow is critical.

In Figure 1.16, two examples of functions defined on a simplicial complex are shown. In Figure
1.16(a), the function is not a Forman function since for the 1-simplex with function value 5 both
the boundary 0-cells have higher function value (6 and 7). In Figure 1.16(b) on the same simpli-
cial complex a Forman function is defined with a critical O-cell with value 0. In Figure 1.16(c)
the arrows indicating the pairing between the cells are shown, the critical vertex is the only one
not paired with any other cell.

Forman demonstrates in [For98] the combinatorial counterpart of the critical point theorem.
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Figure 1.16: (a) Example of a function defined on a two-dimensional simplicial complex that is
not a Forman function and (b) Forman function defined on the same complex. (c) The arrows
defined by the function indicated in (b).

Definition 1.4.3. Given m; the number of critical cells of a discrete Morse function F' defined
on a simplicial complex Y. then,

my; are called the Morse numbers of F'.
Definition 1.4.4. A V-path is a sequence of simplexes

(007 7—0)’ (017 7—1)’ sy (Ui7 Ti)) ceey (O-na Tn)

such that o; and ;41 are different faces of 7; and (o;, T;) are paired simplexes.

The set of paired simplexes and critical simplexes of 3. forms a Forman gradient V' if there are
no closed V-paths in V' or, in other words, if all the V' -paths are acyclic.

In the combinatorial setup of discrete Morse theory, V' -paths correspond to the gradient arrows
of a Morse function f. We will call separatrix V;-path the V-paths of the following form:

T, (007 7—0)7 (0-17 Tl)? ceey (Oi7 Ti)7 ceey (anu Tn)7 o

where 7 and o are two critical simplexes of dimension 7 and (i — 1), respectively.

In Figure 1.17 the separatrix V-paths extracted from a Forman gradient V' are illustrated. In
Figure 1.17(a), the Forman function defined on the simplicial complex X is shown, while in
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(b) (c)

Figure 1.17: (a) The original simplicial complex Y. and the function defined on all the simplexes
of 2. (b) The corresponding Forman gradient computed on .. Red dots indicate critical triangles
(maxima), green dots indicate critical edges (saddles) and blue dots correspond to critical vertices
(minima).(c) Separatrix V;-paths are highlighted: in green the separatrix V;-paths connecting
minima with saddles and in red separatrix V5-paths connecting saddles to maxima.

Figure 1.17(b) the corresponding Forman gradient is shown. From the Forman gradient the sep-
aratrix Vi-paths are computed and highlighted in Figure 1.17(c). Green lines indicate separatrix
V,-paths connecting a saddle with a minimum, red triangles instead indicate separatrix V' -paths
connecting a maximum with a saddle.

The definitions introduced in discrete Morse theory are a discrete analogue of definitions for
smooth functions we reviewed in Section 1.2. The V-paths forming a Forman gradient V' can
be seen as a combinatorial counterpart of the integral lines described in Morse theory as well as
separatrix V' -paths corresponds to separatrix lines. In a similar fashion, critical points correspond
here to critical simplexes, involved in a number of outgoing or incoming V -paths based on their
index. Observe that the index of a critical simplex is always equal to the dimension of the
simplex.

1.5 Watershed Transform

Another way to define a Morse complex is through the watershed transform (see [RMOO] for a
survey). The watershed transform provides a decomposition of the domain M of a C* function
f into regions of influence associated with the critical point of f. Such regions of influence are
called catchment basins. The definition of catchment basin is based on a distance function. In
this Section the notion of watershed transform is introduced based on the formalization proposed
in [Mey94].
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If f is at least C", it has a gradient 5/ f, except possibly at some isolated points.

Definition 1.5.1. The topographic distance 7' (p, q) between two points p and q belonging to
the domain M of f is defined as,

Ty(pa) = inf, [ 115 F2() s

where the infimum is considered over all paths vy inside M originating at p and with destination
q.

The above definition of the topographic distance notion ensures that the path which minimizes

the topographic distance between two points p and ¢ in M is the path of steepest slope, if it exists.
Thus, if p and ¢ are two points in M:

o if f f(q) and there is an integral line [ which reaches both p and ¢, then T (p, q) =

Otherwise, if the integral line does not exist,

Ts(p,q) > |f(q) — f(p)]-

It follows from the above formulas that the topographic distance is unable to distinguish among
points belonging to the same plateau since the topographic distance between two points p and ¢,
belonging to the same flat region, is zero.

Definition 1.5.2. Let [ a function with minima C,,;, defined on a manifold domain M. The
catchment basin C'B(m;) of a minimum m; is defined as the set of points © € M which are
closer to my, in terms of topographic distance, than to any other minimum m;. Le.,

CB(m;) ={x € M|VNmj € Cpin,j #i: f(m;) +Ts(x,m;) < f(m;) + Tp(x,m;)}

Definition 1.5.3. The watershed of f is then defined as the set of points which do not belong to

any catchment basin,
WSth(f) =Dn (UmiECmmCB(mi))
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(b)

Figure 1.18: (a) The catchment basins corresponding to minima, 2-cells colored in blue, and the
watershed lines, colored in red. (b) The corresponding ascending Morse complex I', compared
with the cell complex obtained with the watershed transform.

It follows from this definition that each catchment basin corresponds to a minimum while the
watershed points to saddles and maxima. A similar definition can be stated for catchment basins
related to saddle and maxima.

Definition 1.5.4. Ler f a Morse function with maxima C,,,, and saddles C,q defined on a
manifold domain M. The catchment basin C' B(max;) of a maximum max; is defined as max;
itself.

CB(max;) = {max;}

Definition 1.5.5. The catchment basin C'B(s;) of a saddle s; is defined as the set of points
belonging to W shed(f) having their distance from s; in terms of function value equal to the
topographic distance value,

CB(si) = {x € Wshed(f)|Ty(si,p) = f(p) = f(s:)}

For example, in the 1D case, the catchment basin relative to a minimum will be the line connect-
ing the minimum to the maxima points and the watershed points will be the maxima.

In the 2D case, the catchment basins relative to minima are 2D surfaces, bounded by a sequence
of watershed lines, related to saddles and maxima. The catchment basin for each saddle will be
a ridge line bounded by two maxima; the catchment basin related to each maximum will be the
maximum itself.

In Figure 1.18(a), an example of the watershed transform applied on a 2D manifold with bound-
ary is shown. For each minimum (blue point), the corresponding catchment basin is a 2-cell
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(depicted in blue) while the watershed points are colored in red. Among such points, the catch-
ment basins corresponding to the saddles (green points) are the 1-cells limited by two maxima
(red points) and the catchment basin for each maximum is the point itself.

There is a one-to-one correspondence between catchment basins, watershed and the cells of the
ascending Morse complex I', defined on the same domain M by function a Morse f. For each
i-saddle of f, the corresponding catchment basin and the (n — 7)-cell of I', cover the same do-
main. In the 2D case, each minimum catchment basin corresponds to a 2-cell in the ascending
Morse complex I',. For each saddle there is a catchment basin corresponding to the 1-cell of I,
and for each maximum its catchment basin is 0-cell of T',,.
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Chapter 2

State of the Art

In this Section, we present a review of the state of art related to the analysis of scalar fields.
Mainly, we concentrate on three topics: computation of Morse and Morse-Smale complexes,
simplification of Morse and Morse-Smale complexes and hierarchical representation of Morse-
Smale complexes.

Extracting morphological information from a scalar field, through the computation of a Morse or
Morse-Smale complex, is the first issue we address. A variety of methods have been proposed in
literature for the 2D and 3D cases. We will describe, in Section 2.1, the most widely used algo-
rithms to compute Morse complexes and, with particular attention, we will focus on algorithms
that computes Morse and Morse-Smale complexes on simplicial meshes. This section includes a
review of methods we have defined and compared in [FIMS13]. At the beginning of Section 2.1,
we will describe the state of the art for computing critical points on a combinatorial manifold, a
common step for all the algorithms computing Morse complexes.

In many application domains, computing a Morse or Morse-Smale complex is insufficient to ob-
tain a meaningful and significant structure useful for the analysis. This is due to the dimension of
the original data, usually huge, and the noise naturally present in the data. Thus, a simplification
process is required in order to clean up the data and to reduce drastically their dimensions. In
Section 2.2 we will present an overview of the simplification algorithms, based on ¢-cancellation
operator described in Section 1.2.1, for the simplification of Morse and Morse-Smale complexes.

In the last part of this section we review hierarchical models that have been defined in literature
for the interactive analysis of scalar fields. A hierarchical model can be described as a particular
encoding, for a scalar field M, from which is possible to extract representations of M at different
level of details. It is usually built from a simplification process. The different representations are
thus extracted from this model refining the interesting part of the scalar field. We will describe
these models in Section 2.3.
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2.1 Computing Morse and Morse-Smale complexes

In this section, we describe different techniques proposed in literature to compute Morse or
Morse-Smale complexes. Many algorithms have been proposed to compute a Morse complex in
2D and 3D, we refer to [BFFT08] and [CDFI13] for a complete overview. All the algorithms can
be classified based on different criteria. A first distinction can be done based on the dimension
on which the algorithms work; some of them are dimension specific, i.e. they are defined for
working on specific dimensions (usually 2D and 3D), while others are dimension-independent.

Another classification can be done based on the complexes they compute. Some algorithms, i.e.,
compute the ascending and descending Morse complexes extracting the top cells of such com-
plexes. Other algorithms compute the top cells of the Morse-Smale complex, or its 1-skeleton
thus extracting all the 1-cells connecting pairs of critical points. Algorithms based on discrete
Morse theory to compute a Forman gradient at first and then use the gradient to extract Morse or
Morse-Smale complexes.

The combinatorial manifold, used to discretize the domain, offers a characterization for these
algorithms. Many algorithms rooted in image processing have been defined on regular square
grids and cubical complexes. Algorithms for terrain and 3D shape analysis instead are generally
described on triangle and tetrahedral meshes.

The algorithms described in this section are presented according to the approach they use to
compute the Morse or Morse-Smale complexes. Note that different approaches require the com-
putation of different critical points as an initial step. Region-growing algorithms [DDFMO03,
MDDF*08, GNPHO7] compute only the minima and the maxima of the scalar field without
extracting explicitly saddle points (see Section 2.1.2). Boundary-based algorithms [EHZO01,
EHNPO3, TIST95, Vitl0] first extract all the critical points of f, and computing as a second
step the ascending and descending 1-cells associated with saddles (see Section 2.1.3). The wa-
tershed algorithms [Mey94, VS91, S0i03, MW99, SS00] base their computation only on minima
and extract the top cells of the ascending Morse complex (see Section 2.1.4). Clearly, they can
be used to compute the descending Morse complex by inverting function f. Algorithms rooted
in discrete Morse theory [KKMO0S, GBHP11, RWS11, GRWHI12, SN12, SMN12] compute a
Forman gradient V' directly from a discrete scalar field M = (I, f) extending function f to all
the cells of I" (see Section 2.1.5).

2.1.1 Computing critical points

As described in [BFFT08], most of the works known in literature refer to [Ban67, Ban70] for
computing critical points on a surface in the discrete case [TIST95, EHZ01, NGH04]. The clas-
sification of a critical point can be done based on the function value at a vertex p, f(p), and the
simplexes in the link of p, Lk(p) (or alternatively the simplexes in the star of p). The link of p is
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decomposed into two sets:

e the upper link, denoted Lk™ (p), consists of the simplexes composed by vertices v € Lk(p)
such that f(v) > f(p),

e the lower link, denoted Lk~ (p), consists of the simplexes composed by vertices v € Lk(p)
such that f(v) < f(p),

Based on the cardinality of these two sets, a point p can be classified as critical [EHZO01],

e if Lkt (p) is empty, then p is a minimum,

e if Lk~ (p) is empty, then p is a maximum.

Otherwise, the number of connected components in Lk~ (p) and Lk™(p), denoted #(Lk™ (p))
and #(Lk™ (p)) respectively, defines the index of p. In the 2D case [EHZO01]:

o if #(Lk(p)) = 1 then p is regular,

o if #(Lk™(p)) = np, with n,, > 1, then p is a “2-saddle.

In the 3D case [EHNPO3]:

o if #(Lk(p)) = 1 and #(Lk~(p)) = 1 then p is a regular point,
o if #(Lk~(p)) = 1 and #(Lk~(p)) = 2 then p is a 1-saddle,

o if #(Lk~(p)) = 2 and #(Lk~(p)) = 1 then p is a 2-saddle,

o if #(Lk™(p)) + #(Lk~(p)) > 3 then p is a multi-saddle.

Methods have been proposed to unfold multi-saddles in simple saddles in 2D [EHZ01] and in
3D [EHNPO3]. In both cases, to split the saddle, the underlying geometrical structure is modified.

However, in the applications, much more problematic cases can occur. The problem of degener-
ate critical points, as flat areas naturally present in real data, can be handled either by replacing
the notion of critical point with the notion of critical area [BFS02, CKFO03] or by perturbing
and unfolding the discrete surface (i.e. the simplicial complex) [EM90, AE98, EHNPO3]. In
[MFI13] we have proposed a preprocessing method to eliminate flat edges from a Triangulated
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Irregular Network (7' N), perturbing their elevation, in a morphologically consistent way and
without introducing new critical points.

The geometric characterization of a critical point has been also used to define critical points
on a regular model. Adapting the characterization means, in this case, to adapt the concept of
neighborhood to the connectivity of the regular grid. Moreover, in these cases the field is of-
ten viewed as a function defined on the n-cells of the grid instead of on the vertices [BPS98,
WSHHO2, Pap04]. Regular grids can also exploit the so called analytic approaches to compute
critical points. An analytic approach relies on the general idea of fitting an approximating func-
tion on the vertices of the grid and then critical points are detected through numerical techniques
[WLHS85, SW04, WS04]. Such techniques are, in general, more precise and computationally
more expensive than the combinatorial counterpart.

Approaches rooted in discrete Morse theory (see Section 1.4), compute critical cells of a cell
complex I' on which a Forman function has been defined, by computing a Forman gradient on I"
first.

2.1.2 Region-growing algorithms

Region-growing algorithms mimic in the discrete case the definition of an n-cell of a Morse
complex. More precisely they expand, starting from a critical point p, the associated Morse
n-cell following the integral lines originating or ending at p.

In [DDFMO03], an algorithm for computing the descending and ascending Morse complexes has
been presented for the segmentation of terrain models. The algorithm performs a breadth-first
traversal of the dual graph of the triangle mesh in which the nodes correspond to triangles of
the mesh and the arcs correspond to the edges shared by edge-adjacent triangles. A 2-cell is
created for each minimum/maximum critical point and then expanded one triangle at time. In
[DDFMO03], the expansion criterion of a 2-cell is based on the height function value of the triangle
vertex not yet included in the boundary of the 2-cell. In [MDDF'08] such criterion has been
improved to avoid over-segmentations. In [CMF11] the discrete gradient vector field, associated
with the decomposition obtained with the algorithm described in [DDFMO03], has been showed
as a sub-field of the gradient field of a Forman function whose restriction over the vertices of the
triangle mesh coincides with the given scalar field function f.

The algorithm proposed in [GNPHO07], computes the Morse-Smale complexes of a function f
defined over the vertices of a tetrahedral mesh .. Starting from the ascending Morse complex the
3-cells are computed labeling the vertices of the tetrahedral mesh Y as belonging to the interior
or the boundary of some ascending 3-cell. The region growing approach is applied recursively
in order of decreasing cell dimension computing all the remaining ascending cells. Descending
cells are computed inside the ascending 3-cells using the same region growing approach.
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In the latter we describe two algorithms in details [MDDF08, GNPHO7]. The first algorithm
[MDDF"08] works on triangle meshes and represents the most recent development, of algo-
rithms of the same kind, known in literature. The second [GNPHO7] is an example of region-
growing algorithm defined specifically for the 3D case, even if it could be defined in a dimension-
independent way.

2.1.2.1 STD algorithm

The Source Through Drain algorithm (ST D), proposed in [MDDF'08], has been developed to
extract the 2-cells of the ascending and descending Morse complexes from a discrete scalar field
My, = (X, f) where f is a scalar function defined on the vertices of the triangle mesh 3.

The STD algorithm perform the three main steps described below:

(i) Classification - the vertices of each triangle ¢ in X are classified based on their function
value.

(i) Extraction - the minima/maxima of f are extracted

(i11) Growth - for each minimum/maximum, the corresponding 2-cell is constructed.

We described here the computation of the ascending Morse complex, the computation of the
descending Morse complex is entirely dual.

In the classification phase, all the vertices are labeled for each triangle. The objective is to
simulate the gradient flow inside each triangle . Then, by considering the three vertices of ¢ in
descending order of function value, the highest, middle and lowest vertices are labeled as Source
(S), Through (T) and Drain (D), respectively. This labeling provides an easy way to extract the
minima of f by considering only the vertices labeled as Drain in all their incident triangles.

For each minimum p a new 2-cell -, is created, formed by all the triangles incident in ~y,. Then,
the region 7y, is grown iteratively by including the triangles adjacent to its boundary. The rationale
for the inclusion of a triangle ¢ in +y, follows two main ideas:

e water flows from a higher to a lower elevation;

e triangle ¢ can be included in only one region and the choice must be deterministic.

The algorithm maintains an invariant. If a triangle ¢ has been included into a 2-cell ,, then the
edge of t labeled 7" — D is not on the boundary of ~,,.
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Figure 2.1: (a) The rule used for the inclusion of a boundary triangle if the opposite vertex is
labeled S, in (b) and (c) the rules applied when the vertex is labeled T or S, respectively. Yellow
triangles are included in the basin, gray triangles are excluded. Green triangles are the candidates
to be included by the rule while red triangles will be excluded.

The rule that controls when a new triangle ¢ is added to a cell v, consists of three cases which
are based on the edge e incident in ¢ and on the boundary of ,:

1 if the vertex v of ¢, opposite to e, is labeled D in ¢, then ¢ is not included into v,,;
2 if the vertex v of ¢ opposite to e is labeled .S in ¢, then ¢ is included into ,,;

3 if the vertex v of ¢ opposite to e is labeled 7" in ¢, then surely water flows to vertex v/,
endpoint of e, which is labeled D in ¢. Starting from ¢, the maximal set of edge-adjacent
triangles having their lowest vertex in v’ is collected. Let w be the vertex of maximum
elevation among the vertices of such triangles. The fan starting from ¢ until the first triangle
incident in edge (v', w) is included into 7.

In Figure 2.1 the expansion of a 2-cell is shown. Yellow triangles are already included in the
2-cell while gray triangles are the ones which are not yet included. In Figure 2.1(a), the triangle
adjacent to the boundary edge (in red) is included since the vertex opposite to the edge is labeled
D. In Figure 2.1(b) a fan of triangles is included starting from the triangle incident in the red
edge, since the opposite vertex was labeled 7. In Figure 2.1(c) an example of a triangle not
included in the 2-cell, since the vertex opposite to the boundary edge is labeled D, is shown. In
[MDDF"08] a rigorous handling of the special cases, due to the flat triangles present in the data,
can be found.

In the ST'D algorithm, every triangle of X is examined at most three times, one from each edge,
before being included in one cell. A different situation occurs when a triangle is part of an edge-
adjacent set of triangles (case 3). In such cases, having fixed edge (v',w), a triangle will be
included with the set of triangles on the left or on the right of such edge. Thus, the worst-time
complexity of the algorithm is always O(|3|), where |3,| denote the number of vertices in X.
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A dimension-independent definition for this algorithm would be hard to be stated. The labeling
of the vertices could be extended for n-simplexes. However, the third rule requires an ordering of
the top simplexes around a vertex, ordering that could be not uniquely determined in dimensions
higher than two.

2.1.2.2 A Region-growing approach for computing 3D Morse-Smale complexes

The algorithm proposed in [GNPHO7] computes the Morse-Smale complex of a function f de-
fined over the vertices of a tetrahedral mesh ». The ascending cells are computed through a
region-growing approach in the order of decreasing cell dimension. Descending cells are com-
puted inside the ascending 3-cells, using the same region-growing approach. The ascending and
descending cells are simply collections of vertices of X..

The computation of the ascending 3-cells consists of two steps:

- the set of minima of f are identified looking at the lower link of each vertex (see Section
2.1.1 for details). Each minimum will be the origin for a set of vertices representing an
ascending 3-cell;

- each vertex p of X is classified as an internal or boundary vertex of an ascending cell. This
depends on the number of connected components in the set of vertices in the lower link of
p which are already classified as interior to some ascending 3-cell.

The classification is performed by sweeping > in the order of ascending function values.

Vertices classified as boundary in the first step of the algorithm are the input for the algorithm
which builds the ascending 2-cells. An ascending 2-cell is created for each pair of adjacent
3-cells. The vertices of the 2-cells are classified as interior or boundary, based on local neigh-
borhood information, similarly to the classification with respect to the 3-cells. A 1-cell is created
everywhere ascending 2-cells meet. Each 1-cell is composed of vertices classified as boundary
in the previous step. Finally, each vertex p of an ascending 1-cell is classified as interior or
boundary. Maxima are created at the boundaries between ascending 1-cells. They form a small
disjoint clusters of vertices.

An example of the extraction performed by the algorithm, is shown in Figure 2.2. In Figure
2.2(a) the set of internal vertices is computed and each of them forms the set of internal vertices
of an ascending 3-cell. The set of boundary vertices are shown in black; they will form the as-
cending 2-cells. In the intersection points of such 2-cells the ascending 1-cells are computed (as
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(a) (b)

Figure 2.2: (a) The ascending 3-cells extracted on a synthetic data set with the algorithm pre-
sented in [GNPHO7]. (b) The ascending 1-cells extracted.

illustrated in Figure 2.2(b)).

The descending cells are computed in their interior of the ascending n-cells. The region-growing
steps are the same and again here iterations are performed in the order of decreasing dimension.
The growth of the descending cells are forced to be in the interior of the ascending 3-cells. This
corresponds to intersect the ascending and descending Morse complexes directly, thus obtaining
the Morse-Smale complex .

Vertices are processed in increasing/decreasing order when the ascending/descending Morse cells
are computed and each vertex is processed only once, thus leading to O(|3,|) complexity of the
whole algorithm. Thus, the worst-time complexity is O(|Xo| log |¥o]|), because of the sorting of
the vertices.

The algorithm has been used for tetrahedral meshes. However, the computation is vertex-based
and the simplicial structure is only used to build the link of each vertex. Thus, the algorithm
actually works on the 1-skeleton of the simplicial mesh and a dimension independent version
could be defined.

2.1.3 Boundary-based algorithms

The algorithms described in this section compute the boundary of the cells of the Morse-Smale
complexes and, thus, they are called boundary-based [TIST95, EHZ01]. A boundary-based al-
gorithm generally extracts the critical points first and then traces the separatrix lines that are the

1-cells of the Morse-Smale complex. For each saddle ¢, with multiplicity k, k£ ascending paths
and k descending paths are computed.

The steps performed by the algorithm are divided into:
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Figure 2.3: (a) Green point is the saddle point from which expand the Morse 1-cells. (b) The
ascending and descending 1-cells are expanded, indicated with blue and red lines respectively.
(c) The MS 2-cells delimited by the ascending and descending 1-cells are indicated with different
colors.

e classification - the critical points are identified;

e computation of upper/lower sequence - for each saddle g the sequence of adjacent vertices
with higher/lower elevation are computed. They are called upper and lower sequence
respectively. For each sequence the highest/lowest vertex v is identified and, starting from
v, the highest/lowest adjacent vertex v’ is iteratively identified and included in the sequence
connected with ¢ until a maximum/minimum is reached.

During the classification step, all the critical points are computed. The extraction of critical
points is usually performed based on techniques implementing the classification by Banchoff
[Ban67]. The computation of the sequence simulates the reconstruction of the separatrix lines
connecting pairs of critical points. Thus, in this step, a navigation of the mesh is performed on
the vertices of the mesh following the maximum increasing/decreasing slope.

In Figure 2.3, the extraction of the 1-cells of a Morse-Smale complex is shown. In Figure 2.3(a),
the first saddle is selected. In Figure 2.3(b) for each connected component in the lower link
an ascending 1-cell is created (blue lines) following the steepest descent. For each connected
component in the higher link a descending 1-cell is created (red lines) following the steepest
slope. In Figure 2.3(c), 2-cells of the Morse-Smale complex are bounded by the ascending and
descending 1-cells.

All boundary-based algorithms in the literature have these steps in common, to compute the 1-
cells of the Morse-Smale complex. They differ in the way they handle special cases [EHZ01,
EHNPO3, Vit10, TIST95]. The authors of [TIST95] introduce a virtual pit (vertex with minimum
field value) in order to handle the boundary of a triangle mesh. This method makes the mesh
homeomorphic to a ball, and the critical point theorems is satisfied. Moreover minima on the
boundary are impossible. If we consider a two-dimensional scalar field My = (X, f) and its
dual with opposite field values, they will not have the same saddles on the boundary.
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In [EHZO01] the approach presented by [TIST95] is extended. Function f is required to be a
piecewise-linear Morse function, sequences are still computed by starting from the saddle points,
but at each step the point with maximum slope is detected. The Smale condition is simulated a-
posteriori by extending the path beyond each saddle, and forcing the path of the 1-skeleton in the
Morse-Smale complex, not to intersect.

In [EHZ01, EHNPO3] the notion of Quasi Morse-Smale is introduced (see Section 1.3). A Quasi
Morse-Smale complex (QMS) is a complex that reflects the combinatorial structure of the Morse-
Smale complex, but in which the arcs and quadrangles (1- and 2-cells) may not be those of
maximal ascent and descent.

In the following we describe in detail only the algorithm presented in [EHNPO3] being the only
boundary-based method proposed in literature for computing Morse-Smale complexes for tetra-
hedral meshes. For a complete overview, we address to [BFFT08] and [Vit10].

2.1.3.1 Computing Quasi Morse-Smale complexes in 3D

The boundary-based algorithm in [EHNPO3] extracts the Quasi Morse-Smale complex for a tetra-
hedral mesh of a three-dimensional scalar field by computing first the critical points through the
reduced Betti numbers of the lower link of the vertices (see Section 2.1.1).

Then, the three-dimensional quasi Morse-Smale complex is computed during two sweeps over
the tetrahedral mesh . The first sweep (in the direction of decreasing function value) computes
the descending 1- and 2-cells and the second sweep (in the direction of increasing function value)
the ascending 1- and 2-cells of the Morse complexes. The algorithm is boundary-based, as it
computes the 1- and 2-cells which bound the 3-cells in the Morse complexes.

During the first sweep, the descending 1-cells and 2-cells are computed simultaneously. A 1-cell
1s built as follows:

e If a current vertex p in the sweep is a 1-saddle, a descending 1-cell is started. The two
arcs of the corresponding 1-cell are initialized by edges from p to the lowest vertex in each
connected component of the lower link of p, as illustrated in Figure 2.4(a).

e [f there is a descending arc ending at a current vertex p, it is expanded by adding an edge
from p to the lowest vertex in its lower link. If p is a 1-saddle, later an ascending 2-cell will
start at p and each descending arc is extended to the lowest vertex in the specific connected
component of the lower link of p that is not separated from the arc by the ascending 2-cell.

e If p is a minimum, it becomes a node of the quasi Morse-Smale complex, and the descend-
ing arcs end at p.

A 2-cell is built as follows:
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Figure 2.4: (a) 1-saddle, (b) 2-saddle and (c) a regular point found during the algorithm described
in [EHZO01].

e If a current vertex p in the sweep is a 2-saddle, a descending 2-cell is started. A cycle of
edges in the lower link is constructed, which contains the lowest vertex in the lower link
of p. Triangles determined by p and edges of the cycle form the initial descending 2-cell
of p, as illustrated in Figure 2.4(b). Initially, the entire boundary of the descending 2-cell
is unfrozen.

e A 2-cell is expanded by constructing a shortest-path tree in the lower link of the current
(highest) vertex ¢ on the unfrozen boundary of the 2-cell associated with 2-saddle p, and
connecting g to the edges of this tree. If ¢ is a critical point (a 1-saddle or a minimum), it
is declared frozen together with its two incident edges on the boundary.

e When the complete boundary of a 2-cell is frozen the 2-cell is completed.

The next step consists of building the intersections between the descending and ascending 2-cells
by tracing ascending paths inside a descending 2-cell, starting from 1-saddles on the boundary
of the descending 2-cell and ending at the 2-saddle that started the descending 2-cell. These
intersections are used to guarantee the structural correctness of the extracted quasi Morse-Smale
complex. Each 2-saddle starts two arcs of an ascending 1-cell, which must not cross any already
established descending 2-cell. The intersection curves between descending and ascending 2-cell,
and the ascending 1-cells decompose each ascending 2-cell into quadrangles. The ascending
cells are built one quadrangle at a time, similarly to descending 2-cells.

An implementation of this algorithm is described also in [NPO5]. The worst-case time complex-
ity of the algorithm is bounded from above by the time for sorting the vertices, the input size
for constructing the vertex link plus the output size for describing the resulting Morse-Smale
complex. Sorting the |X| vertices of the input complex takes O(|Xo|log |Xo|), the input size
is O(|30|?) while the size of the output depends on the cells describing the quasi Morse-Smale
complex [EHNPO3].

The extension of this algorithm to higher dimensions directly depends on the possibility to com-
pute the critical points. Since a characterization for an ¢-saddle in dimensions higher then three
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is impossible, the first step of the algorithm is not defined. This is a common limitation for all
the boundary-based approaches that are generally not well suited for the computation of Morse-
Smale complexes in dimensions higher then two, also for their computational costs.

2.1.4 Watershed algorithms

The watershed transform, described in Section 1.5, provides a decomposition of the domain of a
smooth function f into regions of influence associated to the critical points of f, called catchment
basins. If the function f is smooth, the union of all the catchment basins related to the critical
points forms the ascending Morse complex. Through a change in the sign of function f, the
descending Morse complex can be defined in the same way.

As described in [BFFT08], the watershed transform has been applied, in the discrete case, in
image processing for segmenting gray-scale images. Several algorithms have been developed to
compute the discrete watershed transform [RMO00O, NCO03]. Such algorithms can be divided in
three groups:

(i) approaches based on topographic distance [Mey94]
(i1) approaches based on simulated immersion [VS91, Soi03]

(ii1) approaches based on rain falling simulation [MW99, SS00]

The definition of a catchment basin, watershed line and watershed transform is similar in the
discrete case to the definition in the continuous case. The main difference is that the continuous
topographic distance is replaced with a (cost-based) discrete topographic distance. The discrete
topographic distance between two points is then defined as the minimum-cost path joining them.
The cost of a path is just the sum of the costs of the edges forming it. By selecting as a topo-
graphic distance a minimum-cost path, the catchment basin of a minimum p becomes the set
of vertices in the simplicial model which are closers to p, in terms of the discrete topographic
distance, than to any other minimum in the model. The watershed lines are the complement of
the collection of the catchment basins of the minima, when the complement is taken on the set of
vertices of the simplicial model. All the algorithms inspired by [Mey94] implement a modifica-
tion of a classical shortest path algorithm in order to grow the ascending cell associated to each
minimum. The worst-time complexity of the algorithm presented in [Mey94] is O(|Xo| log|Xo|)
due to the initial sorting of the vertices according to their elevation. However an alternative
definition can be state as a graph traversal working in linear time.

Since originally applied in image processing, watershed algorithms only label the vertices of the
mesh. They actually work on a graph structure connecting all the vertices of the discrete domain.
In image processing, the domain is usually discretized through a regular grid where the function
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values are in correspondence of the top cells of the grid ( called pixels in 2D and voxels in 3D).
The graph structure is here the dual graph of the grid structure where the nodes corresponds to
the pixels (or voxels) of the image; an arc of the graph corresponds to the adjacency between
two pixels/voxels. There are different kinds of adjacency dependently on whether we consider
in 2D only adjacency along edges or also adjacency between vertices. When the underlying
structure, used to discretize the domain, is a triangle or tetrahedral mesh X2, the function values
are assigned to the vertices of the mesh; the graph structure corresponds here to the 1-skeleton
of X where the vertices of X define the set of nodes and edges of X define the set of arcs of the
graph. Thus, in order to segment the top simplexes of a simplicial mesh, the labeling computed
on the vertices has to be propagated to the top simplexes according to some criterion. All the
watershed algorithms compute the ascending and descending top-cells of the Morse complexes
and then the Morse-Smale complex can be obtained by intersection of these cells. However, the
extracted cells are not forced to respect the Smale condition. Since their origin, all the watershed
algorithms provide a labeling of the vertices of a simplicial mesh . We have defined a criterion
for propagating this labeling to the top simplexes of ..

Note that the watershed algorithms discussed here are entirely discrete and differ from the ap-
proaches developed in the computational geometry literature for piecewise-linear triangulated
terrains, in which the terrains are considered as continuous and several steepest descent paths
can cross a single triangle [YVKS96, McA99, BCH*07].

In the following, we will describe in more detail two definitions for the watershed transform
different from the discrete topographic distance, the watershed by simulated immersion [VS91]
and the watershed by rain falling simulation [MW99]. These two algorithms have given good
results when applied in two dimensions for terrains [Vit10] and thus they have been selected in
our work for the extension to higher dimensions.

2.14.1 Simulated immersion

The watershed algorithm by simulated immersion has been introduced in [VS91] for segmenting
a 2D image into regions of influence of minima, which correspond to ascending 2-cells. The
idea of simulated immersion can be described in an intuitive way. Let us consider the graph of a
two-dimensional scalar field M and assume that holes are drilled in place of local minima. We
immerse this surface in a pool of water, building dams to prevent water coming from different
minima from merging. Then, the watershed of f is described by these dams and the catchment
basins of the minima are delimited by the dams.

In [CFI10] we have introduced an extension of this algorithm to scalar fields defined at the
vertices of a simplicial mesh in arbitrary dimension. The vertices of the simplicial mesh > are
sorted in increasing order with respect to the values of the scalar field f, and are processed level
by level in increasing order of function values. For each minimum p, an ascending cell C), is
iteratively constructed through a breadth-first traversal of the 1-skeleton of the simplicial mesh
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Figure 2.5: Immersion of a 1D terrain following the algorithm described in [VS91].

>’ (formed by its vertices and edges). For each vertex v, the labeling of v is based on the labels
assigned to its adjacent vertices:

o if they all belong to the same ascending region C),, or some of them are watershed points,
then v is marked as belonging to C,,

o if they belong to two or more ascending regions, then v is marked as watershed point,

o if they are all unmarked, then v is a minimum and a new ascending cell C, is created.

In Figure 2.5 an example of the algorithm applied on a terrain is shown. In Figure 2.5(a), the blue
line represents the level of immersion of the terrain. It starts from the lowest vertex recognized
as a minimum and a new region (depicted in green) is initialized. In Figure 2.5(b), the line of
immersion is raised and new minima are found (one minimum for each colored region) while
the vertices inside each region are colored accordingly. In Figure 2.5(d), the line reaches the top.
Points which are on the boundary of two regions are indicated as watershed (blue points). As
discussed in Section 1.5, in 1D a watershed corresponds to a maximum.

We have defined a criterion for propagate the labeling on vertices to the maximal simplexes.
Each maximal simplex o (an n-simplex if we consider an n-dimensional simplicial mesh) is
assigned to an ascending region based on the labels of its vertices. If all vertices of o, that are not
watershed points, belong to the same cell C), then o is assigned to C,. If the vertices belong to
different ascending cells C,,, then o is assigned to the cell corresponding to the lowest minimum.
The assignment of top simplexes inside an ascending cell based on the labeling of its vertices is
trivial. The challenging part is assign a top simplex on the boundary of two or more ascending
cells. In some cases the creation of smooth boundaries for the cells can be preferred. The method
proposed instead assigns a simplex to the ascending cell corresponding to the deepest minimum,
considering such minimum as more influential. Descending regions associated with maxima are
computed in a completely similar fashion.

The worst-time complexity of the labeling phase is O(|Xo| log|¥|) due to the initial sorting of
the vertices. Also for the simulated immersion approach, this computation could be performed
in linear time. Once the vertices are all labeled the labeling is propagate to the top simplexes.
Each top simplex is visited only once for a time complexity of O(|%,|).
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Figure 2.6: Labeling of the vertices of a terrain following the algorithm described in [MW99].

2.1.4.2 Rain falling simulation

The rain falling simulation approach presented in [MW99] uses a reverse strategy respect to the
simulated immersion approach.

The general idea is to construct steepest descending paths from each vertex until a minimum, or
a vertex already inserted in an ascending cell, is reached. The main steps of this algorithm are:

e minima computation - minima are identified and for each of them an ascending cell is
created,

e sorting of the vertices - all the vertices are sorted in descending order of function value,

e assignment - each vertex is assigned, recursively, to the cell of its lowest adjacent vertex.

In Figure 2.6, the labeling propagation used by the algorithm is illustrated. In Figure 2.6(a), a
rain falling line is propagated from a maximum to the basin following the steepest descent. In
Figures 2.6(b) and 2.6(c), more lines are added with different labels (blue or red) based on the
reached basin.

After the assignment step, all the vertices are labeled as belonging to some ascending region. No
watershed lines are created with this approach. Thus, each maximal simplex ¢ can be labeled
following the same approach used by the simulated immersion algorithm. The possible problems
arising from the rain falling approach are the non-uniqueness of the lowest neighbor g of a vertex
p and the occurrence of flat areas. Possible solutions are discussed in [SS00]. The first problem
can be solved postponing the decision on the steepest path examining all the paths with equal
steepest descent until a difference is found. Problem of flat areas are generally solved considering
a flat region as a single vertex, thus labeling all the vertices inside in the same way [MW99] or
splitting the flat areas among different ascending cells [SS00]. The worst-time complexity of
the algorithm is the same as the already discussed watershed approaches. We have developed
an implementation of this algorithm for triangle and tetrahedral meshes, even if the approach is
dimension independent, extending the labeling, from vertices to maximal simplexes, as discussed
in Section 2.1.4.1.
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2.1.5 Algorithms rooted in discrete Morse theory

The algorithms proposed in the literature based on discrete Morse theory do not extract explicitly
cells from the Morse or Morse-Smale, complexes but compute a Forman gradient ' extending
the scalar function f, defined on the vertices of a CW complex I, to all the cells of I'. Generally
such algorithms are dimension independent by definition.

Generally speaking, a scalar function defined on the vertices of a CW complex I' is not required in
order to compute a discrete Morse complex on I' [HMMN14, HMM*10]. This is the case where
a discrete Morse complex is used for homology or persistent homology computation. Since we
are interested in the analysis of a scalar field M, we will focus on methods for computing a For-
man gradient on the underlying geometry of M [KKMOS5, GBHP11, RWS11, GP12, GRWHI12,
SMN12, SN12].

Since discrete Morse theory has been defined for CW complexes (see Section 1.4) most of the
algorithms proposed are defined for this kind of complexes. However, they are easily adaptable
to other kind of complexes like cubical complexes or simplicial meshes.

We can classify the algorithms proposed in literature in two groups:

e algorithms focused on the Forman gradient computation [KKMO05, GBHP11, RWS11,
SMN12]

e algorithms for the efficient extraction of Morse and Morse-Smale complexes from a For-
man gradient [GP12, GRWHI12, SN12, WIFF13] .

Algorithms of the first group are focused in constructing a Forman gradient on a regular CW
complex. One of the first algorithm proposed is described in [KKMO5]. The algorithm splits
the computation of a Forman gradient on the link of the vertices of a tetrahedral mesh. The
Forman gradient is computed recursively on the link of such vertices and the pairing obtained
is propagated backward to obtain a global result. We will describe this algorithm in detail in
Section 2.1.5.1.

In the algorithm proposed in [GBHP11], a Morse-Smale complex is computed starting from a
regular n-dimensional CW-complex [" with scalar field f defined at the vertices of I'. Function
f is extended to a Forman function F', defined on all cells of I, such that F'(¢) is slightly larger
than F'(7) for each cell o and each face 7 of 0. Based on the new Forman function F a pairing for
the cells of I is computed and the Morse-Smale complex extracted. The same algorithm has been
successively optimized for the parallel computation of a Forman gradient on a two-dimensional
CW-complex in [SMN12] and for a three-dimensional CW-complex in [SN12]. A description of
the algorithm is presented in Section 2.1.5.2.

One of the most widely used algorithm to compute a Forman gradient on a n-dimensional CW-
complex has been presented in [RWS11]. The algorithm is presented for 3D cubical complexes
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for study to study the homology of a 3D gray-scale digital image. The strategy used to build
in an efficient way a discrete Morse function on the whole complex is to partition it into small
groups of cells, based on the vertices, and analyze each group separately. The lower stars of all
vertices are then treated independently for computing a pairing of cells. In our work, we have
developed an implementation of this algorithm for triangular and tetrahedral meshes [WIFF13]
working also in parallel. We will describe such algorithm in detail in Section 3.4.

The challenging problem, when working with a Forman gradient V, is the traversal of the V-
paths of V. In 2D, all the V'-paths can be visited in linear time visiting all the cell pairs at
most once. However, extracting only the separatrix V/-paths the gradient paths can be visited in
reverse order reducing the numbers of pairs visited. In higher dimensions the situation is more
complicate. In 3D for example, gradient paths can branch and merge multiple times resulting in
a many-to-many adjacency relationship between critical 1- and 2-cells. This produces a discrete
Morse complex containing O(|T|?) gradient paths between critical 1- and 2-cells and, since the
number of critical 1- and 2-cells is bounded by O(|T'y|) this lead the complexity to O(|To[3).
To solve this problem some modifications to the extraction algorithm has been proposed. In
[WIFF13, GRWH12] the worst-time complexity is reduced to O(|I'5|), where |I's| denotes the
number of 2-cells in I', forcing a single path not to visit the same simplex more than once.
Simplexes are marked, as visited or not visited by a V-path, and this leads to an increasing in
the storage. Overcoming this rise in the storage cost is crucial for a parallel implementation.
The idea described in [SN12] is to interpret the substructure of the gradient paths as a Directed
Acyclic Graph (D AG). Then, avoiding the standard breadth first traversal of the D AG, the path
exiting from a DAG node is visited only when all the entering paths have been visited. This
way the common paths are visited only once and only the initial simplexes, where the common
path starts, are visited more than once. This leads to a worst time complexity of O(|I'2| log|I's])
without increasing the storage cost. We will described in details the path traversal algorithm,
based on our encoding defined for triangle and tetrahedral meshes, in Section 3.3.1.

2.1.5.1 Recursive construction of a Forman gradient

The algorithm proposed in [KKMO5] takes as input a scalar field f defined over the vertices of
a 3D simplicial complex X and a persistence value p > 0 (see Section 2). It computes a Forman
gradient V' by subdividing the simplexes of 3 into three lists, denoted as A, B and C such that:

e lists A and B have the same length,
e for each i-simplex 0; € A, V(0;) = 7;, where 7; is the (i + 1)-simplex in B,

e ('is the set of critical simplexes.

The algorithm builds the Forman gradient V' recursively on the lower link Lk~ (v) of each vertex
v in X (see Section 2.1.1). Lists A, B and (' are initialized as empty. For each vertex v in X, if
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Lk~ (v) is empty, then v is a minimum and it is added to C'. Otherwise, v is added to A and the
algorithm is recursively applied on the lower link L~ (v), producing lists A’, B, C". Such lists
define the Forman gradient V' on Lk~ (v). The recursive call is performed until all the lower
links are empty.

Then, the Forman gradient V' on v is defined as follows:

e the lowest critical vertex w is chosen from C’ and the edge v * w is added to B,
e for each i-simplex o (different from w) in C’, the (i + 1)-simplex v * o is added to C,

e for each i-simplex o in A’ the (i + 1)-simplex v * o is added to A and the (i + 2)-simplex
v V'(0) is added to B.

Once all the lower links of vertices in Y have been processed, a persistence canceling step is
performed in increasing order of dimension. For each critical i-simplex o, all the gradient paths
to critical (¢ — 1)-simplexes are found. A critical i-simplex o can be canceled with critical (i —1)-
simplex v if and only if there is only one gradient path from o to . The effect of a cancellation
is to reverse the gradient path connecting o and ~. A further description of i-cancellations is
presented in Section 2.2.

Cancellations are applied in the order of increasing persistence while the function that extends
the scalar field f to the simplexes of >, and whose values are considered in the definition of
persistence, is given by fmaz(c) = max f(p).

pEC

In Figure 2.7, an example of the Forman gradient extraction on the link of a vertex is illustrated.
The star of vertex 9 is shown in Figure 2.7(a). The application of the algorithm to the lower
link of vertex 9, illustrated in Figure 2.7(b), produces the Forman gradient V' composed by the
following lists :

A =3;4;6;7;8
B' =[3,2]; [4.1]; [6,5]; [7.,1]; [8.2]
" =1;2;[4,3];5;[7,6]; [8,5]

In Figure 2.7(c), the lists are updated after the cancellations performed on V’. Vertex 2 is deleted
with edge (3,4) while vertex 5 is deleted with edge (6,7). Then, V' is extended to V' obtaining
the following lists (showed in Figure 2.7(d)).
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Figure 2.7: (a) The lower star of vertex 9. The Forman gradient /' on the link of 9 before (b)
and after (c) the cancellation of critical edge (4,3) and vertex 2, and edge (7,6) and vertex 5. The
critical vertices are blue, critical edges are green and critical triangles are red. (d) The Forman
gradient V' in the lower star of vertex 9.

A =1:1395 [8.91; [5.91; [7.91; [9.4]
B =[1,9]; [3,9,2]; [9,8,2]; [5,9.6]; [9,7,1]; [9,4,1]
C =1[29];15.9]; [3,4,9]; [5,8,9]; [6,7,9]

In Figure 2.7(e), the cancellation is performed also on V' on the first pair of critical simplexes, the
edge (2,9) and the triangle (3,4,9). In Figure 2.7(f), the final gradient setting after all the possible
cancellations have been performed, is shown.

2.1.5.2 Forman gradient computation based on Forman function.

The algorithm proposed in [GBHP11] computes the Morse-Smale complex starting from a reg-
ular n-dimensional CW-complex I' with scalar field f defined at the vertices of I', that is a
n-dimensional cubical complex. Function f is extended to a Forman function [, defined on all
cells of I, such that F'(o) is slightly larger than F'(7) for each cell o and each face 7 of . For the
defined Forman function £/, all cells of I are critical. A discrete gradient vector field is computed
by assigning gradient arrows in a greedy manner in ordered sweeps over the cells of I' according
to increasing dimension and increasing F' value. Each current non-paired and non-critical cell
in the sweep is paired with its coface with only one facet not marked (as critical or as already
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Algorithm Worst-time Input Output

complexity
Magillo et al. [MDDF08] O(|%,]) triangle mesh Morse complexes
Gyulassy et al. [GNPHO7]  O(|Xo|log|X0|)  tetrahedral mesh ~ Morse-Smale complex
Takahashi et al. [TIST95] O(|Z0]) triangle mesh Morse complexes
Edelsbrunner et al. [EHNPO3] O(]3])? tetrahedral mesh ~ Quasi Morse complex
Meyer et al. [Mey94] O(|To|log|Ty|)  reqular square grid Morse complexes
Vincent et al. [VS91] O(|To|log|Ty|) reqular square grid Morse complexes
Mangan et al. [MW99] O(|To|log|Ty|)  reqular square grid Morse complexes
King et al. [KKMOS5] O(|Z0]) tetrahedral mesh Forman gradient
Gyulassy et al. [GBHP11] O(|Z0]) cubical complex Forman gradient
Robins et al. [RWS11] O(|Z0]) cubical complex Forman gradient
Shivashankar et al. [SMN12] O(]20]) regular square grid Forman gradient

Table 2.1: Algorithms for the extraction of ascending or descending Morse complexes, Morse-
Smale complexes or Quasi Morse-Smale complexes. For each algorithm, as it is in its original
definition, the worst-time complexity is indicated as well as the expected input and the output
generated.

paired). If there are several of such cofaces the lowest is taken. If there is no such coface, a cell
cannot be paired, and it is critical. This pairing defines a discrete gradient vector field.

The 1-skeleton of the Morse-Smale complex is computed starting from this gradient vector field.
Critical cells of F' (and not critical points of f) and the discrete gradient paths connecting them
determine the nodes and arcs in the 1-skeleton of the Morse-Smale complex (incidence graph).
In [GP12], this algorithm has been extended to extract also 2- and 3-cells of the Morse-Smale
complex when the input is a hexahedral mesh.

The order in which the cells in I' are processed by the algorithm is not completely deterministic,
since there could be many different i-cells in I' with the same value of function £'. As a conse-
quence, some unnecessary critical cells may be produced by the algorithm.

In Table 2.1 we show a summary of the algorithms described in detail within this section indi-
cating the input format, the cells of the Morse or Morse-Smale complex computed as output and
the worst-time complexity. We denote with X. the collection of the vertices of the n-dimensional
simplicial mesh 3., and with X, the collection of n-cells of .

2.2 Simplification of Morse complexes

One of the major issues that arises when extracting Morse and Morse-Smale complexes from
a discrete scalar field is the over-segmentation due to the presence of noise. To deal with this
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problem, simplification algorithms have been developed in order to remove less significant fea-
tures from Morse-Smale complexes. All of them are based on simplification operator defined in
the Morse theory called i-cancellation [Mat02]. A cancellation removes a pair of critical points
of the function f (see Section 1.2.1) smoothing the function in the neighborhood of the critical
point.

1-cancellation in 2D consists of collapsing a maximum and a saddle pair into a maximum
(maximum-saddle cancellation), or a minimum and a saddle into a minimum (minimum-saddle
cancellation). In 3D, it consists of collapsing a maximum-2-saddle pair into a maximum, a
minimum-1-saddle pair into a minimum, or collapsing a 1-saddle and a 2-saddle into a 1-saddle
(or 2-saddle). Updates resulting from an ¢-cancellation are usually described in terms of updates
on Morse-Smale complex.

In 2D, the saddle-extremum cancellation, called saddle-minimum (0-cancellation) or saddle-
maximum (1-cancellation ), removes two critical points from the Morse-Smale complex merg-
ing the 2-cells and 1-cells around the critical points pair to reconnect the complex. In 3D, a
saddle-extremum cancellation is analogue to the 2D case. A saddle-saddle cancellation removes
a saddle pair (1-saddle-2-saddle) merging the 2-cells and 1-cells in the neighborhood the critical
point pair. In Section 4.3.2, we will described the updates resulting from this operators in terms of
modifications on the Incidence-Graph (/) [Ede87]: this is actually the best way to see how the
cells of the Morse-Smale complex reconnect after a saddle-saddle cancellation. In [GNOS5], it has
been shown that the Morse-Smale complex gains cells after a saddle-saddle cancellation because
re-routing the descending cells creates new intersections with the ascending cells. To overcome
this problem, in [CF11] a minimally complete set of operators for simplifying n-dimensional
Morse complexes has been presented. We will describe such operators in Section 4.

The pairs of critical points removed in a cancellation are usually computed through a filtration of
the cell complex I discretizing the domain of function f, following the persistence algorithm de-
scribed in [ELZ02]. The persistence of a critical pairs is defined in 2D as the absolute difference
between the function values of the two critical points and indicates the importance of a critical
point. The definition of persistence pair relates to persistence homology [Ede87]. A critical point
is called positive, if it creates a component in the filtration of I', or negative, if it destroys a com-
ponent in I'. Critical pairs are defined as the pairs of negative saddles with preceding positive
minima and of negative maxima with preceding positive saddles. Persistence can be seen as the
difference in the birth times of the two critical points.

However, the unique persistence pairing defined in [ELZ02] is too restrictive to support a flexible
simplification of a scalar field. In [BPH09] the notion of variance is introduce relaxing the unique
pairing of persistence. Variance is defined, for each pairs of adjacent critical points p and ¢ in a
scalar field, as v = |f(p) — f(q)|- We will compute the importance of a pair of critical point in
the same way extending the idea in dimensions higher than two.
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Topological persistence has been demonstrated as a powerful importance measure and has been
used in many applications including scalar field simplification and shape matching. However,
such measure lacks of information related to the geometry on which the function is defined.
In [DSNW13] the notion of topological saliency is introduced with the scope of reflecting the
importance of a feature related to other features in its neighborhood. Intuitively, the topological
saliency of a feature, normalizes the persistence of features present in its neighborhood. Let p(*)
be the persistence of the topological feature created at minimum ¢; € @ = {¢, - ,q} and
let d,(x,c;) < r the geodesic distance between two points p, g € M. Consider a neighborhood
N, (i) + {z € M|d,(z,q) < r} which is the geodesic ball of radius r centered at g;. The
topological saliency T, (i) of the feature created at g; is:
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where w} is a weighting function for the feature 5 with respect to <. The topological saliency for

a maximum is defined in symmetrical manner while has not be extended yet to critical points of

other indices.

We can classify existing simplification algorithms for Morse or Morse-Smale complexes as
topology-based or geometry-based. Topological simplification algorithms developed for 2D
scalar fields eliminate less significant features from a Morse-Smale complex removing pairs
of critical points through cancellations with increasing persistence values [EHZ01, BHEPO4,
DDFVMO07, TP12]. In [EHZ01, BHEP04] the cancellations of a critical pair (p, ¢) in a Morse-
Smale complex is treated as a contraction of the extremum p and saddle ¢ into the other ex-
tremum p’ connected with ¢ of the same type of p. After the cancellation the 1-cells in the
neighborhood of the p and ¢ are modified accordingly to updates required by cancellation oper-
ator (see 1.2.1). In [BHEPO4] it is required also that f(q) > f(p') before the cancellation. This
guarantees that all the paths recomputed after the cancellation remain monotonic and ensures
that no level sets are eliminated except the ones between f(p) and f(g). In [DDFVMO07], stan-
dard minimum-saddle-minimum and maximum-saddle-maximum operators have been extended
to deal with macro-saddles and multiple-saddles naturally present in a Triangulated Irregular
Network (17’1 N) discretizing a terrain.

In the 3D case, the simplification problem has been studied both for Morse-Smale [GNOS5] and
Morse complexes [CF11]. The main problem in the 3D case is the non-trivial extension of the 2D
operators. While for the (maximum, 2-saddle) and (minimum, 1-saddle), the extension from the
2D case is straightforward, the (1-saddle, 2-saddle) simplification, according to the cancellation
operator, could force the introduction of some new cells in the complex in order to guarantee the
combinatorial correctness in the neighborhood of the two saddles involved.

In [GNP'06], a new data structure is defined encoding both the topological relations between
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the cells of the M S complex I';;¢ and the geometrical features of the descending and ascending
Morse complexes corresponding to the vertices of I'y;s. The geometrical primitives of the Morse
complexes are stored in the leaves of a Directed Acyclic Graph (DAG). Each feature of the
Morse complexes correspond to a node in the DAG and such node references the leaves encoding
the geometrical primitives composing it. During the simplification algorithm the topological
relations among the vertices of the MS complex are updated and the D AG is modified as well.
Nodes can be deleted from the DAG when a feature is removed from the Morse complexes,
or new DAG nodes are created to represent the merging of two features. Moreover, it has
been shown that during a saddle-saddle cancellation no features are removed since the surface
geometry become part of many ascending/descending 2-cells. Thus, the MS complex actually
increases since new intersections are created during such cancellation. However, it is shown
that the new cells introduced by a saddle-saddle cancellation could be removed by subsequent
extrema-saddle cancellation.

In [GRSW13], the i-cancellation operator is applied on two different representations of a Morse-
Smale complex, the so called explicit representation, corresponding to the 1-skeleton of the MS-
complex, and the implicit representation, corresponding to the Forman gradient V', as described
by Forman [For98]. Simplifying the explicit representation corresponds to apply ¢-cancellations
on pair of critical points updating the 1-skeleton of the Morse-Smale complex in the neighbor-
hood of the critical points removed [EHZO1]. Simplifying the implicit representations, corre-
sponds to reverse the gradient path between two critical simplexes corresponding to the pair of
critical points removed (see Section 7.1.2 for details). In 2D, an ¢-cancellation performed on both
representations leads to equivalent results. In higher dimensions, this is no longer guaranteed and
the same simplification applied on the two representations can lead to different geometric em-
bedding of the separatrices and, consequently, to a different order of simplifications in the sim-
plification algorithm [GRSW13]. Differences occurs only when a single separatrix can merge
and split and, hence, in the 3D case this occurs at saddle-saddle simplifications only. During an
I-cancellation, of 1-saddle p and 2-saddle ¢, ¢ can be connected to an arbitrary number of 1-
saddles different from p. In the explicit representation each connection between saddle points is
independently treated from the topological and geometric points of view; thus the 1-cancellation
requires only the removal of the critical point pair and the update of the connection in the neigh-
borhood. In the implicit representation, changing the direction of a V'-path connecting p and ¢,
can lead to a change in the connectivity of the critical points remaining if a subset of the V'-path is
shared by multiple separatrices. However, having an initial Forman gradient with no overlapping
separation lines, both representations would yield to the same result.

In [MB09] and [CFI13c], the simplification of cell complexes in arbitrary dimension is con-
sidered to compute the homology of the complex by reducing it to a smaller complex having
the same homology. The simplification operators described in [MB09], called reduction and
co-reduction, are special cases of the KiC'(i + 1)C and KiC(i — 1)C homology-preserving
operators, described in Section 6.2, defined for cell complexes in arbitrary dimensions. A
KiC(i+ 1)C(q,p,p’) removes an i-cell ¢ and an (i + 1)-cell p from a cell complex I". Recall
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that b(p)/cb(p) denotes the immediate boundary/co-boundary of p, the cells in the neighborhood
of p and ¢ are modified as follows:

- all the cells ; € b(p) are moved to the immediate boundary of p’;

- all the cells s € ¢b(p) get p’ in their immediate boundary.

KiC(i — 1)C operator has a similar behavior:

- (n —1i)-cell g and (n — i 4 1)-cell p are removed from I" ;
- all the cells r € b(p) are moved to the immediate boundary of p;

- all the cells s € cb(p) get p’ in their immediate boundary.

A reduction corresponds to a KiC'(i + 1)C(q, p,p’) where the i-cell is incident into a single
(i 4 1)-cell and dually, a co-reduction corresponds to a KiC'(i — 1)C(q, p, p’) where the i — cell
is incident in a (7 — 1)-cell only. Aside to the homology-preserving operators, a set of homology-
modifying operators have been defined, called KiCiCycle(Kill i-Cell and i-Cycle) which kill
an ¢-cell and an i-cycle in I'. The set of homology-preserving and homology-modifying oper-
ators forms a minimal set of Euler operators on cell complexes in arbitrary dimensions, which
subsume all the other Euler operators proposed in the literature (see Section 6.2). The set of
homology-preserving operators can be seen in terms of updates on the ascending/descending
Morse complexes. Operators KiC(i + 1)C(q,p,p’) and KiC(i — 1)C(q, p, p’) are equivalent to
the removal; ;41(q, p, p’) and removal; ;_1(q, p, p’) operators presented in [CF11] and they form
a basis of the set of topological operators for modifying Morse complexes in arbitrary dimensions
(see Section 4 for details on the effect of the operators).

In [TP12], a new approach is proposed for the topological simplification of 2D scalar fields.
The simplification algorithm does no longer rely on persistent homology but it is based on the
enumeration of the interesting, non-removable, critical points. Using such algorithm all the re-
movable critical points are eliminated from the field, thus enabling the development of a more
general simplification algorithm.

There have been some proposals in the literature to modify not only the Morse and Morse-
Smale complexes using cancellations, but to modify also the scalar function f thus constructing
a function g that corresponds to the simplified field. The first work in 2D, presented in [BHEP04]
and improved in [WGS10], modifies function f numerically, using Laplacian smoothing.

In [BHEPO4], after each cancellation function f is locally modified in order to agree with the
new topology, by minimizing the error and obtaining a smooth approximation. The error is mea-
sured as the difference between function values at a point while the persistence p of the critical
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points involved implies a lower bound on the error. Any monotonic approximation of the curve
between the two points has an error of at least p/2. Thus, the goal is to find monotonic patches
that minimize the error. The technique used in [BHEP04] provides a smooth C*-continuous ap-
proximation within an error bound along the boundaries of the quadrangular patches of the MS
complex and a similar approximation, not observing error bounds, in the interior.

The steps of the geometry fitting process after each i-cancellation(p, q) are:

(i) all paths affected by the i-cancellation are found;
(i1) critical points are removed by gradient smoothing;
(iii) old regions are smoothed until they are monotonic;
(iv) new paths are recomputed using new geometry;
(v) one-dimensional gradient smoothing forces new paths to comply with constraints;
(vi) new regions are smoothed until all points are regular.

As described in [BHEPO4] the paths built in step (iv) are not guaranteed to satisfy the error
bounds. For this reason in step (v) gradient smoothing is used repeatedly.

In [WGS10], the bottleneck of the smoothing step performed after each cancellation in [BHEP04]
is solved constructing a topologically valid function after all cancellation steps. The two C°
methods give comparable results but the one in [WGS10] is faster. Moreover in [WGS10] a
novel schema is devised to C'-continuity.

The smoothing algorithm provided in [WGS10] consist of three steps:
(1) all the critical points whose persistence is lower then a given threshold are removed via
i-cancellation;

(i1) a quick preview reconstruction of the smoothed scalar field by computing a harmonic func-
tion in the interior of each cell of the MS complex. Only C°-continuity is guaranteed by
the harmonic function;

(iii) a C'-continuity is computed by constrained bi-Laplacian smoothing of the input scalar
field where constraints force the scalar field to be monotonic within each Morse cell.

Step 741 is converted to an unconstrained numerical optimization problem and solved numerically.
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2.3 Hierarchical models for Morse complexes

One of the most relevant problems dealing with scalar fields is the huge size of the data set and
their complexity. To represent and handle such data a hierarchical model or a multi-resolution
model becomes crucial. First investigations for a hierarchical representation have been done in
image analysis to reduce over-segmentation, naturally present using watershed transformation as
a segmentation tool [Beu94].

The hierarchical watershed approach described in [Beu94] is based on the simplification process
performed on a new image, called mosaic image, obtained from the original image (scalar field
Mr = (T, f) where T is a regular square grid and f associates a function value to each pixel
of I'). Starting from the original image M and the catchment basins C'B; computed on Mp
(see Section 1.5) a new function f’ is defined on the pixels of I" by extending the value of f(p)
(where p is the seed of the catchment basin C'B)) to the entire C'B,,. Note that the watershed of
this new image M| = (', f’) is equal to the watershed of the initial image. Then, the hierarchy
and suppression of the over-segmentation is obtained by merging adjacent catchment basins. A
graph structure G = (N, A) is defined on the mosaic image. For each 1-cell o;; of the watershed
lines (1-cell dividing two catchment basins C'B; and C'B;) a node in the graph is instantiated with
value h(o;;) = |f(i)— f(4)]. Then, for o;; an arc is introduced in the graph for each 1-cell bound-
ing the same catchment basins of o;;. The watershed transformation is performed on G, flooding
starts from the arcs with minimum evaluation and propagates towards the other arcs. Finally, the
watershed arcs are made of those arcs which surround the homogeneous regions. This produces
the desired result. This hierarchy works specifically for images since is based on the observation
that over-segmentation is produced by low contrast variations inside the image. For this reason
the criterion used inside the hierarchy is not a threshold but simply the fact that the values of
function values of h are lower in the over-segmented part of M and higher in the real bound-
aries. The watershed transformations applied on h can be seen as a series of minimum-saddle
cancellations applied on the ascending Morse complex ', computed on f. The same idea can be
applied to the descending Morse complex I'; applying the hierarchy to the opposite function — f.
Such hierarchical structure can be generalized to higher dimensions since the simplification per-
formed correspond to general minimum-1-saddle cancellations (or dual maximum-(n-1)-saddle
cancellations). We will see that such operators are dimension independent (see Section 4).

Most common hierarchical models for Morse complexes have been applied to terrain modeling;
Generally they can be applied to 2-manifolds embedded in 3D space endowed with a scalar
field. Hierarchical models can be classified in two sets on the basis of the information in the
hierarchy are fopological or geometric. In [EHZO1] a hierarchy for the topology of terrains,
is defined. The hierarchy is created by applying cancellations on the 1-skeleton of a Morse-
Smale complex and is encoded as the MS complex at the coarsest resolution plus the sequence
of anticancellation inverse to the cancellation used in the construction phase. These models are
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also called progressive models since all the MS complexes generated in the simplification phase
can be obtained from the coarsest MS complex by applying the anticancellations in sequence. In
[BHEPO4, BPHO9] a hierarchy of anti-cancellations is constructed. The hierarchy is built from a
sequence of simplifications as defined in [EHZO01]. Then a relation between the simplifications is
defined. Two cancellation are called independent, if they do not modify the same neighborhood
of the MS complex, otherwise they are dependent. A dependency graph is derived from these
relations. More precisely, the dependency relation between refinements is defined in terms of
a diamond. The diamond associated with a anti-1-cancellation(q, p) is a quadrangle z1, p, 2o, P/,
where z; and z» are the two (not necessarily distinct) minima connected to 1-saddle ¢ and p' is
the other maxima connected to ¢ different from p. Dually, in the diamond associated with an
anti-i-cancellation(q, p, z; and z, are the two maxima connected to ¢ and p’ is the other minima
connected to ¢ different from p. Two refinements are dependent if the associated diamonds
have at least one vertex in common. In [BPHO9], the dependency relation has been modified.
Two refinements are dependent if if they share an edge. The dependency relation in [BPHO09]
is clearly less restrictive than the one in [BHEPO4] (we will compare this approaches with our
multi-resolution model in Section 5).

A first attempt to couple the inspection of both the topology and the geometry of a terrain has
been studied in [DDFMV 10]. The multi-resolution model, called Multi-resolution Morse trian-
gulation (M MT) is based on the topological model discussed in [DDFVMO07] and encodes an
MS complex for a terrain My, = (X, f) defined on a triangle mesh . The model is constructed
from a sequence of simplifications which can be of three types:

1. simplifications affecting the interior of the ascending/descending 2-cells only;
2. simplifications affecting the interior of the ascending/descending 1-cells only;

3. simplifications affecting the ascending/descending O-cells.

Simplifications applied on the triangulation are half-edge collapse. An half-edge collapse, de-
noted (v;,v;) — vj;, collapses two vertices v; and v; connected by an edge, into v;. Triangles
incident in the edge (v;,v;) are removed and triangles incident only in v; become incident in
v;. The simplification of type 1 performs an half-edge collapse inside a Morse 2-cell (thus not
on the 1-skeleton of the MS complex) modifying only the triangular mesh . Simplifications
of type 2 are similar since they do not change the topological structure of the 1-skeleton of the
MS complex but they modify the set of edges forming it. Simplifications of type 3 collapse a
critical point from the 1-skeleton of the MS complex and this trigger a simplification operation
on the combinatorial representation of the 1-skeleton of the MS complex. An i-cancellation is
applied, collapsing a minimum and a saddle into an adjacent minimum or a maximum and a sad-
dle into an adjacent maximum. From the set of performed simplifications three hierarchies are
constructed. Each hierarchy encodes all the inverse of the simplifications (refinements) of a cer-
tain type (1, 2 or 3) connected by a dependency relation based on the vertices of Y. The hierarchy
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encoding the representations of X is interlinked with the hierarchy encoding the representations
of the 1-skeleton of the MS complex. The latter is connected to the hierarchy representing the
combinatorial structure of the 1-skeleton. The links go from refinements on the combinatorial
structure to refinement on the geometry of the 1-skeleton to refinement on the triangle mesh.
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Chapter 3

Computing and Representing Morse
Complexes

As described in Section 2.1, several algorithms have been proposed in the literature to extract
morphological information from a scalar field. A relevant issue in the application domains, such
as terrain modeling, volume and data analysis and visualization, is representing such morpholog-
ical information in an efficient and compact way. In this chapter we describe our contributions
on representing and computing Morse and Morse-Smale complexes.

We start presenting an efficient representation for the Morse complexes. In [CF110] we have
proposed a compact dimension-independent graph-based representation, called Morse Incidence
Graph M IG, for both the ascending and descending Morse complexes. By exploiting the duality
between the ascending and descending Morse complexes, I', and I'y, the MIG represents the
incidence relations between the cells of I', and I';, as well as the 1-skeleton of the Morse-Smale
complex. We will describe such representation in Section 3.1.

Since we are interested in computing Morse and Morse-Smale complexes on triangular and tetra-
hedral meshes, we focus our attention on representations for simplicial complexes well-suited
for computing and encoding Morse complexes. We start observing the relationships between
a simplicial mesh > and the Morse complexes and we express (in Section 3.2) the primal/dual
relationship between the descending and ascending Morse complexes in terms of the supplied
simplicial mesh >, and its dual mesh >.;. The two complexes, > and >4, are dual to each other
and the cells of the descending complex can be expressed in terms of the simplices of the primal
tetrahedral mesh >, while the ones of the ascending complex in terms of the cells of the dual
mesh of X.. Furthermore, we express the combinatorial structure of the MS complex as collec-
tion of cells in the mesh obtained by the intersection of > and 3J;, which we refer to as the dually
subdivided mesh Yg. This leads to a compact encoding of these complexes in terms of only the
vertices and tetrahedra of the primal mesh. In this way, we can efficiently express morphological
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structures of the scalar field, such as the regions of influence of critical points (i.e. the maxima,
minima, and saddles), the arcs of the extrema graphs and the 1-skeleton of the Morse-Smale
complex [WIFF13].

Then, inspired by the discrete Morse theory, we define a new encoding for a Forman gradient
defined over irregular simplicial meshes [WIFF13]. In such representation, described in Section
3.3, information are attached only to the triangles and tetrahedra and has been used as a com-
pact representation for the Forman gradient of a discrete Morse function defined over a mesh
(see Section 1.4 for details on the discrete Morse theory). The compact encoding and the pri-
mal/dual relationship between the Morse complexes defined on a simplicial mesh are suitable to
be combined with any topological data structure encoding just the vertices and top-simplexes of
the mesh.

Another relevant contribution is an efficient extension of the algorithm presented in [RWS11]
for computing a Forman gradient on cubical complexes, to simplicial meshes with irregular con-
nectivity. We describe our algorithm in Section 3.4, discussing its time and space complexity.
In our work we have also extended to simplicial meshes the watershed by simulated immersion
algorithm presented in [VS91]. We have implemented such algorithm for computing Morse com-
plexes on triangle and tetrahedral meshes. Results obtained from the Forman based algorithm
has been compared with the results obtained with watershed by simulated immersion algorithm
[VS91] (see Section 2.1.4.1). A full comparison on these two approaches is done, as a means of
obtaining Morse decompositions of tessellated manifolds endowed with scalar fields, in Section
3.5.

3.1 The Morse Incidence Graph (M IG)

The incidence-based representation presented in [CFI10] is a dual representation for the ascend-
ing and descending Morse complexes, I', and Iy, extracted from a scalar field Ml = (M, f) . We
call this graph Morse incidence graph (M 1G).

The MIG is a dimension-independent representation for Morse and Morse-Smale complexes. A
MIG only encodes the top cells of the Morse complexes. Thus a MIG is defined in the continuous
as well as the discrete case and it is independent of the combinatorial manifold used to describe
M. In the following we will describe the M I G representation based on the most general class
of discrete manifolds, the regular CW-complex I'.

Recall that there is a one-to-one correspondence between i-saddles p with i-cells p in the de-
scending Morse complex I'y, and dual (n — i)-cells p in the ascending Morse complexes I',
0 <4 < n. This duality is exploited to define a representation which encodes both the ascending
and the descending complexes at the same time, as an incidence graph [Ede87]. The incidence
graph encodes the cells of a complex as nodes, and a subset of the boundary and co-boundary
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(a) (b) ()

Figure 3.1: (b) M IG representing the incidence relations between the cells of the descending (a)
and ascending (c) Morse complexes.

relations between cells as arcs.

The Morse Incidence Graph (M I G) associated with an n-dimensional descending and ascending
Morse complex I'; and I, is a graph G = (N, A, ¢), in which:

e the set of nodes /V is partitioned into n + 1 subsets Ny, Ny,...,N,,, such that there is a one-
to-one correspondence between nodes in /V; (which we will call i-nodes) and the i-cells of
'y (and thus the (n — i)-cells of '),

e there is an arc joining an i-node p with an (i + 1)-node ¢ if and only if i-cell p is on the
boundary of (i + 1)-cell ¢ in 'y (¢ is on the boundary of p in I',),

e cach arc connecting an i-node p to an (¢ + 1)-node g is labeled by the number of times
i-cell p (corresponding to i-node p in I'y) is incident to (i + 1)-cell ¢ (corresponding to
(14 1)-node g in I',). The label, denoted ¢ ((p, ¢)), is also called the multiplicity of the arc
(p,q)-

The M I is also called combinatorial representation of the 1-skeleton of the Morse-Smale com-
plex. Figure 3.1 shows the M IG representing the incidence relations between an ascending (a)
and descending (c) Morse complexes. Each node in the graph (b) corresponds to a critical point
in (a) and (c) and for each arc connecting two nodes in (b) the two cells corresponding to such
nodes are incident to each other in (a) and (c).

3.1.1 Encoding the Morse incidence graph

The data structure designed for encoding a M IG couples the graph, representing the incidence
relations between the cells of the Morse complexes, with a representation of the cell complex

67



I discretizing the domain of the Morse function f. It associates with each node representing
a minimum, the list of cells in I' forming its ascending Morse cell I', and with each node rep-
resenting the maximum, the list of cells in I' forming its descending Morse cell I';. Note that
an ascending/descending Morse cell can be represented as a collection of top cells as well as a
collection of O-cells.

In the M IG encoding, the incidence graph G = (N, A, ¢) is encoded as three arrays of nodes
(one for minima, one for maxima and one for k-saddles) plus an array of arcs. Each element of
the array of the nodes corresponding to minima encodes a minimum p and contains:

e O-cellp €T,

e the list of the O-cells or top cells in the underlying complex I' forming the corresponding
ascending Morse cell,

e alist of the arcs in G incident in p.
Dually, each element of the array of the nodes corresponding to maxima encodes a maximum p
and contains:

e Ocellpel,

o the list of the O-cells or top cells in the underlying complex I' forming the corresponding
descending Morse cell,

e alist of the arcs in (G incident in p.
Each element of the array of the saddles contains the lists of all saddles with the same index i
and, for each saddle ¢,

e the index of O-cell ¢ € T,

e the lists of arcs joining ¢ to nodes of index ¢ + 1,

e the lists of arcs joining ¢ to nodes of index ¢ — 1.
Arcs are explicitly encoded in an array of lists. The ¢-th element of the array contains a list of
arcs connecting nodes corresponding to i-saddles to nodes corresponding to (i+1)-saddles. Each

element of any of such lists corresponds to an arc a and contains the indexes of the two nodes
in which a is incident plus an integer indicating the multiplicity of the arc. The resulting data
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Figure 3.2: The primal/dual relationships in a triangle mesh. Each dual cell i; (gray) is an
i-polytope contained within the star (blue) of its corresponding primal k-simplex £, (green),
where i + k = 2

structure is completely independent by the dimension of M and by the discrete representation of
I'. All the information stored in the incidence graph regarding the incidence relations between
the Morse cells are referred as topological MIG while all the geometrical information regarding
the cells of the Morse complexes are also called geometrical MIG.

3.2 Primal/dual representation for discrete Morse complexes
on simplicial meshes

As described in the previous section, representations for a Morse complex can be defined inde-
pendently from the manifold used to discretize the domain of the Morse function f. However, in
application domains a specific representation has to be chosen in order to optimize both the com-
putation and the analysis of such complexes. Simplicial meshes are widely used representations
for discretize a continuos domain. Experimental data are often characterized by a cloud of points,
regularly or irregularly distributed on the domain, with a single value associated to each point.
A simplicial mesh is built on such cloud of points to induce a topology on such set. Computing
the Morse and Morse-Smale complexes on a simplicial mesh Y, using discrete Morse theory (see
Section 1.4), means to group the k-simplexes, with 0 < k£ < n, forming all the ascending and
descending Morse cells or the cells of the Morse-Smale complex. In this section, we present an
interpretation of the Morse and Morse-Smale (MS) complexes in terms of the provided simplicial
mesh and its dual mesh.

We denote the primal simplicial mesh as >. The dual mesh of Y, which we denote as >, is a
polyhedral mesh in which the O-cells (vertices) correspond to the n-simplexes of X2, the 1-cells
(edges) correspond to the (n — 1) simplexes of 3 and so on. In the following, we will call primal

69



(@) (b) ()

Figure 3.3: The primal/dual relationships in a tetrahedral mesh. Each dual cell ¢4 (gray) is an
t-polytope contained within the star (blue) of its corresponding primal k-simplex &, (green),
where i + k =3

the simplices of > and dual the cells of Y. The O-cells of > can be geometrically placed at
the centroid of the corresponding d-simplex.

Let us consider first the 2D case (see Figure 3.2). Each primal triangle corresponds to a dual
vertex (Figure 3.2(a)). Primal edges, on the boundary of two primal triangles, correspond to
dual edges having two dual vertices in their boundary (see Figure 3.2(b)) and, similarly, primal
vertices correspond to dual 2-cells (see Figure 3.2(c)).

In the 3D case (see Figure 3.3) each primal tetrahedron corresponds to a dual vertex (see Figure
3.3(a)). Primal triangles, on the boundary of two primal tetrahedra, correspond to dual edges
having two dual vertices in their boundary (see Figure 3.3(b)). Primal edges instead correspond
to dual 2-cells and primal vertices correspond to dual 3-cells (see Figures 3.3(c) and 3.3(d)).

As described in Section 1.4, in a triangle mesh Y, maxima correspond to triangles, minima
correspond to vertices, and, saddles to edges. In the Morse complexes defined on X a descending
2-manifold corresponds to a maximum, and thus to a collection of primal triangles. An ascending
2-manifold corresponds to a minimum, and thus to a collection of dual 2-cells, each of which is
a primal vertex. A descending I-manifold corresponds to a saddle, and thus to a sequence of
primal edges. An ascending 1-manifold corresponds to a saddle as well, and thus to a sequence
of dual edges, each of which corresponds to a primal edge. Therefore, the descending Morse
complex consists of elements from the primal mesh, while the ascending Morse complex consists
of elements from the dual mesh.

Let us consider now the 3D case:

e A descending 3-cell corresponds to a maximum, and thus to a collection of (primal) tetra-
hedra. Dually, an ascending 3-cell corresponds to a minimum, and thus to a collection of
dual 3-cells (i.e., primal vertices).

e A descending 2-cell corresponds to a 2-saddle, and thus to a collection of primal trian-
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gles, each of which can be expressed as a pair of primal tetrahedra. An ascending 2-cell
corresponds to a 1-saddle, and thus to a collection of dual 2-cells, each of which can be
expressed as a pair of dual 3-cells, corresponding to a primal edge.

e A descending 1-cell corresponds to a 1-saddle and thus to a sequence of primal edges,
or, equivalently, as a sequence of primal vertices. An ascending 1-cell corresponds to a
2-saddle and thus to a sequence of dual edges, which can be seen as a pair of dual vertices
(i.e., as a sequence of primal tetrahedra).

We can observe that, since the primal edges can be expressed as pair of vertices and the primal
faces can be expressed as pair of top simplexes, all the Morse cells can be expressed in terms of
vertices and top simplexes.

Figure 3.10 illustrates the above observations for a discrete Morse function defined on a triangle
mesh, where the descending 2-manifolds (see Figure 3.10(c)) are collections of triangles from
Y’ associated with the maxima (red critical points), while the ascending 2-manifolds (see Figure
3.10(e)) are collections of dual 2-cells (corresponding to vertices from YJ) associated with the
minima (blue critical dots). Similarly, the descending (see Figure 3.10(d)) and ascending 1-
manifolds (see Figure 3.10(e)) correspond to collections of primal and dual edges, respectively,
associated with the saddles (green critical points).

Using the above correspondences, we observe that the k-saddles of the Morse function corre-
spond to k-simplices in the primal mesh X and to (n — k)-cells in the dual mesh X;. Equivalently
a descending k-cell corresponds to a k-saddle, thus it correspond to a collection of primal k-
simplices and thus to a collection of dual (n — k)-cells. Dually, an ascending k-cell corresponds
to a (n — k)-saddle, and thus to a collection of dual k-cells, and thus to collection of primal
(n — k)-simplices.

Note that all the descending and ascending manifolds are expressed entirely in terms of top
simplexes and vertices. This is a relevant issue from an implementation point of view, since
there is no need to encode the primal k-simplexes (with 0 < k < n), and of course no need for
encoding the dual mesh. In particular, each manifold of the Morse complex can be described in
terms of collections of cells of uniform dimension from the primal or dual mesh, each of which
can be expressed using at most [(n + 1)/2] vertices or n-simplices.

3.2.1 Representing the cells of the MS complex

We define the dually subdivided mesh, denoted as Xg, as the mesh obtained by the intersection
of the primal mesh > and its dual >, (see Figure 3.10(a) for a 2D example).

Each top cell of Xg, called top micro-cell, is the intersection of a top simplex o and of a dual
top cell o4 (corresponding to a vertex). A n-micro-cell can be complete described by a pair of
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Figure 3.4: Two dimensional example of our scheme for simplicial meshes. (a) We overlap the
triangle mesh Y (solid lines) with the dual mesh >; (dashed lines). (b) Encoding the Discrete
Morse gradient field entirely with the triangles enables the use of compact topological data struc-
tures for morphological extraction. We associate the descending Morse complexes with the cells
of X (c-d) and the ascending Morse complexes with the cells of >, (e-f). Finally, we associate
the Morse-Smale complex with the dually subdivided tetrahedral mesh X g (g) whose hexahedral
cells are defined by a tetrahedron and one of its vertices. All relations are encoded strictly in
terms of the vertices and tetrahedra of X..
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Figure 3.5: A dually-subdivided triangle (a) is decomposed into three quads. Similarly a tetra-
hedron o (b) is decomposed into four hexahedra (c), each defined by a vertex of o (black) and
interior points from each incident face within o.

indices < n-simplex,vertex>, both within the primal mesh.

For the 2D case, the 2-micro-cells are quadrilateral cells (quads) that we call micro-quads whose
boundary consists of four micro edges. Micro-quads are defined by a triangle ¢ and a 2-cell in
the dual mesh X, (which is a vertex v in the primal mesh). Then they are encoded as a pair (o, v).
Each triangle is decomposed into three micro-quads. (see Figure 3.5(a))

In 3D, the intersection of a tetrahedron ¢ with the dual 3-cell o, defines a hexahedron, which
we refer to as a micro-hex, whose boundary consists of six quadrilateral micro-quads and twelve
micro-edges. Each tetrahedron is decomposed into four hexahedra (see Figure 3.5(b-c)). Thus,
a tetrahedron 7 in X is decomposed into four hexahedra in > g, each corresponding to a vertex
of 7 (see Figure 3.5(b)). Similarly, a triangle ¢ in primal mesh ¥ is decomposed into three
micro-quads in >Jg, namely those micro-quads corresponding to the three vertices of o in the two
tetrahedra of X sharing 0. An edge e in X is the union of two micro-edges in > g belonging to
the micro-hexes forming the tetrahedra incident in e and corresponding to its endpoints.

A micro-hex, being the intersection of a tetrahedron o and a 3-cell in the dual mesh (a vertex v
in the primal mesh), is encoded as a pair (o, v). A micro-quad 7y in 3¢ separates two hexahedral
cells, which can either share a tetrahedron 7 or a vertex v, depending on whether they are part
of the same primal tetrahedron or the same dual 3-cell (corresponding to v). This leads to an
encoding for ~ either as a triple (7, vy, v2), where v; and v, are the vertices of 7 defining the two
hexahedral cells (which are pairs (7, v;) and (7, v)), or as a triple (71, 72, v), where 7 and 7, are
the two tetrahedra defining the two hexahedral cells (which are pairs (71, v) and (72, v)).

If the cells of the Morse complexes consist of elements from the simplicial mesh > and from
the dual mesh %, the (macro) cells of the MS complex consist of elements from the dually
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subdivided mesh >g.

In the 2D case:

- a Morse-Smale 2-cell is a collection of micro-quads (see Figure 3.10(g)),

- a Morse-Smale 1-cell is a collection of micro-edges on the boundary of two micro-quads
(see Figure 3.10(g)).

Figure 3.10(g) illustrates the Morse-Smale complex associated with the discrete Morse gradient
field of Figure 3.10(b). Note that each micro-quad is defined by the intersection of a triangle
(a primal 2-cell) and a dual 2-cell associated with one of its boundary vertices, and that each
(macro) 2-cell of the MS complex is defined by a maximum (red critical point), a minimum
(blue critical point) and two saddles (green critical points).

In the 3D case:

- a Morse-Smale 3-cell is a collection of micro-hexes,
- a Morse-Smale 2-cell is a collection of micro-quads on the boundary of two micro-hexes,

- a Morse-Smale 1-cell is a collection of micro-edges on the boundary of multiple micro-
edges.

The 1-cells of the MS complex in 3D are all sequences of micro-edges:

- Minimum—1-saddle connector: Each micro-edge in the sequence connects a primal vertex
and edge. Thus, the connector is formed by primal edges, and can be encoded as a sequence
of primal vertices, where the last two vertices define the critical edge. In Figure 3.5 the
black edges connect primal vertices (black dots) to primal edges (blue dots).

- Maximum—2-saddle connector: Each micro-edge in the sequence connects a primal tetra-
hedron and face (i.e. a dual vertex and edge). Thus, the connector is formed by a sequence
of dual vertices and is encoded as a sequence of primal tetrahedra. In Figure 3.5, the green
edges connect primal tetrahedra (red dot) to primal faces (green dots).

- Saddle—connector: Each micro-edge in the sequence connects a primal triangle and edge
(or, dually, a dual edge and 2-cell). In Figure 3.5, the blue edges connect primal edges
(blue dots) to primal faces (green dots). The 2-saddle-1-saddle connector is a path moving
from the centroid of a triangle to the centroid of one of its edges to the adjacent triangle
and so on until the centroid of the critical edge is reached. We encode it as a sequence of
primal triangles, whose first triangle is critical and whose last two intersect in the critical
edge. Note that a saddle connector is not a subset of 1-cells of the ascending or descending
Morse complexes.
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3.3 A compact representation for the Forman gradient

Accordingly to the primal/dual representation for discrete Morse complexes described in Sec-
tion 3.2, the Morse and Morse-Smale complexes computed on a simplicial mesh ¥ can be fully
described in terms of vertices and top simplexes of .. On the contrary, since a Forman gradient
is defined on all the simplices of the mesh, a natural representation for the mesh would be the
incidence graph.

An incidence graph(1() [Ede87] is a topological data structure encoding explicitly all the cells
of a cell complex I" and all the incidence relations among such cells. For each i-cell p,

- the immediate boundary relations b(p) between p and the cells in b(p) are stored;

- the immediate coboundary relations between p and the cells in cb(p) are stores.

If we consider as discrete model a cubical complex, we can implicitly represent all such bound-
ary/coboundary relations among the cells of the cubical complex. Due to its regularity all the
relations can be represented indexing the voxels of the cubical complex. Moreover, since a For-
man gradient V' defines a pairing between incident cells, V' can be defined on such representation
as a bit vector based on the same indexing [GRWH12].

When encoding unstructured simplicial meshes instead, the /G can be verbose, since we would
explicitly encode all simplexes in the mesh plus the incidence relations above. On the contrary,
data structures which encode only the vertices and the top simplexes [PBCF93, GR10] have been
shown to be much more compact [CFW11]. Thus, inspired by the primal/dual interpretation for
discrete Morse complexes, we have defined a new encoding for a Forman gradient defined over
irregular simplicial meshes [WIFF13], called compact gradient.

We represent the underlying simplicial mesh > through an incidence-based data structure with
adjacency (I A) introduced in [Nie97]. The [ A data structure is a dimension-independent data
structure encoding the 0- and n-simplexes of X explicitly, plus the following relations:

e for each n-simplex o, we encode

— the n + 1 vertices of o;

— the n + 1 n-simplexes which share an (n — 1)-simplex with o;
e for each 0-simplex v, we encode

— the n + 1 coordinates of v;

— one n-simplex incident in v;
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All the 0-simplexes (vertices) of ¥ are stored in an array >, and || is the number of 0-
simplexes of 3. Similarly all the n-simplexes of ¥ are stored in an array >,,, and |%,| is the
number of n-simplexes of X. Note that each vertex v of an n-simplex o defines a unique (n — 1)-
face v of o which does not contain v.

Then, information regarding the Forman gradient V" are attached only to the top simplexes. Let us
consider an n-dimensional simplicial mesh X and an n-simplex o in >. Recall that we denote as
CB(0o) the coboundary of simplex o and as cb(o) the immediate coboundary of o (see Section
1). The encoding associates with o a subset of the discrete vector pairs involving its faces.
Specifically, it encodes all vector pairs

o (1, 7), with 7, 7; € CB(0);
e (1;,0'), with 7; € cb(o) and o’ one of the top simplexes adjacent to o.
In an n-dimensional simplicial mesh X, a top simplex o has ( +1) faces of dimension 7, and each

face has (7 + 1) simplexes of dimension (¢ — 1) on its boundary. Since each k-simplex can be
paired with any of the simplexes on its boundary or coboundary, there are

n—1

;<z+1) (i+1)

possible discrete vector pairs in the restriction of the Forman gradient V' to 0. Adding the n
additional vector pairs from a (n — 1)-simplex in the immediate boundary of ¢ to an adjacent top

simplex, it gives a total of
n—1
+1
Y (iL0) wrnen

possible discrete vector field pairings.

Let us consider a triangle mesh X as an example. The encoding associates to a triangle (2-
simplex) o in X a subset of the vector pairs involving its faces. In particular, o encodes all the
vectors pairs:

- (m,0"), corresponding to an arrow from an edge 7 to a triangle ¢’ (red arrows in Fig-
ure 3.6);

- (79, 7), corresponding to an arrow from a vertex 7y to an edge 71 (blue arrows in Fig-
ure 3.6).
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Figure 3.6: Set of arrows inside per triangle o. Blue arrows indicate pairings between simplexes
belonging to the boundary of o (and eventually o itself). Red arrows indicate pairings between
the edges of ¢ and the adjacent triangles.

Then, in a triangle mesh, a triangle has (,7) faces of dimension i, and each face has (i + 1)
simplexes of dimension (i — 1) on its boundary. Thus, there are

2

Z(ii1>'(i+1):3-2+1.3:9

i=1

possible gradient pairs in the restriction of vector field V' to 0. Adding the three additional
gradient pairs from an edge of ¢ to an adjacent triangle gives a total of 12 possible gradient
pairings.

4

Similarly, a tetrahedron o in a tetrahedral mesh has (Z +1) faces of dimension ¢, and

4
Z( >.(z‘+1)+4:6~2+4-3+1-4+4:32
— 1+ 1

possible gradient pairs.

Such collection of pairs from the Forman gradient V' in the vicinity of a top simplex o is referred
as a local frame of the Forman gradient. Since each such pairing within a local frame encodes
a single bit of information (i.e. the presence or absence of that particular pairing), each local
frame can be encoded using 2?2—11 (121) - (i 4+ 1) 4+ n bit flags per top simplex. This bit flag
representation simplifies testing for the presence of vector pairings as well as updates to the
discrete vector field.

The restrictions imposed by discrete vector fields (i.e. that each simplex can be involved in at
most one pairing) imply that there are significantly fewer valid local frame configurations than
the possibilities provided by the bit flag representation. Then, we are able to encode a local frame
compressed representing only the valid configurations.

In 2D for example, we have 12 arrows for a total of 212 = 4096 cases. However, since we are
considering a Forman gradient we have only 97 valid cases for a triangle. Thus we can encode
all the possible configurations using only 1 byte per triangle. Similarly, in the 3D case we have
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32 arrows for a total of 232 = 4,294, 967,296 possible configurations. Considering the valid
configurations we have only 51,030 cases that we can represent with 2 bytes per tetrahedron.
The efficient encoding is thus based on two representations of a local frame:

- expanded frame is the 12 bit flag representation for a frame in 2D (32 bits in 3D),

- compact frame 1is the 1 byte representation encoding the expanded frame compactly (2
bytes in 3D).

To simplify an easy conversion between the two representations, two small auxiliary lookup
tables are used:

- expandFrame|-] is an array with 97 bit flag entries (51, 030 entries in 3D)

- compressFramel[-] is a map from the 97 bit flags to the compressed local frame representa-
tion (51, 030 bit flags in 3D).

We combine such compact encoding for a Forman gradient V' with the IA data structure and we
compare the resulting storage cost with two graph-based representations for a simplicial mesh
Y. The first graph-based structure is the /G. As discussed before the /G encodes explicitly,
through a graph structure, all the simplexes o of X and all the immediate boundary/co-boundary
relations of 0. Let us consider the graph G = (N;q, A;g) where N are the k-simplex, with
0 < k < n, and Ajq are the immediate boundary/co-boundary relations among all the simplexes
in N;q. Each element in A; is encoded with two 4 bytes pointers one for each simplex involved
in the relation. Only elements in N;; encoding a vertex v stores additional information regarding
the coordinates of v; we are ignoring this additional storage cost since common to all the data
structures considered. The Forman gradient V' can be encoded on the /GG adding 1 bit flag for
each element in A. Recall the an arrow in V' is defined only between incident simplexes. Thus,
the bit flag, for each arc in A;qs, will indicate the presence or absence of the vector pairing
between the two simplexes involved.

However, beeing the /G one of the most general representations for cell complex it is, as men-
tioned before, also one of the most verbose, in particular for encoding simplicial complexes.
Thus we consider another graph-based structure for our comparisons which is called Simplified
Incidence Graph (SIG) [FGHO4]. The SIG encodes all simplexes in a simplicial complex > as
well as all the immediate boundary relations; however only one immediate co-boundary relation
for each simplex is stored. For each k-simplex o

- the immediate boundary relations with the & + 1 simplexes in b(¢) are stored,;

- the immediate co-boundary relation is stored only with one simplex in c¢b(c). We call this
relation a partial co-boundary relation (denote cb*(—))

78



Let us consider the graph Gs;¢ = (Nsra, Asig) where Ngj¢ are the k-simplex, with 0 < k < n,
and Ag;¢ are the immediate boundary relations among all the simplexes in Ny and the subset of
the coboundary relations. Encoding a boundary/coboundary relation with a 4 bytes pointer, each
k-simplex expect k + 1 boundary relations and one co-boundary relation, thus 4(k + 2) bytes
(except top simplexes that have no co-boundary relations and the vertices that have no boundary
relations).

Recall that || denotes the number of k-simplexes in the simplicial mesh Y. In the 3D case, the
storage cost of the Gg;5 would be:

- |N| for encoding the simplexes;

-4 (48] + (34 1)|Bs] + (24 1)|%4] + |X0|) for encoding the immediate boundary/co-
boundary relations.

Also using a SIG the Forman gradient V' can be encoded adding 1 bit flag for each element in
Asrq. Each simplex is paired with at most one simplex in its immediate boundary or at most
one simplex in its immediate coboundary. When o is paired with a (k 4+ 1)-simplex we store the
relation with such simplex in the partial co-boundary relation cbx (o) of 0. When o is paired with
a (k — 1)-simplex we store the relation with such simplex in the immediate boundary relation
b(o) of o; this way, all the pairings in V" are encoded as a bit flag on some boundary/co-boundary
relation. Thus, the bit flag, for each arc in Ag;, will indicate the presence or absence of the
vector pairing between the two simplexes involved. This augment the storage cost of the STG
structure by

co| —

for encoding the Forman gradient.

To simplify our evaluation we consider an approximation of the number of simplexes, relating
to the number of vertices, as |2X3| ~ 6|2], |X2| ~ 12|3¢| and |X;| ~ 7|%¢| [FGHO4]. Thus the
total cost for the S7G with Forman gradient in the 3D case is:

1

Considering a 3D instance of our representation, encoding each relation with a 4 byte pointer,
the I A data structure encodes only the vertices and the tetrahedra of a tetrahedral mesh Y. Each
vertex encodes only one co-boundary relation with one incident tetrahedron (4 bytes) and each
tetrahedron encodes the boundary relations with its 4 vertices (4 - 4 bytes). Moreover for each
tetrahedron we encode the relation with its four adjacent tetrahedra (4 - 4 bytes). We will need:
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Dataset |20| |21| |22| |23| 1A SIG IG
VISMALE 5M 36M 62M 3IM 1.09GB 195GB 5.89 GB
Foort 5SM 33M 5TM 28M 101GB 18GB 54GB
BoNsAal  59M 40M 69M 34M 121GB 21GB 6.54 GB

Table 3.1: Evaluation of the data structures exemplified on some real datasets. For each dataset
we show, number of vertices Yy, number of edges >, faces X5 and tetrahedra >3. Cost in
Gigabytes (G B) of the IA, SIG and IG encoding the tetrahedral mesh X and the Forman gradient

- |X3] + |Xo| bytes for encoding the simplexes;

- 4-(8|X3]+ |X0|) bytes for the relations involving all the tetrahedra (33) and all the vertices
(2o) in X;

- 2|33 bytes for encoding the Forman gradient local frame for each tetrahedron.

Thus, simplify our evaluation as before, the total cost for the / A with Forman gradient in the 3D

case is:

In our work we have compared the two data structures evaluating the storage cost required by
some real datasets (VISMALE, FOOT, BONSAI) what we subsume in Table 3.1. We can notice
that the IA data structure occupies a little more than half the SIG. The IG occupies 4-5 times
more space than the A data structure.

3.3.1 Computing Morse and Morse-Smale complexes from a compact gra-
dient

In this section, we discuss how to retrieve the cells of the Morse complexes (i.e. the descend-
ing and ascending manifolds), the cells of the Morse-Smale complex, and the Morse Incidence
Graph from a simplicial mesh > endowed with a local discrete gradient field encoded with a
compact gradient. We discuss how to extract the descending and ascending manifolds based on
the simplices of the primal mesh ¥ and the topological relations involved. Generally speaking,
a descending or ascending k-cell is extracted by traversing the primal/dual mesh following the
pairings of the gradient field, and starting from the k-simplex corresponding to the critical point
associated with the descending/ascending k-cell.

Recall that a V-path of the Forman gradient V', corresponds to a sequence simplexes pairs
(00,70), (01, 71), ey (04, %), -, (O, Tn) such that o; and 0, are different faces of 7; and (o, 73)
are paired simplexes.
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Descending Morse complex The k-cells of the descending Morse complex I'; are naturally
defined as a collection of k-simplexes of >. The computation of a descending k-cell always
starts from a critical k-simplex o. All the (K — 1)-simplexes in the immediate boundary of o are
selected and, among them, only the (k — 1)-simplexes paired with a k-simplex different from o
are considered. From such k-simplexes the breadth-first traversal of the complex continues until
all the V'-paths starting from o have been visited.

Let us consider the computation of a descending 2-cell on a triangle mesh .. The computation
starts from a critical triangle (maximum) o. All the edges on the immediate boundary of o
are considered; among such simplexes only the edges paired with a triangle different from o are
considered. Navigated such arrows, the triangles reached are enqueued in a breadth-first traversal
of the top simplexes of X until all the V' -paths starting from ¢ have been visited.

Ascending Morse complex The k-cells of the ascending Morse complex I, are naturally de-
fined as a collection of k-cells of the dual mesh ¥, or equivalently as a collection of (n — 7)-
simplexes of Y. The computation of an ascending k-cell starts from a critical (n — 7)-simplex o
of 3. All the (k -+ 1)-simplexes in its immediate co-boundary are selected and, among them, only
the (k + 1) — simplexes paired with a k-simplex different from o are considered. From such
k-simplexes the breadth-first traversal of the complex continues until all the V' -paths ending in o
have been visited in reverse order.

Let us consider the computation of an ascending 2-cell on a triangle mesh . The computation
starts from a critical vertex (minimum) o. All the edges on the immediate co-boundary of o
are considered; among such simplexes only the edges paired with a vertex different from o are
considered. Navigated such arrows, the vertexes reached are enqueued in a breadth-first traversal
of the O-simplexes of X until all the V'-paths ending in o have been visited in reverse order.

The computation of the ascending/descending Morse complex is performed through constant
time operations at each cell on the V' -paths visited. In 2D, the extraction of a descending k-cells
takes a worst-time complexity of O(|X|) since all the k-simplexes are visited only once travers-
ing the V-paths. Dually the complexity for the extraction of an ascending k-cell is O(X,,_y)). In
higher dimensions, the situation is more complicate. For instance, in 3D, as introduced in Sec-
tion 2.1.5, gradient paths can branch and merge, potentially resulting in many-to-many adjacency
relationships between critical 1-cells and critical 2-cells. For example, on a tetrahedral mesh X
with of || vertices whose discrete Morse function contains O(|%|) critical 1-cells, each of
which connects to O(|X|) critical 2-cells. This produces a discrete Morse complex containing
O(|%o]?) gradient paths between critical 1 and 2-simplexes. Since the number of critical 1 and
2-simplexes is bounded by ||, the number of visits to any cell during the breadth first search
is also bounded by || and so the complexity of the whole extraction is O(|Z|?). Although,
using a bit flag array to maintain the visited simplexes the standard breadth first traversal of the
1- 2-simplexes can be employed.
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Figure 3.7: Geometrical representation of a Morse-Smale complex computed on a synthetic
dataset. (a) Filtered view of the (macro) MS complex 3-cells (unique colors) composed of a set
of micro-hexahedra. (b) The MS 2-cells bounded by the MS 1-skeleton. Each 2-cell is composed
of a set of micro-quads and is bounded by 1-cells (saddle connectors).

Morse-Smale complex The k-cells of the Morse-Smale complex are defined as a collection of
the k-cells of the dually subdivided mesh .5 obtained by intersecting the primal mesh > with its
dual mesh >, (see Section 3.2).

A top cell of the Morse-Smale complex corresponds to a pair of critical points (a maximum and
a minimum) and is encoded as a collection of micro-top-cells in the dually subdivided mesh
Y.s obtained by intersecting the descending top cell (corresponding to the maximum) and the
ascending top cell (corresponding to the minimum), which are collections of top simplexes and
vertices, respectively.

Let us consider the 3D case. A top cell of the Morse-Smale complex corresponds to a pair of
critical points (a maximum and a minimum) and is encoded as a collection of micro-hexahedra in
the dually subdivided mesh g obtained by intersecting the descending 3-cell (corresponding to
the maximum) and the ascending 3-cell (corresponding to the minimum), which are collections
of tetrahedra and vertices, respectively (see Figure 3.7(a)). Moreover in the 3D case the 3-cells
of the Morse-Smale complex are bounded by a set of 2-cells corresponding to pairs of saddles (1-
saddle and 2-saddle) and composed by a collection of micro-quads. Considering the primal/dual
representation described in Section 3.2, for each pair of face-adjacent micro-hexes the common
micro-quad is part of the Morse-Smale 2-cell if the labels of the two hexahedra are different (see
Figure 3.7(b)).

The 1-skeleton of the Morse-Smale complex is composed of different sets of 1-cells. For the 2D
case, the 1-cells corresponding to a maximum-saddle or a minimum-1saddle are the 1-manifolds
of the ascending and descending Morse complex, respectively. In the 3D case the same sets of
I-cells is combined with a the 1-cells called saddle-connector which connect 1-saddles with 2-
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saddles. A saddle connector, between a 1-saddle p and a 2-saddle ¢, is computed by extracting
the descending and ascending 2-manifolds associated with p and q. The descending 2-manifold
extraction is performed first, and all the traversed triangles are marked as visited. Then, starting
from the critical primal edge e corresponding to p and its adjacent edges, the same process as
for extracting ascending 2-manifolds is performed, but only the triangles previously marked as
visited are considered.

3.3.2 Computing the Morse incidence graph from a compact gradient

The Morse Incidence Graph, described in Section 3.1, represent the incidence relations between
the cells of the Morse and Morse-Smale complexes defined on a simplicial mesh . Such rela-
tions are computed traversing the V'-paths of the compact gradient V' defined on 3., computing
all the Morse cells in one of the two complexes, for instance, the descending complex, saving
one node for each critical simplex and connecting two nodes in the graph with an arc if there is
a separatrix V-path in V' connecting the two corresponding critical simplexes.

Let us consider the 2D case. When computing the M IG G = (N, A, ) on a two-dimensional
scalar field My, = (X, f) on which has been defined a Forman gradient V', we start adding to
N one node p for each critical simplex o in V. We consider the vertex v with highest function
value f in o, the index of v is stored in p. Then, for each maximum node p corresponding to a
critical triangle o, the descending 2-cell of ¢ is computed. The set of triangles visited during the
V -path traversals are stored in the node and p is connected, with an arc in A, to all the saddle
nodes corresponding to critical edges reached by V'-paths. Dually, for each minimum node p
corresponding to a critical vertex v, the ascending 2-cell of v is computed. The set of vertices
visited during the V -paths traversal are stored in the node and p is connected, with an arc in A,
to all the saddle nodes corresponding to critical edges reached by the V/-paths ending at v. Note
that the descending 2-cells are stored as collections of triangles while the ascending 2-cells are
stored as collections of primal vertices (and, thus, of dual 2-cells).

Let us consider the extremal graphs, i.e. the relations of the incidence graph between nodes
corresponding to minima and nodes corresponding to 1-saddles (or maxima and 2-saddles). Such
extremal graphs are dimension independent. In the 3D case, these two subgraphs of the MIG are
computed in the same way as in 2D case. A new step is introduced to compute the saddle
connectors, i.e. arcs of the M IG between 1-saddles and 2-saddles. Considering the 1-skeleton
extraction of the Morse-Smale complex described in the previous section, saddle connectors are
extracted in a similar fashion. All the descending 2-manifolds are extracted first, and all the
traversed triangles are marked as visited. Then, starting from each critical edge e corresponding
to a 1-saddle p the same process as for extracting ascending 2-manifolds is performed but only
the triangles previously marked as visited are considered. This way only the separatrix V5-pahts
are traversed and, for each of them, an arc connecting the two saddle nodes is created.
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The 3D instance of the Morse incidence graph has been compared to the data structure proposed
in [GNP'06] for encoding Morse-Smale complexes in 3D. This latter encodes the critical points
(together with their geometric location) and, for each critical point p, the sets of all 3-simplexes
and of all 2-simplexes, forming the (descending or ascending) 3-cell and 2-cell associated with
p. Moreover, all 1-simplexes of >, which are the edges in the Morse-Smale complex, are main-
tained. The topological part of such data structure is substantially equivalent to the topological
MIG even if the nodes corresponding to the different saddles are not organized based on the sad-
dle they represent. In the 3D instance of the MIG, we encode only the simplexes defining the
ascending and descending 3-cells associated with the minima and maxima, respectively, while
the geometry of the edges in the Morse-Smale complex needs to be computed from the bound-
aries of such 3-cells. Thus, the MIG is definitely more compact even if require much more effort
when the geometry of Morse-Smale 1-skeleton has to be computed.

3.4 Computing the Forman gradient on a simplicial mesh

In [RWS11], a dimension-independent algorithm is proposed for constructing a Forman gradient
vector field on a cubical complex with scalar field values given at the vertices, and applications
to the persistent homology computation of 2D and 3D images are presented. In [WIFF13], we
have adapted such algorithm for computing a compact gradient on a sclara field My, = (X, f)
defined on a simplicial mesh.

The algorithm processes the lower star of each vertex v in X independently. First of all, it is
convenient to require that the value of f on each vertex is distinct, so that the vertices in > can
be ordered as:

g(v1) < g(ve) < -+ < gloy).

To ensure unique values, g may need to be perturbed with a tie-breaking scheme.

The lower star of a vertex v is defined as follows,

L(v) :={c € X|v € oand g(v) = max{g(vi) | v1 € T, v1 € b(0)}}.

For each simplex o in the lower star, the value max f(p) = fmaz(c) is considered. Each cell o
pEoc

is considered in ascending order of function values fmaxz (o) and of dimension, such that each
cell o is considered after its faces.

The lower stars of all vertices v € >, form a disjoint partition of . In Algorithm 1 we describe
the procedure for computing a Forman gradient on lower star of each vertex of . Since each
lower star can be treated independently this part is well suited for a parallel implementation.

The functions used by the algorithm are:
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- lowest _edge(-) returning the edge in the lower star with lowest function value g,

- num_unpaired_faces(-) returning the number of unpaired faces in the boundary of the input
simplex,

- unpaired_face(-) returning the single unpaired face of the input simplex.

If the lower star St of vertex v is v itself, then v is a local minimum and it is added to the set C'
of critical cells (Algorithm 1, line 8). Otherwise, the first edge e in the order is chosen and vertex
v is paired with e (Alg. 1, line 11). The star of v is processed using two queues,

e PQone, corresponding to the k-simplexes with one unpaired face,

e P(Q)zero, corresponding to the k-simplexes with zero unpaired faces.

All the edges in the star of v different from e are added to PQ)zero (Alg. 1, line 13). All co-faces
of e are added to PQone if the number of unpaired faces is equal to one (Alg. 1, line 16).

From this point the two queues control the flow of the algorithm for each vertex:

e when queue PQone is not empty, the first simplex ¢ is removed from the queue. If the
number of unpaired faces of ¢ has become zero, ¢ is added to PQ)zero. Otherwise, the
vector field at the unique unpaired face pair(c) of o is defined as V (pair (o)) = o, pair(o)
is removed from PQzero and all the co-faces, of either o or pair(c), with number of
unpaired faces equal to one are added to PQone (Alg. 1, lines 18-27);

e when PQone is empty and PQ)zero is not empty, a simplex o is taken from PQzero.
Simplex o is added to the set C' of critical simplexes and all the co-faces of o with number
of unpaired faces equal to one are added to PQone (Alg. 1, lines 28-33);

e when both P(Q)zero and PQQone are empty, then the next vertex is processed. Result of the
algorithm is the set C' of critical cells and the pairing of non-critical cells, which define the
Forman gradient V.

85



Algorithm 1 Process_Lower_Star(v,>,V,C)

Require: X is a simplicial complex
Require: v is a vertex in X
Require: V is a Forman gradient
Require: C'is a set of critical simplexes
1:
2: forall v € Yy do
3: /] PQone and PQzero are two priority queues.

4:  PQone + ()
5. PQzero «+ ()
6: St < L(v) /] L(v) is the lower star of v
7. if St = {v} then
8: C.add(v) // add v to the set of minima
9: else
10: e < lowest_edge(St) // extract the 1-cell with lowest function value
11: V.add _pair(v, e)
12: for all 1-cells o € St do
13: PQzero.enqueue(o)
14: for all o € St do
15: if e € b(0) AND num_unpaired_faces(c)=1 then
16: PQone.enqueue(o)
17: while PQone # () OR PQzero # () do
18: while PQzero # () do
19: o < PQone.pop()
20: if num _unpaired_faces(c)=0 then
21: PQzero.enqueue(o)
22: else
23: V.add_pair(unpaired_face(o),o)
24: PQzero.remove(unpaired_face(o))
25: for all 7 € Stdo
26: if (7 € cb(o) OR 7 € cb(unpaired_face(c))) AND num_unpaired_faces(7)=1
then
27: PQone.enqueue(7)
28: if PQzero # () then
20: o < PQzero.pop()
30: C.add(o)
31: for all 7 € St do
32: if o € b(7) AND num_unpaired_faces(7)=1 then
33: PQone.enqueue(7)

34: return (V,C)
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(d) (e) (®)

Figure 3.8: Processing of the lower star of vertex 9 using the algorithm in [RWS11].

In Figure 3.8 the main steps of the algorithm when processing the lower star of vertex 5 are
illustrated. Each vertex is labeled by its scalar field value (see Figure 3.8(a)). Other simplexes
are labeled based on the labels of the vertices on their boundary in lexicographic order (i.e. edge
[5,2] is labeled 52). The lower star of 5 is not 5 itself, and thus 5 is not a minimum. The lowest
edge starting from 5 (edge 51), is chosen to be paired with 1 (Figure 3.8(b)). All the other
edges are inserted in PQ)zero while 51 has no co-faces unpaired to be inserted in PQQone. Since
PQone is empty the lowest unpaired edge, [5,2], is marked as critical and its co-face with exactly
one unpaired face (triangle 532) is inserted in PQone (Figure 3.8(c)). The triangle 532 is taken
from P(Qone and paired with its single unpaired face (edge 53) which is removed from PQzero
(Figure 3.8(d)). In a similar fashion triangle 543 is paired with the last edge 543 (Figure 3.8(e)).

From a computational point of view, algorithm 1 divides the simplicial mesh into |¥| disjoint
sets called lower stars, each associated with a single vertex. The lower star L(v) of each vertex v
is processed independently. In order to process L(v), we need two auxiliary structures PQzero
and PQone. They are priority queues and, since Algorithm 1 requires removal operations, can
be implemented by using AVL trees to reduce time complexity. Consider a lower star L(v)
comprising p, cells. As stated earlier, Process Lower Star algorithm inserts each o € L(v) into
PQone exactly once; all cells are popped from PQone one at a time. Therefore the body of
the inner while loop is executed exactly p, times. All operations are constant time except the
priority queue operations which are logarithmic in the queue size. Since the sizes of PQone
and PQzero are bounded by p := max,cyo p,, then the running time of Process Lower Star is
O(|Xo|plogp). Since that in the most of application, p << |3y|, O(plogp) can be considered
negligible. Therefore the complexity of the entire Process Lower Stars algorithm is O(|%¢]).

87



3.4.1 Experimental results

We have evaluated the performances of our discrete gradient encoding and morphological fea-
ture extraction algorithms through implementations of the IA data structure. Moreover we have
implemented the same algorithms for the PR-star octree and we have compared the two im-
plementations [WIFF13]. The PR-star octree is based on the Point Region octree (PR octree)
[Sam06], a spatial index on a set of irregularly distributed points. The domain decomposition is
controlled by a single parameter, that we denote as k,, which determines the maximum number
of points indexed by a leaf node.The insertion of a new point into a full leaf in the tree causes
the leaf to split and its indexed points to be redistributed among its children.Thus, the domain
decomposition induced by a PR octree is independent of the insertion order of its points.The
PR-star octree for a tetrahedral mesh X encodes the vertices and the tetrahedra of > and consists
of:

e an array of vertices, encoding the geometry of >;

e an array of indexed tetrahedra, where each element is encoded in terms of the indices of
its four vertices;

e an augmented PR octree, whose leaf nodes index a subset of vertices, as well as all tetra-
hedra in incident in these vertices.

Besides the hierarchical information associated with the octree (e.g. pointers to the parent node
and to the set of children nodes),each leaf node /N, encodes: the range of indices vy, and
Veng Of the vertices contained in Nj;the range of indices ¢4+ and t.,4 of the tetrahedra that are
completely contained in N;;and a pointer to the list of the remaining tetrahedra incident in these
vertices. i.e. each such tetrahedron has at least one vertex inside and outside the domain of /V;.

The basic paradigm for performing operations on a mesh encoded as a PR-star octree is to locally
process the mesh in a streaming manner by iterating through the leaf nodes of the octree.For each
leaf node, a local application-dependent data structure, which we refer to as an expanded leaf
node is generated and used to process the local geometry. After we finish processing a leaf node,
we discard this local data structure and move on to the next leaf node.

Since connectivity relations are reconstructed within leaf nodes, the PR-star is ideally suited for
situations in which the geometry will be processed in batches. In such cases, the connectivity
reconstruction costs can be amortized over multiple mesh processing operations and a more ver-
bose application-dependent local data structure can be utilized. We report only a single value of
k, for each dataset.In general, increasing the value of k, reduces the overall storage requirements
but increases its local storage requirements and connectivity reconstruction times.

We present experiments on five tetrahedral meshes whose sizes vary from 6 to 30 million tetra-
hedra. The semi-regular meshes (BONSAI, VISMALE, FOOT) were extracted from a regular grid
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Table 3.2: Absolute and relative timings (in seconds) and storage costs (expressed in MBs) for
the implementations based on the PR-star octree and the two version based on the IA (with and
without the ET* relation explicitly stored). The first two datasets are irregular tetrahedral meshes,
while the final three are irregularized tetrahedral meshes derived from regular grids.

Storage Timing

Data set |Z5] ke Mesh Connectivity Max total Gradient Descending Ascending Total
tot % tot % tot % tot % tot % tot %
1A 115 - 231 - 206.85 - 56.64 - 133.88 - 39737 -
Fl16 6.35M  1Agr 114 189 164 305 132 212.13 102 2345 40 133.88 100 36947 92
800 38 33 178 77 100.67 49 31330 549 59192 442 1005.89 253
1A 225 - 448 - 358.02 - 6.90 - 260.89 - 62581 -
SAN FERNANDO 124M 1Ay 223 370 164 593 134 36297 101 2.48 29 260.89 100 626.34 100
800 68 30 329 73 186.27 52 89.85 1286 728.69 279 1004.81 161
BONSAI 1A 445 - 823 - 73276 - 7523 - 147.61 - 955.60 -
244M 1Agry 437 723 162 1101 134 748.19 102 15.96 21 147.61 100 911.76 95
800 130 29 577 70 37031 50 309.33 412 35397 240 1033.61 108
1A 484 - 959 - 796.68 - 11375 - 21787 - 1128.30 -
VISMALE 26.5M 1Agy 475 786 162 1261 131 809.64 102 22.19 19 217.87 100 1049.70 93
800 141 29 725 76 400.85 50 288.44 253 35559 163 1044.88 92
1A 541 - 1068 - 868.29 - 138.78 - 201.60 - 1208.67 -
Foot 29.5M  1Agr 527 875 162 1402 131 892.89 103 27.15 19 201.60 100 1121.64 93
800 164 30 691 65 45452 52 699.86 504 395.69 196 1550.07 128

using Regular Simplex Bisection [WDF11] and irregularized through a half edge collapse-based
simplification process that removed approximately 15% of the vertices. We also simplified about
10% of the vertices of irregular dataset SAN FERNANDO to remove ‘flat’ regions (i.e. regions
with very low persistence) from the mesh, yielding a more meaningful feature extraction.

Since each vertex v must reference a single (arbitrary) incident tetrahedron, we use the con-
vention that the encoded tetrahedron either contains the edge that is paired with v in V, or v is
critical. We find this tetrahedron during our gradient vector field generation. This optimization
accelerates the descending 1-manifold and the ascending 3-manifold extraction steps without any
impact on storage cost. We noticed room for optimization in the descending 2-manifold extrac-
tion by using a similar trick to encode the Edge-Face gradient relation. That is, for each edge e
paired with a face, we encode a single tetrahedron whose gradient contains the face pointed to
by e. We refer to the IA data structure with this optimization as [ Agr.

We have adapted the algorithm by Robins et al. [RWS11] for working with the PR-star structure.
Since the PR-star octree efficiently reconstructs the local connectivity for the entire submesh
indexed by a leaf node, rather than for each individual vertex (as in the TA) it is able to compute
the gradient field in about half the time (see column GRADIENT in Table 3.2). For storage
comparisons, we considered the topological (connectivity) overhead of the data structures. The
IA requires about the same amount of information for connectivity as it does for the base mesh,
the I A gy requires about 1.6 times as much space, and the PR-star requires less than a third of the
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storage. (see column CONNECTIVITY in Table 3.2). In terms of overall storage requirements,
which includes the base mesh, gradient, topological overhead and auxiliary data structures, the
PR-star requires about 30% less storage space than the 1A, while the [ Agr requires about 30%
more space.

All data structures require a small amount of additional memory to perform feature extrac-
tion.The IA requires a global queue to perform the graph traversal of the gradient field, while
the PR-star utilizes a cache of octree nodes with expanded connectivity information, as well as a
list of dangling paths for each visited leaf node. For both data structures, this additional storage
was negligible (0.01%—0.1% the size of the mesh). As can be seen in Table 3.2, the TA data struc-
tures perform best on descending manifold extraction, where the relevant topological connectiv-
ity relations are explicitly encoded. Furthermore, the ET* optimization in / Axp accelerates the
2-manifold extractions, reducing the overall extraction times for descending manifolds to 20%—
40% that of TA. In contrast, since the PR-star needs to explicitly reconstruct these relations, it can
take several times as long to extract the descending manifolds (see column DESCENDING). The
timings are significantly closer for the ascending manifold extractions (see column ASCEND-
ING), where the connectivity relations need to be extracted for all data structures. Overall, the
PR-star is the smallest data structure, but requires additional time to reconstruct the connectivity
of the mesh at runtime.

Figure 3.9 illustrates features extracted from the BUCKY dataset, including the 3-cells of the
MS complex, the intersection of ascending and descending cells of the Morse complexes, the
1-skeleton of the Morse-Smale complex and its combinatorial structure. Note that many arcs of
the extracted 1-skeleton are shared (Figure 3.9(a)), while they are explicit in the combinatorial
representation (Figure 3.9(d)). In Figure 3.10 an example of features extracted from the BONSAI
dataset are shown. In Figure 3.10(a) the descending 3-cells filtered in order to show the interior
of the dataset and in Figure 3.10(b) the ascending 1-cells overlapping the descending 3-cells.

3.5 Watershed and Forman based approaches: an experimen-
tal comparison.

In this section we provide an experimental comparison between the watershed by simulated
immersion, described in Section 2.1.4.1, and a Forman approach [FIMS13].

The main difference between the two approaches is that the Forman approach generally requires
more time since it requires the pre-computation of the Forman gradient, while the watershed
approach can begin immediately with the manifold extraction. On the other hand, much more
information can be easily extracted from the gradient field, e.g. number of critical points, not
only top cells of the Morse complexes but all the cells of the Morse-Smale complex, or the inci-
dence graph, while the same extractions based on the watershed decomposition using the M /G
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(a) (b)

Figure 3.9: Example of features extracted from the BUCKY dataset. (a) The Morse-Smale
I-manifolds: maxima-2-saddle connectors (red), 2-saddle—1-saddle connectors (green) and 1-
saddle-minima connectors (blue). (b) The Morse-Smale 3-cells, thresholded by region sizes to
highlight the larger 3-cells decomposing the inner spheres. (c) The intersection of 3-cells from
the ascending (blue) and descending (red) Morse complexes, filtered to highlight 3-cells de-
composing the inner spheres. (d) The graph representing the combinatorial structure of the MS
complex.

(b)

Figure 3.10: Example of features extracted from the BONSAT dataset. In (a) the descending 3-
cells filtered in order to show the interior of the dataset. In (b) the ascending 1-cells overlapping
the descending 3-cells.
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representation are inefficient and, in many cases, incorrect, or impossible.

As discussed in Section 2.1.4.1, the watershed by simulated immersion approach computes a
labeling on the vertices of a simplicial mesh X, on which a functions f has been defined. The
labeling corresponds to the n-cells of the ascending Morse complex I',. The worst-time com-
plexity of the labeling phase is O(|X|log|>¥|) due to the initial sorting of the vertices required
by the algorithm. The n-cells of the descending Morse complex are computed using the same
algorithm and inverting the function f. Thus, the space complexity of the output is O(|Z¢]).

We used the algorithm described in Section 3.4 to compute the Forman gradient (O(|%X|)). Ex-
tractions from the Forman gradient have different time complexity based on the k-cell we want
to extract. The worst-time complexity for extracting an ascending n-manifold is linear since
each vertex is visited at most once and the space complexity of the output is O(|%¢]|). To obtain
a labeling on vertexes also for the descending n-cells the Forman gradient is computed on the
inverse of function f.

It is clear that the computation of the Forman gradient plus n-cells extraction takes more time
than the same n-cell computation using the watershed approach. However, let us first consider
that the processes required by Forman are easily parallelizable, providing a relevant speedup and
making the overall process comparable or even faster than the simulated immersion approach.
Secondly, the Forman approach has a significant advantage when we want to extract many fea-
tures from our dataset and not only the top manifolds. This task can be easily performed using
the single gradient pre-extraction similarly to what we have described for the top manifolds, but
is much more difficult (and sometimes incorrect) using the watershed decomposition. Finally,
the Morse incidence graph compactly encodes all the information for homology computation, so
its efficient computation is crucial for efficient homology computation.

In the latter of this section some practical comparison on the segmentations obtained for some
2D terrain and 3D volumetric datasets generated from analytic functions and from real-world
data are shown. All datasets used in our experiments satisfy the theoretical conditions that no
two adjacent vertices have the same elevation. Therefore, they have no flat simplexes. For each
dataset, we extract the corresponding ascending and descending decomposition using the For-
man and watershed approaches and we compare them by using the Rand Index (RI) [Ran71] and
the Hamming distance (HD) [HD95] metrics, two common similarity metrics used to compare
segmentations and adapted in [CGF09a] to mesh data.

As described in Section 2.1.4, the simulated immersion algorithm leaves some unclassified ver-
tices (called watershed vertices) at the boundaries between two regions. The metrics have been
evaluated considering such vertices as neutral, therefore always considering them as labeled in
agreement with their counterpart derived by the Forman extraction. In Table 3.3 (firsts six rows)
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Figure 3.11: Segmentations computed on the EGGS (above) and MARCY (below) obtained with
the Forman approach (a) and with the watershed by simulated immersion (b) where black spheres
correspond to watershed vertices. For each image on the left we shown the vertex labeling and
on the right the boundaries of each region as well as their seeds. Corridors in the segmentations
obtained from the simulated immersion algorithm correspond to unclassified vertices.
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is shown a numerical description of the datasets as well as the number of regions computed by
the two algorithms in the ascending and descending decomposition. Can be noticed that the
two algorithms compute always the same number of regions and the metrics have values always
greater than 0.98 for all the datasets. We cannot claim that one decomposition behaves better
than the other, since sometimes ascending manifolds have higher metric values (with EGGS, for
example) while in other cases the descending decomposition works better. Regarding watershed
vertices, we notice that, for these datasets, they are about 1.5-9% of the total number of ver-
tices, remarking that this number is not only influenced by the dimensionality of the dataset but
also by the number of regions and how these regions intersect. Figure 3.11 shows the computed
mountains for the EGGS and MARCY datasets.

Name W. vertices W. regions F. regions RI HD
Asc. Desc. | Asc. Desc. | Asc. Desc. | Asc. Desc. | Asc. Desc.
EGGs 569 567 23 21 23 21 1.00 0.99 | 1.00 0.99
MARCY 38 85 3 9 3 9 098 0.99 | 098 0.98
MALLORCA 29 88 4 4 4 4 099 0.99 | 098 0.99
UsTIiCcA 120 104 8 8 8 8 099 096 | 099 0.94
ANALYTIC]1 4921 0 8 1 8 1 098 1.00 | 096 1.00
ANALYTIC2 4921 4921 8 8 8 8 097 097 | 096 0.96
BUCKY 9472 14061 | 178 223 178 223 |1 099 099 | 0.87 0.88
FUEL 1947 13075 | 33 58 33 58 099 0.80 | 099 0.86
NEGHIP 18423 34095 | 88 74 88 74 1079 095 | 080 0.77
SILICIUM 19503 23862 | 99 124 99 124 1094 099 | 0.89 0.90

Table 3.3: Comparisons between pairs of ascending and descending segmentations found on
four terrain datasets and six volume datasets. Columns describe (from left to right), dataset
name (Name), number of vertexes (V) , number of triangles/tetrahedra (7), watershed vertices (W.
vertices) found in the ascending (Asc.) or descending (Desc.) decomposition, number of regions
found with the Watershed approach (W. regions), number of regions found with the Forman
approach (F. regions), Rand index value (R/) and Hamming distance value (HD).

Once assured of the similarity between these two methods in 2D, results have been obtained
for some volume datasets. Two synthetic and four real datasets has been chosen. In Table 3.3
(lasts six rows) are summarized the results obtained with these datasets. Also for the 3D case it
cannot be claimed that one decomposition behaves better than the other while the percentage of
the watershed vertices with respect to the total number of vertices of the dataset is about 7-20%,
and up to 40% for the case of BUCKY dataset. Figures 3.12 illustrate the results obtained on the
ANALYTIC] and NEGHIP datasets.
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(b) ()

Figure 3.12: Example of the results obtained on the ANALYTIC1 dataset (above) and NEGHIP
dataset (below). In (a) a visualization of the field. The labeling for the vertices obtained comput-
ing the ascending 3-cells on with the Forman approach is shown in (b) and using the Watershed
by simulated immersion in (c) where black spheres indicate watershed vertices. Visualizations
for the Neghip dataset are obtained filtering out the part of the dataset corresponding to empty
air.
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Chapter 4

Update Operators on a Scalar Field

A fundamental issue in the scalar field analysis is the possibility to simplify a scalar field M. Due
to the huge dimensions of the data sets and the presence of noise, a tool to eliminate the uninter-
esting features of M is fundamental. In Morse theory an operator, called cancellation, has been
defined which removes two critical points by locally modifying the integral lines originating and
converging in those two points [Mat02]. In terms of Morse complexes, a cancellation produces
the removal of two Morse cells, both in the ascending and descending Morse complexes, as well
as the local modifications of the incidence relations between the remaining Morse cells. A can-
cellation may increase the incidence relations among such cells when applied on a complex in
dimension higher than two.

For this reason in [CF11], two dimension-independent simplification operators for Morse com-
plexes have been defined, alongside with the inverse refinement operators defined as the undo
of the simplification operators. These new operators constantly reduce the number of cells in
the Morse and Morse-Smale complexes as well as the number of incidences among such cells.
In Section 4.1 the simplification operators are introduced describing their effect on the integral
lines of the scalar field and on the cells of the Morse and Morse-Smale complexes. Moreover we
describe also the refinement operators, undo of the simplification operators.

In [CFI11] we have defined the updates imposed by the two simplification operators, called
removal; ;+1 and removal; ;—, and introduced in [CF11], on the Morse incidence graph and we
have compared their behavior with the cancellation operator defined by Morse theory [CFI11,
CFI13b]. Such simplification operators are completely dimension independent and their number
depends on the dimension of the domain. In the n-dimensional case we have 2(n — 1) simplifi-
cation operators where (n — 1) are removal; ;11 and (n — 1) are removal; ;. The effect of a
removal and a contraction has been defined on the Morse incidence graph as the set of nodes re-
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moved, set of arcs removed and set of arcs inserted by each operation. We have also developed an
implementation of two macro-operators for 1-saddle-2-saddle cancellation in the 3D case. They
are implemented as a sequence of extremum-saddle operations aimed to the simplification of the
neighborhood of the 1-saddle-2-saddle in order to obtain the feasibility condition. In Section 4.2
the update operators are presented, describing their effect on the incidence graph structure en-
coding the Morse complexes, the Morse Incidence-Graph (MIG) and in Section 4.3 we described
the experimental results obtained implementing such operators.

4.1 Update operators on Morse complexes

The removal operators defined in [CF11], remove two critical points from a scalar field M =
(M, f) modifying the integral lines in the neighborhood of the two critical points. The updates
imposed on the function are similar to the one described in Section 2.2 for the cancellation.

Two critical points can be canceled, from f, if and only if the following conditions are satisfied:

e pisan (i + 1)-saddle,
e ¢ is an ¢-saddle,
o there is a unique integral line connecting p and q.

After the i-cancellation the two critical points p and ¢ are removed from the function and the
integral lines originated or converging into them are modified as follows:

e the set of integral lines converging at p or ¢ before the i-cancellation are transformed into
a set of integral lines converging to critical points of index 7 > ¢ that were the destination
of integral lines starting at p before the cancellation,

o the set of integral lines that originated at ¢ or p before the i-cancellation are transformed
into a set of integral lines originating at critical points v of index k£ < 7 + 1 that were the
origin of integral lines ending at ¢ before the cancellation.

The simplification operators are called removal; ;11 and removal; ;—, and they differs based on
the critical points on which they operate.
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4.1.1 Simplification operators on Morse complexes

Given a scalar field M = (M, f), a removal; ;+1(q, p, p’) removes an i-saddle ¢ and an (i + 1)-
saddle p from f if and only if

e p and q are connected through a unique integral line;

e ¢ is connected through integral lines at most to another (i + 1)-saddle p’ different from p.
The effect of a removal removal; ;+1(q, p,p’) is to delete p and ¢ and to transform the set of
integral lines converging to p, and those converging to ¢, into a set of integral lines converging to
p’. Each critical point that was the origin of an integral line converging either to p or ¢ becomes

the origin of an integral line converging to p’. A removal(q,p,p’) has a specific effect on the
Morse complexes computed on f.

The descending Morse complex I'; is modified as follow:

1-cell ¢ is removed from I'y;

(i + 1)-cell p is merged into (i + 1)-cell p';

all the cells r; € b(p) are moved to the immediate boundary of p';

all the cells s € ¢b(p) get p’ in their immediate boundary.

The effects of the removal; ;+1(q, p,p’) on the ascending Morse complex I', are defined in a
entirely dual manner:

e (n —i)-cell q is removed from I',;

(n — i+ 1)-cell p is merged into (n — i + 1)-cell p';

all the cells r € b(p) are moved to the immediate boundary of p';

all the cells s € cb(p) get p' in their immediate boundary.

In Figure 4.1 the effect of a removal; 5(q, p, p’) operator on the descending and ascending Morse
complexes is shown. When applying the operator on the descending Morse complex I'; illus-
trated in Figure 4.1(a) the 2-cell p and the 1-cell ¢ are removed from the complex. 1-cells
in R = {ry,r9, 73}, on the boundary of p, are moved to the boundary of p’ and the 0-cells
Z = {z, 2o} are removed from the boundary of ¢. The same operator applied on the ascending
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(d)

Figure 4.1: Effects of a removaly 5(q, p,p’) applied on a descending Morse complex I'y before
(a) and after the simplification (b). In (c) the corresponding ascending Morse complex I', is
shown and in (d) the effects of the same operator on I',,.

Morse complex I', in Figure 4.1(c) has a dual effect. 0-cell p is collapsed into O-cell p’ and the
1-cell ¢ is deleted as well. All the 1-cells R = {rq, 79, r3} are extended to p’ and ¢ is removed
from the boundary of all 2-cells in Z = {z1, 25 }.

The other removal operator, removal; ;1 (g, p, p’) removes an i-saddle ¢ and an (i — 1)-saddle p
if and only if

e p and q are connected through a unique integral line;

e ¢ is connected through integral lines at most to another (i — 1)-saddle p’ different from p.
The effect of a removal removal; ;—1(q,p,p) is to delete p and ¢ and to transform the set of
integral lines originating at p or ¢ into a set of integral lines originating at p’. Each critical point

that was the destination of an integral line originating at p or ¢ becomes the destination of an
integral line converging to p'.

The descending Morse complex I'; is modified as follow:
e i-cell ¢ is removed from ['y;
e (i — 1)-cell p is merged into (i — 1)-cell p';
e all the cells € b(p) are moved to the immediate boundary of p’;

e all the cells s € ¢b(p) get p’ in their immediate boundary.

The effect of removal; ;—1(q, p,p’) on the ascending Morse complex I, are defined in a entirely
dual way:
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(b) (d)

Figure 4.2: Effects of a removaly o(q, p,p’) applied on a descending Morse complex I'; before
(a) and after the simplification (b). In (c) the corresponding ascending Morse complex I', and in
(d) the effects of the same operator on [',.

e (n —i)-cell g is removed from I',;
e (n—i—1)-cell pis merged into (n —i — 1)-cell p/;
e all the cells r € b(p) are moved to the immediate boundary of p';

e all the cells s € cb(p) get p’ in their immediate boundary.

In Figure 4.2 the effect of a removaly o(g, p, p') operator on the descending and ascending Morse
complexes is shown. Applying the operator on the descending Morse complex illustrated in Fig-
ure 4.2(a) the 0O-cell p is collapsed in the O-cell p’ and the 1-cell ¢ is removed as well from the
complex. The 1-cells R = {r,ry, 3} expand their boundary to p’ and the 2-cells Z = {z1, 25}
are removed from the boundary of q. The same operator applied on the ascending Morse com-
plex I', Figure 4.2(c) has a dual behavior. 2-cell p is merged with the 2-cell p’ and p’ gets all the
1-cells R = {ry, 2, 73},previously on the boundary of p, on its boundary. The 1-cell ¢ is deleted
and the incidences with the O-cells Z = {21, z2} are removed.

It can be noted that removal; ;+1 and removal;;_; have similar effects on the ascending and
descending Morse complexes. They remove cells of the same dimension based on the index
of the removal and the Morse complex on which they are working. In general, a removal; ;41
applied on a descending Morse complex remove cells of the same dimension of a removal; ;1
applied on the ascending Morse complex (and vice versa).

For example, both operations showed in Figure 4.1(b) and 4.2(d) delete a 2-cell and a 1-cell from
the descending and ascending Morse complex, respectively. Similarly, removal, o applied in
Figure 4.1(d) removes a 0-cell and a 1-cell from the descending Morse complex I'; as removal;
applied in Figure 4.1(b) on the ascending Morse complex. In Sections 4.2 this duality will be
highlighted when applying the simplification operators on the Morse Incidence Graph represen-
tation (M IG).
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removal; ;1 removal; ;1
1—‘d Pa Fd Fa

R i n-i 1 n-i

Z | (i-1) n-G-1) | G+1) n-G+1)
S| (+2) n-G+2) | (-2) n-(1-2)

Table 4.1: Dimension of the cells involved in a simplification on the two Morse complexes.

4.1.2 Refinement operators on Morse complexes

Based on the simplification operators defined in Section 4.1.1, two refinement operators have
been defined called insert;;+; and insertm_lintuitively, an insertion is defined as the undo
of the corresponding removal operator, it introduces two cells of consecutive dimension in the
Morse complexes by splitting an existing cell and adapting the incidence relations among the
cells in the neighborhood. The key precondition for an insert to be applied is the configuration
of the cells around p and g, such cells can be divided in three sets:

o R={r;,j =1,.., jmas} is the set of cells that were incident in p before the simplification.
They are incidence in p’ after the simplification.

o 7 ={zp,h=1,..., hyas } is the set of cells that were incident in g before the simplification
but different from p and p’

o S ={sk,k=1,..., kna} is the set of cells that were incident in p before the simplification

and that are not incident in p’ after.

These sets are composed of cells of different dimension if the simplification performed is a
removal; ;41 or a removal; ;—; and depending from the Morse complex on which it is applied.
Table 4.1 summarizes the dimension of the cells in sets R,.S and Z when varying the operation
and the Morse complex.

Aninsert; ;1+1(q, p,p’), inverse to a removal; ;41(q, p,p’), is feasible if:

e all cells set {p’'} U RU Z U S need to be present in the Morse complexes and

e the cells in R are cells incident in p'.
Applied on a descending Morse complex I'; insert; ;11(q, p, p’) has the following effect:

e i-cell g and (i + 1)-cell p are reintroduced in Ty,
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e all i-cells in R are moved to the boundary of cell p,
e all (i + 1)-cells in Z get p on their co-boundary,

e all (i — 1)-cells in S are moved to the boundary of ¢.
The effect of insert; ;+1(q, p, p’) on the ascending Morse complex I', is entirely dual:

e the (n — i)-cell g and the (n — i + 1)-cell p are reintroduced,

e all (n — i)-cells in R takes p on their boundary,

e all (n — ¢+ 1)-cells in Z are moved to the boundary of p,

e all (n — i — 1)-cells in S get ¢ on their boundary.
The inverse of removal; ;—1(q, p,p’) is insert; ;_1(q, p, p’) operator. The feasibility preconditions
are the same as the preconditions of removal; ;1+1(q, p, p'):

e the cellsin {p'} U RU Z U S need to be in the Morse complexes and

e the cells in R are all incident to p/.
The effects of the operator on the two Morse complexes are dual with respect to the insert; ;-

(q,p,p’). Specifically, an insert;;_1(q, p,p’), applied on a descending Morse complex, inserts
cells of the same dimension of an insert; ;+1(q, p, p’) applied on an ascending Morse complex.

Applying insert; ;+1(q,p,p’) on a descending Morse complex I'; the operator has the following
effect:

e i-cell g and (i — 1)-cell p are reintroduced in I'y;

e all i-cells in R get p on their coboundary;

e all (1 — 2)-cells in Z are moved to the boundary of p;

e all (i + 1)-cells in S get ¢ on their boundary.
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Figure 4.3: Effects of a removal; »(q, p, p") applied on a descending Morse complex I'; before
(a) and after the simplification (b). In (c) the corresponding ascending Morse complex I', is
shown and in (d) the effects of the same operator on I',,.

Figure 4.3 shows the effect of insert; »(q, p, p’) operator on the descending and ascendin Morse
complexes. Applying the operator on the descending Morse complex illustrated in Figure 4.3(a)
the 2-cell p and the 1-cell ¢ are introduced into the complex. 1-cells in R = {r;y,ro, 73}, on the
boundary of p/, are moved to the boundary of p and the O-cells Z = {z;, 25} are added from
the boundary of the 1-cell g. The same operator applied on the ascending Morse complex ', in
Figure 4.3(c) has a dual effect. 0-cell p is introduce aside 1-cell . All the 1-cells R = {ry, 72,73}
incident into p’ now end at p and ¢ is inserted as part of the boundary of 2-cells in Z = {21, 22 }.

Figure 4.4 shows two examples of a refinement applied on a descending Morse complex [';. In
Figure 4.4(a) the precondition of the refinement inserts 3(q, p,p’) is the presence of cells p’ and
the sets R and Z. In Figure 4.4(b) 3-cell p and 2-cell ¢ are introduced in I';2-cells in R are
removed from the boundary of p’ and inserted, as well as ¢, on the boundary of p. 1-cells in Z
instead are inserted in the boundary of ¢. In the descending Morse complex I'; showed in 4.4(c)
an insert; o(q, p,p’) is applied. In (d) 2-cell p and 1-cell ¢ are introduced in the complex I';.
1-cells r; are removed from the boundary of p’ and redirected, as well as ¢, to the boundary of p.
3-cells s, extend their boundary on p and ¢, extend its boundary on the 0-cells in Z.

4.2 Update operators on the M /G

Alternative definitions, for the operators described in Section 4.1, can be furnished based on the
encoding used to represent the Morse complexes. In this section a new definition for the oper-
ators is given based on the Morse Incidence Graph described in Section 3.1. Since the M IG is
a dual representation of both the descending and ascending Morse complexes, the two instances
of the removal operator can be rewritten without distinction.
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Figure 4.4: Effects of an inserts3(q, p,p’) applied on a descending Morse complex I'; before
(a) and after the refinement (b). Cells occluded are not indicated with letters. In (c) the effects
of an insert; 2(q, p,p’) applied on a descending Morse complex I'; before (c) and after (d) the
refinement.

A remove(q, p,p’) simplifiesa MIG G = (N, A,¢) A C N x N, removing two nodes p and ¢
from NV and removing the arcs connected with either p or ¢ from A. New arcs are reintroduced
in A.

Considering the nodes, in the neighborhood of the two removed nodes, they can be divided in
three sets:

o R={rj,j =1,..., jmax} is the set of nodes incident to p before the simplification of the
same dimension of ¢,

o 7 ={zp,h=1,..., hyas } is the set of nodes incident to ¢ but different from p and p/,

o S ={sy,k=1,..., knye} is the set of nodes incident to p and different from ;.

4.2.1 Simplification operators on the M /G

Formally a remove, (g, p,p’), with either a = b+ 1 ora = b — 1, is feasible on a MIG
G = (N, A, v) if:

e node ¢ is connected to, at most two, nodes of the same dimension, p and p/,

e the label of the arc (p, q) is 1 (¥((p,q)) = 1).

Applying remove, ,(q, p, p’) on G, let us define

s A = (U0} ()l € ROl € S)UL(alen € 2} thes
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Figure 4.5: Effects of the remove; 2(q, p, p") applied on the 2D M IG showed in (a). In (b) the
red arcs are removed from the M I G and in (c) the green arcs are introduced. Blu dots correspond
to minima, green dots to saddles and red dots to maxima.

o At ={(p/,rj)|r; € R} the set of arcs inserted.

Then remove, ;(q, p,p’) produces a simplified graph G = (N', A’,¢)’) where,

e N'=N\{p,q}
e /=A\A UA"
hd ¢’(p/,Tj) = ¢(p/7Q) ) 77/1(]9, Tj) + ¢(plarj)

The labels of the arcs different from (p’, r;) remain unchanged.

Figure 4.5 shows an example of a remove; 5(q,p,p’) applied on the Morse Incidence Graph
illustrated in 4.5(a). In 4.6(b) the arcs connecting p with nodes in the set R = {ry, 79,73} are
removed as well as arcs connecting ¢ to nodes in the set Z = {21, 22} and arcs (p, ¢) and (p', q);p
and g are deleted as well. In 4.6(c) three new arcs are inserted in the graph connecting nodes in
set R = {ry,re,r3} with p'.

In Figure 4.6(a) the same remove; 2(q, p, p') is applied on the MG extracted from a 3D syn-
thetic scalar field. In Figure 4.6(b) the arcs connecting p with nodes in R = {ry, 72,73} and in
S = {s1, s2} are removed. Arcs connecting ¢ to nodes in Z = {z;, 25} are removed as well as
arcs (p,q) and (p', q). After removing nodes p and ¢, in Figure 4.6(c) p’ is connected with the
nodes R = {ry,rqy, 73}

4.2.2 Refinement operators on the M /G

The refinement operators insert; ;+1(q,p,p’) and insert;;—1(q,p,p’) can be formalized as a
unique operator working on the M IG, the insert, ;(q, p, p') operator undo of the remove, (¢, p, p').
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Figure 4.6: Effects of the remove; 2(q, p,p’) applied on the 3D MIG showed in (a). In (b)
the red arcs are removed from the M /G and in (c) the green arcs are introduced. Blue dots
correspond to minima, green dots to 1-saddles, purple dots to 2-saddles and red dots to maxima.

The feasibility condition for a insert, ;(q, p, p') operator is the presence of nodes p’ URUZ U S
in G and if the label ¢ (p', r) is greater than or equal ¢'(p/, q) - ¥/ (p, ).

Then, applying a feasible insert,;(q, p, p’) let us define:

o A= ={(p,rj)|r; € R} the set of arcs removed;

* A= 0 U 0}l € BEO L sl € SEU L 2l € 2} the s
of arcs 1nserted.

insertq(q, p,p’) applied on G produce a refined graph G’ = (N', A’,¢)') where:

e N'=NU{p,q}

o A/=A\ATUA"

o Y(p,ry) =@, ry) = q) ¢ (piry)
In Figure 4.7 is shown an example of an insert, »(q, p, p’) applied on the 3D M IG illustrated in
Figure 4.7(a). In Figure 4.7(b) the two nodes p and ¢ are introduced in the graph. The three arcs
connecting p’ with nodes in R = {ry, 79,73} are deleted and three new arcs are created connect-

ing p with nodes in R. In Figure 4.7(c) the new arcs are introduced connecting ¢ with nodes p,
p’ and with nodes in Z = {z;, 2o} and connecting node p with nodes S{s1, s2, s3}.
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Figure 4.7: Effects of the insert; »(q, p, p') applied on the 3D M IG shown in (a). In (b) the green
arcs are redirected from p’ to p in the MG and in (¢) the green arcs are the newly introduced.
Blu dots correspond to minima, green dots to 1-saddles, purple dots to 2-saddles and red dots to
maxima.

4.3 Experimental Results

In this section we will described our experimental results obtained on scalar fields My = (X, f)
defined on triangular and tetrahedral meshes.

In Section 4.3.1 we will present a persistence based simplification algorithm we have defined
for simplifying a M IG computed on M. In Section 4.3.2 we will present results obtained
comparing i-cancellation and remove operators for simplifying scalar fields in 3D.

4.3.1 Simplification on the M /G

Working with scalar fields in dimensions higher than two, it can be showed that, at any time,
the Morse complexes will admit a number of feasible ¢-cancellation greater or equal than the
number of feasible remove(q, p, p’). In particular,

e an i-cancellation is feasible for any p and ¢ simply connected
e aremove(q,p,p’) is feasible for any p and ¢ simply connected only if ¢ is connected to, at

most, another cell p’ different from p.

Thus, in the 3D case two macro-operators has been defined to increase the number of viable
simplifications at any time. These macro-operators are implemented as a sequence of extremum-
saddle operators followed by a saddle-saddle removal operator. We will describe the implemen-
tation of such macro-operators in terms of updates on the M IG for seek of clarity even if a
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similar definition can be done in terms of Morse complexes and Forman gradient.

The first macro-operator collapse a 2-saddle p and a 1-saddle ¢ into another 2-saddle p’. For
all the 2-saddles ¢; connected with ¢ a removes3(t;, p1,p}) is performed to eliminate the 2-
saddles different from p and p’. When p and p’ are the only 2-saddles connected with ¢ the
removey 2(q, p,p') is performed.

Dually, the second macro-operator collapse a 1-saddle p and a 2-saddle ¢ into another 1-saddle
p'. For all the 1-saddles ¢; connected with ¢ a remove; o(t;, p1, p}) is performed to eliminate the
1-saddles different from p and p’. When p and p’ are the only 1-saddles connected with ¢ the
removes 1(q, p,p') is performed.

Then, an experimental evaluation of the macro-operators has been performed in [CFI11].The
simplification algorithm developed simplify Morse complexes in arbitrary dimensions using
remove; ;1 and remove; ;1. A persistence value is associated with any remove operator by
considering the function values of the two critical points p and ¢ deleted by the operator. Intu-
itively, the persistence of a pair of critical points measures the importance of the pair and is equal
to the absolute difference in function values between the two points [EHZ01]. The objective
of the simplification algorithm is to reduce the size of the Morse complex by removing critical
points which are due to the presence of noise or which are not relevant for the need of a specific
application. Simplification is also applied when the size of the original Morse complex is too
large for the computation resources available.

The simplification algorithm starts by computing all feasible simplifications, evaluates their per-
sistence and inserts them in an ordered queue in increasing order of persistence.

At each step, a simplification is removed from the queue and applied to the current M /G. The
process terminates when either a certain number of simplifications has been performed or when
a specified value of persistence is reached.

Algorithm 4.3.1 shows the pseudo-code description of the simplification algorithm in the case
when the stopping condition is determined by a persistence threshold. The SimplifyGraph
function requires two input parameters:

o a float value ¢ indicating the threshold for the simplifications. All the simplifications per-
formed will have persistence value associated lower than ¢,

e a MIG G = (N, A, ) composed by nodes NV and arcs A.

As initialization, all the arcs are pushed inside a priority queue () (rows 3-4) and organized in
ascending order of persistence value. The persistence value associated to each arc is computed
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as the absolute value of the difference between the function values of the vertices associated
to each node incident a. Each simplification s in () is considered if the associated persistence
value is lower than ¢ (row 7). If s is a feasible simplification (removal; ;11 or removal; ;11) or
a simplification valid for a macro-operator, it is performed and all the new arcs generated are
introduced in () (row 9-12). Otherwise, if s is not valid it is ignored, while if it has a persistence
valued equal or higher than ¢ the algorithm ends.

Algorithm 2 SimplifyGraph(t,Q,G)
Require: ¢ is a float value indicating a threshold;
Require: G = (N, A)isa MIG with nodes N and arcs A;
1: Q =0 // an empty priority queue
2: // All the arcs are pushed into the priority queue based on their persistence value;
3: forallarcsa € A do
4.  if isFeasibleSimpl(a) then

5: Q.push(a);

6: while Q).isNot Empty() do

7: s < Q.pop() /] The next simplification s is popped from the queue;

8: if s.persistence() < t then

9: /I If s has persistence value lower than t
10: if isFeasibleSimpl(s) then
11: Gnew = SIMPI(S); // aney are the new arcs created by the simplification;
12: else if isFeasibleMacro(s) then
13: Gnew = Macro_operator(s); // ae, are the new arcs created by the macro-operator;
14: Q + Gnew;
15:  else
16: break;

Different thresholds on persistence value has been used: 1% of the max persistence value for
light noise removal, 10% for stronger noise removal, and 20% or greater for consistently re-
ducing the complexity of the M IG. The storage cost of the simplified M IG using these three
different thresholds is equal to 95%, 65% and 35% of the cost of the M I G at full resolution.

Then the distribution of the saddle-saddle operator among all the simplifications is studied. Such
kind of simplifications are likely to be performed early in the simplification process. If the
simplification algorithm is based on persistence, this means that a large number of arcs will be
introduced in the M I G early in the simplification process, influencing both the efficiency (speed)
of the algorithm and its versatility (the number of feasible simplifications). This result underlines
the importance of having an efficient operator for simplifying saddles.
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4.3.2 Removal operator and cancellation

The cancellation operator described in Section 2.2 is a simplification operator defined in Morse
theory [Mil63]. Comparing the i-cancellation to the simplification operators described in the
previous sections it can be showed that there is a specific relation between an ¢-cancellation and
a remove operator.

In general,

e aremove,_1,(q,p,p’) remains equivalent to a (n-1)-cancellation(q, p);

e aaremove o(q, p,p’) remains equivalent to a O-cancellation(q, p).

The i-cancellation involving only saddles is more complicated (as described in Section 2.2) and
generally different from a remove operator involving saddles. To highlight the differences be-
tween the two operators we will compare their effects on the same M IG.

In the 2D case, a remove; 5(q, p, p’) is the same as the maximum-saddle 1-cancellation(q,p) and
the remove; o(q, p,p’) is the same as the minimum-saddle O-cancellation. In the 3D case the
relations become more various. The remove operators involving an extremum still remain the
same, thus:

e removes 3(q, p, p') is equivalent to a 2-cancellation(q, p)

e removes o(g, p, p') is equivalent to a 0-cancellation(q, p).

As an example, let us consider the 1 — cancellation of a 1-saddle and a 2-saddle in 3D. The
1-cancellation(q, p) of 1-node ¢ and 2-node p is feasible on the M /G G = (N, A, ) if nodes ¢
and p are connected, and the label of arc (p, q) is 1 (¥ (p, q) = 1).

Let G' = (N', A’, ) be the graph after 1-cancellation(q, p). The effect of 1-cancellation(q, p)
consists of deleting nodes p and ¢, as well as all the arcs incident in nodes p and ¢, and adding
one arc for each pair (;,?;) where r; belongs to R and ¢; belongs to set 7', representing the set
of (i + 1)-nodes different from (i + 1)-node p and connected to q.

Thus, the 1-cancellation operator deletes two nodes from N, but possibly increasing the number
of arcs connecting 1-nodes to 2-nodes in the graph by deleting |R| + |T'| + 1 of such arcs, but
adding |R| % |T'| of them. Thus, it is not a simplification operator, since it does not reduce
the size of the graph. In [GBHPI11], this issue has been discussed at length, since it can cause
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Name N Simpl Nodes Arcs Cost (MB) Time (sec.)

NEGHIP 3K 11512 0.17 -
i-cancellation 1200 700 2621 0.04 0.68
remove 1200 700 2395 0.03 0.62
HYDROGEN - 23K 65961 1.0 -
i-cancellation ~ 7000 9K 35123 0.53 25.1
remove 7000 9K 23091 0.35 17.86
Bucky - 46K 157984 2.4 -
i-cancellation 7000 32K 128231 1.95 73.5
remove 7000 32K 84487 1.23 334
ANEURISM - 125K 1015724 15.49 -
i-cancellation 10000 105K 748192 11.41 233.28
remove 10000 105K 435910 6.65 70.54
VISMALE - 900K 3588570 54.75 -
i-cancellation 10000 880K 3513889 53.61 37.12
remove 10000 880K 3107124 47.41 9.43
Foor - 1550K 7178384 109.5 -
i-cancellation 45000 1460K 6137199 93.64 2882.1
remove 45000 1460K 5413683 82.6 1187.3

Table 4.2: Comparison of cancellation and remove operators.

computational problems and, more importantly, make the application of ¢-cancellation operator
unfeasible on large-scale data sets. Several strategies are proposed in [GBHP11], which aim at
postponing an ¢-cancellation that would introduce a number of arcs greater than a predefined
threshold, or vertices with valence greater than a predefined threshold. On the contrary, the
remove operator always reduces the size of the graph. In [CFI13b] the macro-operators has
been compared with the cancellation implementing a 3D version of the simplification algorithm,
described in Section 4.3.1, based on cancellation. In this case, the number of critical nodes is
reduced at each step, but not necessarily the number of arcs.

In Table 4.2, the results obtained by comparing the remove operator with the cancellation op-
erator are shown. For each 3D data set, in the first row illustrates the number of nodes and
arcs in the full resolution M IG. In the second and third rows, are shown the statistics related
to cancellation and remove operators, respectively: the number of simplifications applied, the
number of nodes and arcs in the simplified M I, the cost of the data structure encoding the
MIG (in M B), and the time (in sec) needed to perform the simplifications.

The number of arcs in the graph simplified with cancellation always exceeds the number of arcs
in the graph simplified with the same number of remove. Such behavior influences the efficiency
of the whole algorithm, doubling the time needed to manage and enqueue a larger number of arcs
(and thus, a greater number of possible simplifications) for large data sets.

When the data set is small and the number of simplifications is high compared to the total number
of nodes the two methods are quite similar (NEGHIP). With the growth of the dimension of the
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data set the two methods start to differ (HYDROGEN): by using remove we can get a 20% more
compressed M IG in about half the time than by using cancellation. In particular, the remove
operator is particularly useful in the first simplifications performed on a data set (simplifications
that can be interpreted as noise removal). On many data sets we have noticed that by using
cancellation the number of arcs remains approximately the same while by using remove their
number immediately decreases (VISMALE). In general, the cost of the M IG is reduced by 10%
to 20% by using remove instead of cancellation and the same number of simplifications can be
performed in half the time.
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Chapter 5

Multi-resolution Models for Morse
Complexes

Due to the complexity of real data sets, such as terrain models or volumetric scalar fields, the
investigation of hierarchical methods to control and adjust the Level of Detail (LOD) of a given
dataset is an active research area. A multi-resolution model (or LOD model) permits to obtain
different representations of an object at different levels of detail. The level of detail can be
uniform or vary other the object.

Multi-resolution approaches can be subdivided into two categories: geometry-based approaches,
where the approximation is guided by the refinement of the geometrical shape, and wavelet-based
approaches, where the multi-resolution behavior is determined by the space of functions.

Multi-resolution models for geometrical objects support representation and processing of spatial
entities at different levels of detail [FMP97, FMP99, DFKPOS5]. Such representations are espe-
cially interesting because of their potential impact on applications, such as terrain modeling in
Geographic Information Systems (GIS) and scientific data visualization. The basis for a multi-
resolution geometric model of a shape is the decomposition of the shape into simple elements,
called cells. The accuracy of a cell complex in representing a shape depends on the size, number,
and density of its cells: a parameter that we call the resolution of the complex. A high resolution,
and thus a high number of cells, is needed to produce accurate descriptions. On the other hand, a
maximum accuracy is not always required in the whole shape, but a sufficient high accuracy for
the specific application task can be achieved by locally adapting the resolution of a complex in
different parts of the shape, thus reducing processing costs and memory space.

The basic ingredients of a multi-resolution model for a spatial object are a base complex, that
defines the coarsest representation of the object, a set of updates that provide variable resolution
representation of the base complex when applied to it, and a dependency relation among updates
which allows combining them to extract consistent intermediate representations. The basic oper-
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ation in a multi-resolution model is called selective refinement and consists of extracting a mesh
satisfying some application-dependent criterion based on level of detail, such as approximating
a surface or scalar field with a certain accuracy.

The process of building a multi-resolution model depends on the simplification of a cell com-
plex. Usually, such operation is time consuming because sophisticated techniques to optimize
the shape of the cells and to bound the approximation error are required. However, in a multi-
resolution model, such operations are performed off-line, in order to build the structure which
can be queried efficiently on-line, according to some application-dependent parameters.

Several multi-resolution models for cell complexes have been proposed in the literature [Mag98,
FMP99, DFKPOS5]. Most existing models are designed for specific applications, or classes of
applications (rendering, terrain modeling, ...). Existing models usually rely on a specific con-
struction technique: such models can be obtained only from an initial cell complex by applying
a specific type of transformation operator. Most proposed models are a direct abstraction of the
data structure used to implement them. We will introduce here a multi-resolution model for the
analysis of a scalar field My = (X, f), which encodes the Morse and Morse-Smale complexes
computed on M.

In Section 5.1, we introduce the multi-resolution model consisting of a hierarchy of combinato-
rial representations of descending and ascending Morse complexes in the form of an M IG. Note
that the model is geometry-based since extracts representations of cell complexes, ['; and I',, at
different levels of detail but the simplicial mesh 3, discrete domain of f, remains unchanged.

We call this model a Multi-Resolution Morse Incidence Graph (M MI1G) [CDFI13], and we
define it in terms of refinement modifications on the M IG. In Section 5.1.1 we describe two
different encodings for an M M I G, called the implicit and explicit Multi-resolution Morse Inci-
dence Graph (M M IG). In Section 5.1.3 experimental results obtained implementing such two
data structures are shown and we compare the 2D instance of the M M I G with existing proposal
for hierarchical topological representations of 2D scalar fields.

5.1 The multi-resolution Morse incidence-graph

A Multi-resolution Morse Incidence Graph (M M1G) is a multi-resolution model representing
the topology of the two Morse complexes as well as the 1-skeleton of the Morse-Smale complex
at different level of details [CFI12].

An M MIG is generated from the M I G representing the two Morse complexes at full resolution
by iteratively applying the simplification operator remouve discussed in Section 4 (see Figure
5.1). Simplifications are applied according to their value of persistence, and the graph obtained
as a result of the simplification sequence is the coarsest representation of the two complexes. We
denote such coarse M IG as Gg = (N, Ag, pp), and we call it the base graph. We denote as
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Figure 5.1: A sequence of simplifications, remove; ;11(q,p,p’), remove; ;i1(q1, p1, py), rem-
ove; ;—1(qz2, p2, Ph), applied on a descending Morse complex to produce a coarser representation.
Red dots correspond to 2-cells, green dots to 1-cells and blue dots to O-cells.

S the set of remove simplifications that generates Gz from G. An M MIG is a compact way
of representing the coarse graph G plus the inverse of the simplification modifications applied
in the generalization process. The objective is to allow an effective and efficient extraction of
approximate representations of Morse complexes at uniform or variable levels of detail. The
level of detail is, in this case, determined by the persistence values that we require in the extracted
complexes.

The basic ingredients of an M M IG are:

- an MIG G = (Np, Ap, ¢p) representing the two Morse complexes, I'; and T, at the
coarsest resolution,

- a set M of refinements, inverse to the simplifications in S,

- adependency relation between refinements in M, which defines a partial order relation on

M.

A refinement modification is defined as p = insert(q, p,p’). Recall that insert(q, p,p’) is spec-
ified by the nodes ¢ and p it introduces, and by the nodes in N~ = {p'} U Z U S U R, as defined
in Section 4.1. Intuitively, refinement modification ; depends on all refinements p* which in-
troduce nodes belonging to N, and on the modification yi creating the base graph GG g, in case
some node in N~ belongs to G g.

Let us denote as i = (G—, G") a refinement modification on the M IG, where

- G- =(N—,A , ) is the set of nodes N~ and arcs A~ involved in the refinement

- Gt = (NT, A" ™) is the resulting set of nodes N and arcs AT when refinement ;. has
been applied

Let us consider the set M of all refinements and the creation of the coarse representation G’z as
a dummy refinement that we denote as p (i.e., po generates Gp). Note that g = (0, Gp), i.e.,
for yu9, G~ is a null graph (without nodes), and G* = Gp.
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We can define over set M plus 1y a dependency relation as follows.

Definition 5.1.1. Refinement modification 11, = (G, GY), directly depends on refinement mod-
ification jiy = (G5, GY), if and only if

® (i creates one or more nodes in G ; or

® (i creates one or more arcs in G .

From an M MIG, a large number of complexes at intermediate resolution can be obtained by
applying a sequence U = [ug, fi1, --, f1x] Of refinement modifications in M to the base graph Gp.
Applying a sequence of refinements U = [puo, p1, .-, fix], the first refinement pq is applied to G
obtaining the graph G ;. All the refinements yi; in U/ are applied to the graph G ;) obtained from
the refinement z1(;_1) in the sequence.

In a generic sequence a node can be created and deleted several times and this creates cycles in
the relation of dependency. However, in the M M I, a node is introduced by one modification
only and never deleted. Thus, any sequence of modifications is always non-redundant.

If all the possible sequences of refinement modifications are non-redundant the dependency rela-
tion is a partial order relation since a node or an arc is never introduced twice by the modifications
in M. An MM IG is thus a triple (G, M, R), where R denotes the direct dependency relation
defined above. We can alternatively define the dependency relation between refinement modifi-
cations only in terms of the nodes of the graphs defining those refinements.

Proposition 5.1.1. Refinement modification 1, = (G~, G) directly depends on refinement mod-
ification py = (G5 ,GY), if and only if jiy creates one or more nodes in G~, i.e., if and only if

{p2, 2} NN~ # 0.

Proof. (=) Let refinement p, directly depend on refinement p5. We need to show that if pus
creates an arc in A, then it creates also a node in N~. From the definition of a refinement
modification, we know that if a refinement creates an arc, it creates at least one of its incident
nodes. Refinement 15 creates an arc in A, thus it creates at least one if its incident nodes.

Nodes incident in an arc in A~ are node p’, and a node in R. Thus, refinement 1, creates a node
in{p} URC N".

(<) If a refinement - creates a node in /N, then refinement y; directly depends on refinement
o by definition. 0J

Definition 5.1.2. Dependency relation between refinement modifications is the transitive clo-
sure of the direct dependency relation.

In Figure 5.2 an M M IG built from the sequence of simplifications shown in Figure 5.1 is il-
lustrated (for the seek of clarity, we are showing only the descending Morse complex and not
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Figure 5.2: M M IG built from the sequence of simplifications on a descending Morse complex
[’y illustrated in Figure 5.1. The root refinement correspond to the base complex I'z. Remaining
nodes indicate refinement operations. Each node represents only the incidence relations among
cells in the immediate boundary/coboundary of the cells involved in the refinement. Arrows
represent the dependency relation, red points correspond to 2-cells, green points to 1-cells and
blue points are 0-cells.

the MIG representation). The base complex I's is indicated as the root of the model while the
remaining nodes store the refinement operations. An arrow connects two nodes when there is a
direct dependency relation among them.

Figure 5.2 shows the dependency relations among three different refinements and the root. To
perform insert; »(q, p, p') a specific set of cells are required in the boundary and co-boundary of
the newly introduced cells p and ¢. The dependency relation with refinement insert; 2(qz, p2, ph)
assures that such cells ¢ will be in the immediate boundary of cell p once insert; »(q, p,p’) is
performed. Refinement insert; »(qi, p1, p}) instead is independent from other dag nodes since
all the cells required are already in the base complex.

Given a multi-resolution, a sequence of modifications has to satisfy specific properties related to
the dependency relation among the modifications of the model.

Definition 5.1.3. A refinement modification p; = (G—,G™), is feasible on a graph G ; if and
only if the graph G ;y contains all the nodes in G~.

Then, from a set of feasible modifications, the notion of feasible sequence is introduced.

Definition 5.1.4. A sequence U = g, i1, 2, --., lim) Of refinement modifications in M is fea-
sible if g is feasible on G'p and each modification ji;, 1 < i < m is feasible on a graph G ;
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obtained from the base graph G g by applying on it a sequence [[i1, .., ft;—1)-

Definition 5.1.5. Let U = [pq, 11, i, ---, im] be a feasible sequence of refinement modifications
in M. The front graph G associated with sequence U is the graph obtained from the base graph
G by applying on it the sequence of refinements |11, [i2, ..., fbm].

The front graph is a M IG representing the two Morse complexes at an intermediate level of
detail. If a feasible sequence U contains all refinements in M, then the front graph Gy associated
with U is the same as the M I at full resolution.

This means that a refinement i is feasible on a graph G = (N, A, @) if and only if all nodes in
N~ are contained in N (N~ C N). If the nodes in N~ are in IV, then graph G~ that defines the
feasibility of refinement 1 is a subgraph of graph G = Gy.

Recall that dependency relation R is a partial order relation, and thus it defines a closure operator
on the set M of refinement modifications. We denote a closed set of such refinement modifica-
tions as . The set U/ implicitly defines an incidence graph representing an approximation of the
original Morse complexes.

Definition 5.1.6. Let (G, M, R) be an MM IG, and let U = {pg, p11, fi2, ---, ptm } be a set of
refinement modifications in M. The set U is closed with respect to the dependency relation R if
foreach i, 1 <1 < 'm, each refinement modification on which refinement [1; depends is in U.

Proposition 5.1.2. If a sequence U = [pq, j11, [t2, ..., fbm] Of refinement modifications in M is
feasible, then the set U = { g, i1, fa, ..., ftm } is closed with respect to the dependency relation
R.

Proof. Let U = [ug, p11, ft2, ---, i) be a feasible sequence of refinement modifications in M, and
let u; € U. Since p; = (G;,G}) is feasible, each refinement modification y; that introduces
a node in N,” (on which refinement y; directly depends) is in U;—; = [uo, ft1, .., fti—1). This
argument can be repeated iteratively on modifications j;. This implies that all the refinement
modifications on which y; depends have a position p < i in the sequence U, and the set i/ =
{po, p1, b, ..., pm } 1s closed with respect to the dependency relation R. [J

Definition 5.1.7. Let py and ps be two feasible refinement modifications on a graph G. We
say that the refinement modifications 11 and s are interchangeable if a sequence (pu1, ji2) of
refinements (consisting of i followed by p3) on graph G produces the same simplified graph G’
as a sequence (s, 1) (consisting of 1o followed by 7).

Proposition 5.1.3. Two independent refinement modifications p; and s are interchangeable.

Proof. Let 11 and pi5 be two feasible independent refinements. Let us first consider the sequence
(pe1, 12) applied on G. The effect of 1 is to delete arcs (p},r; ;), insert nodes ¢; and p; and
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arcs (q1,p1), (@1, 04)s (@1, z1.0), (p1, S1,6) and (p1,71,;), thus creating graph G = (Ny, A1, ¢1),
Ny = NU{q,pi}, Ay = A\A] U A7. The effect of sy on graph G is to delete arcs (ph, 72 ;)
(which are also arcs in G since iy is feasible on G, and p; and ¢; are not in N, ,,) and insert
nodes g, and p, and arcs (g2, pa). (g2, 74) (¢2: 72). (2. 52) and (pa, ro.,). thus creating graph
GLQ = (NLQ, ALQ’ QOLQ>. Here, Nl’g = N1 U {QQ,pg} and ALQ = Al\Ag U A;r

Similarly, we denote as Gy = (Na, As, 03), No = N U {q2, p2}, Ay = A\A; U A the MIG
obtained from MIG G = (N, A, ¢) by applying refinement 15, and as G 1 = (Na 1, A21,921)
the M IG obtained from MIG G4 by applying refinement y;. Then we have that No; = Ny U
{thl} and Ag’l = AQ\AI U AIF

Since both p; and po are feasible on G, arcs in A7 U A5 are in A. From the definition of a
refinement it follows that A, N Af = 0, and similarly A; N A7 = (). Independence of y; and
po implies that A7 N Ay = ) and A; N AT = 0. Also A7 N A, = 0 (if each arc in A7 is
labeled by the inverse simplification of the refinement 11, and similarly for A, and ). Finally,
A N AJ =0, since each arc in A} has either ¢; or p; as one endpoint, each arc in A3 has either
2 Or po as one endpoint, and {q1, p1} N {g2, p2} = 0.

We can conclude that Ny 5 = N U {q1,p1,q2,p2} = Nojand A; 5 = A)\A; U AT = (A\A] U
ATN\A; U AT = A\(A] U A)) U (Af U AY) = Ay, thus showing that two independent
refinements are interchangeable. U

In Figure 5.2 for example, refinement insert, (qs, p2, py) and insert; o(qi, p1,p}) are inter-
changeable.

Proposition 5.1.4. Two interchangeable refinement modifications |1, and i are independent.

Proof. If the refinements ;1 and p» are interchangeable, then they are both feasible on the M /G
G = (N, A, p), ie., both G| and G, are subgraphs of G, and ¢;, p1, g2 and p are not nodes
in N. This implies that ¢; and p; are not in N, and similarly ¢, and p, are not in N; . Thus,
refinements p; and p5 are independent. U

Definition 5.1.8. Let (Gg, M, R) be an MM IG, and let U = [pg, i1, fi2, -, fim] be a feasible
sequence of refinement modifications in M. A permutation [y, [t;1, [Li2, ---, Him Of the refinement
modifications in U is consistent if the sequence V' = (lig, fLi1, i, --, fim) 1S @ feasible sequence
of refinements in M.

Proposition 5.1.5. Let U = [ug, i1, pio, .., fim) be a feasible sequence of refinement modifica-
tions in M, and let sequence W = g, i1, iz, - -, fim] be obtained from U through a consistent
permutation of refinements in U. Then, the front graph G associated with sequence U is the
same as the front graph Gy, associated with sequence W .

Proof. A permutation that defines W starting from U is consistent if each refinement fi;; is
feasible in sequence 7. This means that each refinement y1;;, on which 1i;; depends has a position
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p < 17 in V. Thus, a permutation defining W from U is a composition of adjacent transpositions
of two independent refinements (composition of permutations obtained by reversing the order of
two consecutive refinements). For each such transposition, the associated front graph before and
after the transposition remains unchanged. Thus, the front graph Gy associated with sequence
W is the same as the front graph Gy associated with sequence U. U

A closed subset U/ of refinements can be applied to the base M IG Gy in any total order U that
extends the partial order, producing an M /G Gy at an intermediate resolution. An M MIG
encodes a collection of all representations of Morse complexes at intermediate levels of detail
which can be obtained from the base representation GG g by applying a closed set of modifications
on Gp.

From an M M IG it is thus possible to dynamically extract representations of the topology of an
n-dimensional scalar field in terms of the Morse complexes at uniform and variable resolutions.
The basic query for extracting a single-resolution representation from a multi-resolution model
is known as selective refinement.

A selective refinement query on an M M I G consists of extracting from it an M /G with the min-
imum number of nodes, satisfying some application-dependent criterion. This criterion can be
formalized by defining a Boolean function 7 over all nodes of an M M IG, such that the value
of 7 is true for all the modifications which satisfy the criterion, and false otherwise. An M IG
G = (N, A, @) obtained from a sequence of modifications U is said to satisfy a criterion if all the
modifications in the model that assumes the value ¢rue for 7 are in U. Thus, a selective refine-
ment query consists of extracting from the M M IG an intermediate graph of minimum size that
satisfies 7. Equivalently, it consists of extracting a minimal closed set ¢/ of modifications from
M such that the corresponding complex satisfies 7. Such closed set of modifications uniquely
determines a front graph, which is obtained from the base graph G = (Ng, Ap, i) by apply-
ing to it all modifications from ¢/ in any order that is consistent with the partial order defined by
the dependency relation.

In this context, the Boolean criterion 7 is defined based on persistence (see Section 2.2). Thus, a
persistence value is assigned to a refinement modification p that introduces a given pair of nodes
p and g. We say that a pair (p,q) satisfies Boolean criterion 7 if the persistence value associated
with the refinement introducing p and ¢ is greater than some prescribed value p.

We can have queries at uniform resolution, when we extract a topological representation in which
all the refinements performed have a persistence value greater than a predefined threshold value,
or at variable resolution, when we request a value of persistence which varies in different parts of
the domain. We have implemented a depth-first algorithm for performing selective refinement.
The algorithm starts from the coarse M G G and recursively applies to it all refinements p;
which are required to satisfy the error criterion. In order to apply a new modification p, all its
preceding modifications in the partial order need to be applied before p.

It can easily be proven that the result of a selective refinement algorithm is a graph Gy with

120



minimal number of nodes, which contains all nodes satisfying criterion 7. The three red lines
shown in Figure 5.2 indicate three representations extracted from the original descending Morse
complex encoded in the root of the M M IG.

5.1.1 Encoding a multi-resolution Morse incidence graph

In this section we describe two dimension-independent encodings for the multi-resolution Morse
incidence graph [CFI12]. The data structure includes the base graph G, the set of refinements
modifications and the dependency relations among them, represented through a Direct Acyclic
Graph (DAG). The simplicial mesh > decomposing the domain of the scalar field is encoded
through the IA data structure.

The two data structures, called implicit M M IG and explicit M M I G, differentiate in the way the
nodes involved in each refinement are encoded. In the explicit MMIG we encode all the nodes
involved in each refinement explicitly. This results in a efficient reconstruction of the sets R, S
and Z required by each refinement (see Section 4). On the other side, we tried to reduce the mem-
ory consumption of the whole data structure designing a more compact representation for sets
of nodes. The two encodings should represent the usual tradeoff between memory consumption
and runtime efficiency.

Both implicit and explicit M M IG store the base graph G g in their root encoded as an M /G (see
Section 3.1). Each node of the M M I G represents a refinement modification p = insert(q, p, p');
1 encodes information about the refinement as well as its dependencies from the other nodes.

The information stored for each node 1, in both the implicit and explicit representations, are:
e the index of the vertices ¢ and p in the data structure encoding the underlying simplicial
mesh >;
e the pointer to the M M IG node corresponding to the modification p’ introducing p';
e the persistence value representing the resolution level of y;

¢ a flag indicating the type of refinement (which can be insert; ; 11, or insert; ;_;), and the
value of 7 (in 3D it can be equal to 1 or 2, while in 2D 7 is always equal to 1);

e two integers indicating where to split the list of cells (0-cells or n-cells), corresponding to
the Morse top cell associated with p/, to correctly initialize the cell associated with p; this
only happens when p and p’ are nodes corresponding to extrema.

e an array, called ancestors, containing the pointers to the parent of p

e an array, called descendants, containing the pointers to the children of .
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These information identify the refinement operator represented by the M M I G node .

Both our data structures encoding the M M I G are built by starting from the MG G = (G, N, p)
describing the Morse complexes at the finest resolution. A sequence of simplifications is applied
on (G in increasing order of persistence until there are no more feasible simplifications, or the size
of the resulting M IG is below a predefined threshold. Information about all the simplifications
performed are saved in a stack. Each element of the stack represents a generic remove; ;41( or
remove; ;_1) and stores all the nodes of G involved in the simplification. Once there are no more
feasible simplifications, the base graph G at the coarsest resolution, is stored in the root of the
DAG. To perform the refinement correctly we need to represent the set of nodes involved in the
refinement (sets R, .S and Z). On their representation the two data structures are different.

In the explicit data structure, nodes in R, S and Z are encoded explicitly for each M M IG node
in the structure. During the building process, a new node in the MM IG is created for each
element in the stack. The type of the node is initialized based on the type of the simplification
operator, and also the nodes p and ¢ deleted by remove operator and the pointer to the third node
p’ are encoded. Then, all nodes in sets Z, R and S are explicitly referred to a pointer (4 bytes per
node) and one list of pointers is stored for each set R, Z and S. The resulting structure allows
for a faster application of the refinement modifications since, for each modification, the sets R,
7 and S are ready to be used. The resulting storage cost for the nodes in sets R, S and Z in the
explicit data structure is equal to 4| RSZ| bytes, where | RS Z| indicates the number of nodes in
sets R, S and Z.

On the contrary, the M IG nodes encoded in the implicit data structure try to represent nodes in
the sets 12, Z and S in a implicit manner referring to the M M I G nodes introducing them or the
base graph if present in GG g from the beginning. Intuitively, each node in the front graph G, on
which the refinement o will be performed, has been inserted in GGy from another refinement y;
or it was in the base graph G'z.

To implicitly refer the nodes introduced by another modification, in each M M IG node j a two-
bit-flag vector pg-ancestors with the same size as ancestors is defined. Let us consider the re-
finement . = insert(q, p, p’) depending from a refinement ancestors(j| = py = insert(q, p1, p}),

- pq — ancestors[j] = 0 if p depends from node p; introduced by i

- pq — ancestors[j] = 1if p depends from node ¢ introduced by 11q

- pq — ancestors[j] = 2 if p depends from both p; and ¢;.
Thus, vector pq — ancestors|j] offers a compact way to refer nodes introduced by other M M IG
nodes. When the nodes to refer to are in the base graph G'g, three bit vectors are stored in
MM IG node p.. Let k the dimension of node ¢ introduced by i = insert(q, p,p'):

- bit vector Bz, has a length equal to the number of (k — 1)-nodes in G g,
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- bit vector Bpg, has a length equal to the number of £-nodes in Gz,

- bit vector Bg, has a length equal to the number of (£ — 1)-nodes in G'p.

For each bit vector (i.e., By), the j-th bit flag is equal to 1 if the j-th (i — 1)-node of G is
in Z for modification u. Bp and Bg are similarly defined. Vector pg-ancestors, bit vectors
By, Br and Bg, and array ancestor provide an implicit encoding of sets 12, Z and S required
from modification p. These latter sets are reconstructed when applying the modification in the
extraction phase.

The implicit data structure is built, similarly to the explicit one, by starting from the M IG G =
(G, N, ) describing the Morse complexes at the finest resolution. A stack of simplifications
is constructed iteratively by applying the remove operators in a sequence. Once there no more
feasible simplifications are feasible, the base graph GG at the coarsest resolution is stored in the
root of the MM IG.

For each element in the stack, a new node in the M MIG is created, the type of the node is
initialized based on the type of the simplification operator. Also nodes p and ¢ deleted by remove
as well as the pointer to the third node p’ are encoded. Then, the following process is repeated
for all nodes in sets Z, R and .S. For each node p;, belonging to any of these sets:

e if p; belongs to GG g, we set its corresponding bit in the bit vector (B, Bg or Bg) to 1;

e otherwise we store in ancestors a pointer to the modification p; in the M MG that in-
troduces p; and we insert in the corresponding position in pg-ancestors the value 0,1 or 2
depending on whether ;1 depends on first, second or both M I G nodes introduced by .

The storage cost for each M M IG node in the implicit data structure depends on the number of
nodes in sets R, S and Z and on the number of nodes in the base graph G . Specifically, for
each M M IG node, it requires:

e 1 bit for each node in N, with a total cost of £|Np| bytes, where | Np| is the total number
of nodes of Gp,

e 2 bits for each node in R U S U Z, total cost 1| RSZ| byte, where |[RSZ| is the cardinality
of set RUS U Z.

Thus, to encode such nodes in the implicit data structure 4 (|G| + 2|RSZ]) bytes are required.
Then, comparing the two storage costs, the implicit data structure is more efficient in terms of

memory requirements when, approximating the number of nodes in the base graph, |G| <
30|RSZ|.
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removal, (q ,p ,p’) removal, (9,.p,,p) removal, (q,.p,.p))

Figure 5.3: (a) 2D descending Morse complex, dotted lines delineate diamonds associ-
ated to 1-saddles; (b) After remove;s(q,p,p’); after remove;o(qi,p1,p)) and (c) after

removel,o(QQ, b2, p’z)

5.1.2 Comparison with other approaches

As mentioned in Section 2.3, to the extent of our knowledge, the only approaches proposed in the
literature for hierarchical representation of Morse or Morse-Smale complexes are for 2D scalar
fields. We compare the 2D instance of the M M IG with two hierarchical representations for
Morse-Smale complexes in [BHEPO4] and in [BPHO09].

The two approaches are based on the cancellation operator [EHZ01, Mat02] which in 2D reduces
to a remove operator. It eliminates a saddle and a maximum (remove; ), or a saddle and a min-
imum (remove; o). In both [BHEP04] and [BPH09], a dependency relation between refinements
is defined in terms of a diamond. The diamond associated with a refinement insert, »(q, p,p’)
is a quadrangle z1, p, 22, p/, where z; and z; are the two (not necessarily distinct) minima con-
nected to 1-saddle ¢ (see Figure 5.3 (a)). Dually, in the diamond associated with a refinement
insertyo(q,p,p’), z1 and 2z, are the two maxima connected to ¢. The dependency relation is
defined as follows: two refinements are dependent if the associated diamonds have at least one
vertex in common [BHEPO4], or if they share an edge [BPH09]. The dependency relation in
[BPHO9] is clearly less restrictive and creates less dependency than the one in [BHEPO4].

We compare the two approaches with the M M IG. The dependency relation defining the M M IG
is less restrictive than the one in [BHEPO4]. If a refinement insert(q, p, p’) depends on a refine-
ment insert(s,t,t') inthe MM IG, then the associated diamonds share a vertex in {s, 1} N, , #
(). There is no containment relation between the dependency relation in the M M IG and the one
in [BPHO9] in the sense that we cannot say which one is more restrictive than the other.

Figure 5.3 shows a sequence of simplifications consisting of remove; 2(q, p, p'), remove; o-
(q1,p1,p}) and removes o(qa, p2, Py). Let 1 = insertio(qu, p1, ph), po = insert: o(qa, p2, vh)
and p3 = insert; o(q, p,p’) be the inverse refinements. The diamonds associated with saddles
q (refinement y3) and g (refinement y5) have one common vertex p, and the diamonds associ-
ated with saddle ¢ (refinement y3) and ¢; (refinement 1;) have two common vertices, p| and p'.
Refinement y3 directly depends on i1, and does not depend on 9, in the approach in [BPHO09].
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Dataset MIG MMIG MMIG MMIG

name cost cost nodes  building
EGGs 0.003  0.002 38 0.08
MATTERHORN 0.17 0.38 2110 3.17
MONVISO 0.17 0.33 2236 2.8
MONT BLANC 0.21 041 2472 4.37
LAKE MAGGIORE (.32 0.7 4783 9.57
Bucky 0.05 0.07 394 4.42
HYDROGEN 0.37 0.65 1437 77.5
VISMALE 3.6 3.5 3584 791.2
ANEURISM 0.6 9.1 6362 1803.6

Table 5.1: Experimental results obtained by using implicit data structure for representing the
M MIG of 2D and 3D data sets. The storage costs are expressed in Megabytes and the times in
seconds.

In the M MG, refinement p3 depends on pio, since 1-cell ¢, is on the immediate boundary of
2-cell p’ (1-node ¢ is in the set R for i3 = insert; 2(q, p, py)), while p15 does not depend on 4,
since none of the cells p, and ¢, is on the immediate boundary or the immediate co-boundary of

porq.

5.1.3 Experimental results

Experiments have been performed on the M M IG to estimate the overhead of the implicit data
structure implementing the M M IG with respect to storing the M /G at full resolution, the cost
of generating an M M IG' and the time required for extracting adaptive representations from an
MMIG. All the experiments have been performed on a 3.2GHz processor with 2.0Gb memory.
In Appendix A a description of the datasets used as well as a description of their origin can be
found.

In Table 5.1 results are shown on the size of the M M IG and on construction times for terrain
(first five datasets) and volume data sets (last four datasets). In the first two columns (M I G cost
and M M IG cost), the storage costs of the M G at full resolution and of the M M IG (encoded
as implicit MMIG) are shown, in the third column (DAG nodes) the number of nodes in the
MM IG is shown. The fourth column (M M IG building) shows the time required for building
the MMIG from the MIG at full resolution. It can be noticed from these results that the
M M IG encoding structure requires often twice the space than the data structure encoding the
M IG, but for some data sets (EGGS in 2D, VISMALE in 3D), the storage cost of the M MIG
is the same as the one of the M IG. The variation of these values depends on the complexity
of the intermediate MIGs encountered during the simplification step. The more the degree of
connectivity of the graph the more incidence relations are encoded in the M M IG augmenting
the storage cost.
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Dataset Implicit Data Structure Explicit Data Structure

name cost time cost time
Eggs 0.002 0.01 0.003 0.01
Matterhorn 0.38 2.85 0.47 2.65
Monviso 0.33 2.2 0.45 2.09
Mont Blanc 0.41 4.03 0.56 4.02
Lake Maggiore 0.7 8.68 0.81 8.05
Bucky 0.07 1.19 0.12 0.0
Hydrogen 0.65 12.2 1.46 7.0
VisMale 3.5 206.7 12.7 118
Aneurism 9.1 1472.9 32.0 1300

Table 5.2: Comparison between the implicit and explicit data structures in the 2D and 3D case.
Storage costs are expressed in Megabytes and times in seconds.

We evaluate here the gain in query time and the loss in storage space when using the explicit data
structure instead of the implicit one discussed (Section 5.1.1). In Table 5.2, results are shown for
2D and 3D data sets. The first two columns show the storage cost (in MB) of the M M I G and the
time (in seconds) required to extract the M [ G at full resolution from the M M IG implemented
with the implicit data structure. The second two columns show the same data for the explicit one.
The explicit data structure requires 20-30% more memory with respect to the implicit one in 2D,
but differences are higher in the 3D case, where the explicit data structure requires three times
more memory then the implicit structure. On the other hand, the direct access to the nodes in sets
Z, S and R for each modification p speeds up the navigation inside the explicit data structure,
and thus we obtain lower (in 3D considerably lower) extraction times.

In Tables 5.3 and 5.4, some results are shown obtained by applying the selective refinement
algorithm for extracting representations at different levels of persistence applied to 2D and 3D
data sets, using the implicit data structure. We show also the ratio between the storage cost of the
extracted M I G with respect to the M I G at full resolution to give some insight on the complexity
of the result and on the extraction times. In our experiments, we have seen that more than 20%
of the extraction time is due to associating the geometry of the descending and ascending cells to
the extracted maxima and minima, respectively. As it can be noticed from Table 5.3, time needed
to extract representations at variable resolutions can be relevant. We can distinguish between two
main objectives when extracting a representation at different level of details:

- to reduce the complexity of the MG, for further computations, by reducing the detail
where not needed without loss of detail in the interesting area;

- to localize details on the M I G for visualization.

Considering the extraction times presented, the first point can greatly benefit from the M MIG
since further computations can be very challenging on the original M IG. Algorithms computing
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Name Pers. Extracted MG Time

- 100 % 0.01
Eggs 10 20% 0
4 63% 0
1 85% 0
- 100% 2.85
500 32% 0.8
MatterHorn 100 549 13
1 96% 2.02
- 100% 4.03
200 22% 1.0
Mont Blanc 5 46% 21
1 88% 3.6
- 100% 2.2
Monviso 200 18% 0.03
50% 0.9
1 78% 1.8
- 100% 8.68
. 1500 24% 2.3
Lake Maggiore 5 43% 432
1 82% 7.02

Table 5.3: Selective refinement on 2D data
sets: in the first column, we show the per-
sistence value; in the second column, we
show the ratio between the storage cost of
the extracted M IG and that of the MIG
at full resolution, in the third column, we
show extraction times.

(a) (b)

Dataset  Persistence Extracted M /G  Time

name (sec.)
- 100% 122
150 9% 0.02
Hydrogen 130 70% 7.1
120 90% 8.0
- 100% 1.19
1000 27.8% 0.01
Bucky 250 60% 0.5
50 98% 0.93
- 100% 1472.9
Aneurism 250 21% 120.2
200 79% 1325.5
0.1 98% 1451.1
- 100% 206.7
. 150 13% 30.1
VisMale 130 40% 150.4
1 89% 176.1

Table 5.4: Selective refinement on 3D data
sets: in the first column, we show the per-
sistence value; in the second column, we
show the ratio between the storage cost of
the extracted M IG and that of the MIG
at full resolution; in the third column, we
show extraction times.

(d)

Figure 5.4: Representations extracted from the scalar field of the BUCKY dataset shown in (a). In
(b) the coarse MIG is shown and in (b) and (c) the MIG extracted after 250 and 400 refinements
respectively. Blue dots corresponds to minima, green dots to 1-saddles, purple dots correspond

to 2-saddles and red dots to maxima.



(a) (b) (d)

Figure 5.5: Representations extracted from the scalar field of the BONSATI dataset shown in (a).
In (b) the coarse MIG is illustrated and in (b) and (¢) the MIG extracted after SK and 10K
refinements respectively. Blue dots corresponds to minima, green dots to 1-saddles, purple dots
correspond to 2-saddles and red dots to maxima.

(a) (b)

Figure 5.6: The descending Morse complexes encoded in the coarsest resolution MIG (a), the
full resolution MIG (b), and the MIG at intermediate resolution (c¢) for the MATTERHORN 2D
terrain data set.

(a) (b) () (d)

Figure 5.7: The original scalar field (a), the coarsest resolution MIG (b), the full resolution MIG
(¢), and the MIG at intermediate resolution (d) for the HYDROGEN 3D data set.
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the Morse-Smale complex for example, as discussed in Section 2.1, can massively benefit from
a reduced input. From the visualization points of view instead, further improvement should be
done for reducing the extraction time. Building a spatial index on the M M IG we should be able
to reduce the selective refinement query using a bottom-up traversal of the M M I G for selecting
the interesting refinement. Based on such index, we could also develop a parallel implementation
working on independent subsets of the M /G at the same time. However, we are not going to
pursue any of these ideas in the immediate future since we are mainly interested in reducing also
the complexity of the underlying geometry of these dataset which are generally huge.

In Figure 5.5 and 5.4 the result of a selective refinement, extracting representation of the BON-
SAT and BUCKY dataset at uniform levels of resolution, are shown. Results of applying the
selective refinement algorithm at variable resolution are shown in Figure 5.6 and Figure 5.7 for
the MATTERHORN 2D data set and the HYDROGEN 3D data set, respectively.
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Chapter 6

Hierarchical Cell Complex and Homology
Computation

In this Section a hierarchical model for cell complexes, called the Hierarchical Cell Complex
(HCC), is described. The model consists of a hierarchy of combinatorial representations of a
cell complex in the form of an Incidence Graph (I(G) based on Euler operators. We have defined
and applied such model for computing homology and homology generators efficiently on a cell
complex.

A Hierarchical Cell Complex (HCC) [CFI13a, CFI13c] is generated from an n-dimensional
cell complex I at full resolution by iteratively applying simplification KiC'(i+ 1)C operators. A
KiC(i+1)C, Kill i-cell (i+1)-cell is an Euler homology-preserving operator for cell complexes.
A homology-preserving operator changes the number of cells in the complex ' without modify-
ing the Betti number of the complex. The updates performed by a KiC'(i+1)C operator on a cell
complex I' are the same as the updates performed on a Morse complex by the remove; ;4 oper-
ator, described in Section 4.1, and their feasibility conditions coincide. A rigorous description of
such operators can be found in [CFI13a]. We will present a new set of homology-preserving and
homology-modifying operators for cell complexes in Section 6.2 and we will compare them with
the other Euler operators known in literature. This work has been presented in [CFI13c¢]

Similarly to the multi-resolution model described in Section 5 an HC'C' is generated from a cell
complex I" applying in a sequence the homology-preserving operators, obtaining a complex ['p
(with fewer cells) called base complex. The set of refinements, inverse of the simplifications
performed, the dependency relation among such refinements and the base complex are the three
components of an homology-preserving hierarchical cell complex. We will describe this model
in Section 6.3.1.

By encoding the base complex I'p as an incidence graph we can extend the results obtained for
the Multi-resolution More complex (M RMC') 5.1 to the HC'C'. We will describe the effect of

130



the Euler homology-preserving operators on the front complex extracted from an HC'C' in Sec-
tion 6.2.3 comparing also the 2D instance of the H(C'C' with another hierarchical representation,
defined for images, the pyramidal model based on n-maps (see Section 6.3.1.1).

We have performed different simplification approaches for building an HC'C' and we have stud-
ied how different approaches affect the resulting hierarchy. Results obtained are discussed in
Section 6.3.1.2. Our hierarchy has been also applied to the homology computation by defining
a computation algorithm for the homology generators. Homology and homology generators are
computed on the base complex and then different cell complexes are extracted from the HC'C
increasing the level of detail globally or in a local subset of the domain. Homology generators,
computed on the base cell complex, are expanded as well during the extraction. The algorithm
defined to extract generators and the results obtained in computing homology on a cell complex
are presented in Section 6.3.2. These results are described in [CFI13c]

6.1 Background notions on homology

In this section we introduce some basic definitions (see [HatO1] and [For98] for a more rigorous
treatment).

Given a cell complex I, it is possible to define the chain complex associated with I', denoted as
Ci(T) := (Ck(T"), Ok ) kez, where VE Ci(T) is the free Abelian group generated by the k-cells of
the cell complex I" and 0y, : Cx(I") — Cy_1(I") is a homomorphism called boundary map which
encodes the boundary relations between the k-cells and the (k — 1)-cells of T such that 9 = 0.
We denote as Zj(I") := ker Jj, the group of the k-cycles of I" and as By (I") := 'm0y the group
of the k-boundaries of I". Then, we define the kth homology group of I' with coefficients in Z as

Zy(1)

Furthermore, given an arbitrary Abelian group A, we can define the kth homology group with
coefficients in A of I' as Hy(I'; A) := Hp(C.(I') ®z A), where ®g is the tensor product of
Abelian groups. If we consider A = Zy, Ci(I') ®z Zy := (Cy(T") ®z Zo, O ®z Zs)kez is the
chain complex whose groups C(I") ®z Z, are just the Z,-vector spaces generated by the k-cells
of I' and the homomorphisms 9, ®z, Z, are the boundary maps 0y, of I" considered modulo 2.

Computing the homology groups Hy(I'; Z,) of a cell complex I" with the coefficients in Zy, as
described in [HatO1], corresponds to compute the Betti numbers of I' with coefficients in Zs.
Moreover, for each k£ = 0,...,n, the homology generators of degree k, called H), generators,
can be computed. The H), generators are the generators of the Z,-vector space Hy(I'; Zy), and
they represent the independent non-bounding k-cycles in I'. Each Hj, generator of a cell complex
I' is a linear combination of k-cells in I" with coefficients in Zs.
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In Figure 6.9(a), two H; generators are shown as linear combination of 1-cells. The first genera-
tor is composed by a set of blue (bold) edges and the other one by a set of red (dotted) edges.

6.2 Homology-preserving and homology-modifying operators

In this section, we present the operators on cell complexes in arbitrary dimensions first introduced
in [CFI13c]. We show here that these operators form a minimally complete basis for the set of
all possible operators that modify cell complexes in a topologically consistent manner.

There have been many proposals in the literature for manipulating two- and three-dimensional
cell complexes. We describe here a minimal set of Euler operators on cell complexes in arbitrary
dimensions. We show here that these operators form a minimally complete basis for the set of
all possible operators that modify cell complexes in a topologically consistent manner.

These operators can be classified as:

e homology-preserving operators: KiC (i + 1)C (Kill i-Cell and (i+1)-Cell), which remove
an i-cell and an (i + 1)-cell,

e homology-modifying operators: KiCiCycle (Kill i-Cell and i-Cycle), which kill an i-cell
and an ¢-cycle.

There are in total n homology-preserving and n + 1 homology-modifying operators on a cell
n-complex I'.

The Homology-preserving operators KiC'(i + 1)C (Kill i-Cell and (i+1)-Cell) (simplification)
operators delete an i-cell and an (i + 1)-cell from the complex I'. We have operators of two
different types. Operator KiC(i + 1)C(q,p,p’) of the first type is feasible under the following
conditions:

e the (i + 1)-cell ¢ to be deleted is bounded by exactly two i-cells (the i-cell p to be deleted
and the i-cell p’ which will remain), and the i-cell p appears exactly once on the boundary
of the (i + 1)-cell ¢;

e the i-cell ¢ to be deleted bounds exactly two (i+1)-cells (the (i+1)-cell p to be deleted and
the (7 + 1)-cell p’ which will remain) and the i-cell ¢ appears exactly once on the boundary
of the (i + 1)-cell p.

In the first instance, denoted as KiC'(i + 1)C,o(q, p, p’) (contract), the effect of the operator is as
follows:
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Figure 6.1: Homology-preserving operators on a 2-complex: K1C2C,..(q,p,p’) (Kill 1-Cell and
2-Cell) (a); K1C2C,c(q1,p1,p)) (Kill 1-Cell and 2-Cell) (b); KOC1C,(q2, p2, ph) (Kill 0-Cell
and 1-Cell) (c).

e the i-cell p is replaced with the i-cell p’ on the boundary of each (i + 1)-cell r in the
co-boundary of the -cell p.

e if the i-cell p appears k times on the boundary of the (i + 1)-cell r, then k copies of the
(7 + 1)-cell g are merged into each (7 + 1)-cell 7.

Second instance, denoted as KiC'(i + 1)C..(q, p, p’) (remove), is completely dual. The effect of
the operator is as follows:

e the (i + 1)-cell p is replaced with the (i + 1)-cell p’ on the co-boundary of each i-cell 7 in
the boundary of the (i + 1)-cell p.

e if the (i + 1)-cell p appears k times on the co-boundary of the i-cell r, then k copies of the
1-cell g are merged into each i-cell r.

We give an alternative definition for KiC(i + 1)C/(q, p) operator when it involves only two cells.
KiC(i+ 1)C(q, p) is feasible under the following conditions:

e the (i + 1)-cell ¢ (to be deleted) is bounded only by the i-cell p, which will be deleted as
well (KiC'(i + 1)Ceo(q, p));

e the i-cell ¢ (to be deleted) bounds only the (i + 1)-cell p which will be deleted as well
(KiC (i + 1)Cre(q, p))-

In both cases, the deleted i-cell appears exactly once on the boundary of the deleted (i 4 1)-cell.
The effect of the operator is to delete both cells from the complex.

Figure 6.1 illustrates a sequence consisting of operators K1C2C,.(q, p,p’), K1C2C,. (q1,p1,D})
and K0C1C,, (g2, p2, py) in 2D. K1C2C,.(q,p,p’) removes 1-cell ¢ and 2-cell p similarly to
K1C2C,.(q1,p1,p}), which removes 1-cell ¢; and 2-cell p;, while K0C1C,,(q2, p2, ph) col-
lapses 1-cell ¢o and O-cell p, into O-cell pl,. Figure 6.2 illustrates a sequence consisting of oper-
ators K2C3C,. (q,p,p’) and K1C2C,. (q1,p1,p}) in 3D. K2C3C,. (q,p,p") removes 2-cell ¢
and 3-cell p, while K1C2C,.. (q1, p1,p}) removes 1-cell ¢; and 2-cell p;.
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(a) (b) ()

Figure 6.2: Homology-preserving operators on a 3-complex: K2C3C,..(q,p,p’) (Kill 2-Cell and
3-Cell) (a); K1C2C,.(q1, p1, py) (Kill 1-Cell and 2-Cell).

Inverse (refinement) operators MiC (i + 1)C change the number of cells in cell complex I" by
increasing the number |I';| of i-cells and the number |I'; 1| of (i + 1)-cells by a unit. We have
proven, by using discrete Morse theory [For98], that these homology-preserving operators do
not change the Euler characteristic, or the Betti numbers of the cell complex with respect to any
Abelian group. The proof can be found in [CFI13c]. There are two types of homology-preserving
operators, each of which has two distinct instances.

Operator MiC(i 4+ 1)C of the first type has the following two instances:

e the first instance, that we denote as MiC(i 4+ 1)C..(q, p,p’) (expand), subdivides the ex-
isting i-cell p’ into two by splitting its co-boundary, and creates (i + 1)-cell ¢ bounded by
the two i-cells p and p';

e the second instance, that we denote as MiC(i + 1)Ci,(q, p,p') (insert), subdivides the
existing (i + 1)-cell p’ into two by splitting its boundary, and creates the i-cell g separating
the two (7 + 1)-cells p and p'.

In both cases, the new i-cell appears exactly once on the boundary of the new (i + 1)-cell.

For a 2-complex I' embedded in [E3, the homology-preserving operators are usually called M EV
(Make Edge and Vertex) and M E'F' (Make Edge and Face), which correspond to M0C'1C" and
M1C2C, respectively. For a 3-complex I' embedded in E3, there is an additional homology-
preserving operator, M F'V'| (Make Face and Volume (3-Cell)) which creates a new 2-cell and a
new 3-cell. It is the same as M2C'3C.

The alternative definition for the MiC(i+1)C operator works only on two distinct cells (MiC (i+
1)C(q,p)). It creates an i-cell ¢ and an (i + 1)-cell p bounded only by the i-cell ¢ (MiC(i +
1)Cin(gq, p)), or dually, it creates an (i + 1)-cell ¢ and an i-cell p bounding only the (i + 1)-cell ¢
(MiC(i + 1)Cea(g; p))-

Homology-modifying operators change the number of cells in a complex I' plus its Betti number
and Euler characteristic. Homology-modifying operator MiC'iC'ycle increases the number n; of
1-cells and the number [3; of non-bounding i-cycles by one. It is feasible on a complex I if all the
cells on the boundary of the cell to be created are in I'. The inverse KiCiCycle (Kill i-Cell and
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Figure 6.3: Homology-modifying operators on a 2-complex in E3: MV 0Cycle (Make Vertex and
0-Cycle) (a); M E1Cycle (Make Edge and 1-Cycle) (b); M F2Cycle (Make Face and 2-Cycle)

(c).

i-Cycle) operator deletes an ¢-cell and destroys an z-cycle, thus decreasing the numbers n; and j3;
by one. It is feasible on a cell complex I if the co-boundary of the cell to be deleted is empty.

For a 2-complex I" embedded in E3, the homology-modifying operators (illustrated in Figure 6.3)
are also called MV 0Cycle (Make Vertex and 0-Cycle), M E1Cycle (Make Edge and 1-Cycle)
and M F2C'ycle (Make Face and 2-Cycle). Operator MV 0Cycle creates a new vertex and a
new connected component, it increases by one the number of vertices (0-cells) and the zeroth
Betti number ,. It is used as an initialization operator to create a new complex ['. Operator
M E1Cycle creates a new edge and a new 1-cycle, thus increasing both the number of edges
(1-cells) and the first Betti number [3; by a unit. Operator M F'2Cycle creates a new 2-cell (face)
and a new 2-cycle, thus increasing the number of 2-cells and the second Betti number 35 by a
unit. When considering a 3-complex I embedded in [E3, the homology-modifying operators will
be the same as for 2-complexes, since in this case the third Betti number (3 is null.

6.2.1 Minimality and completeness

The operators described in Subsection 6.2 form a minimally complete set of basis operators
for creating and updating cell n-complexes. To prove this fact, we interpret such operators as
ordered (2n+2)- tuples (o, x1, .., Tn, Co, C1, -, C,) In an integer grid, belonging to the hyperplane

II: Z( 1), Z( 1)’c; defined by the Euler-Poincaré formula. The first n + 1 coordinates

=0
denote the number of i-cells created or deleted by the operator, depending on the sign of the
coordinate, while the last n+1 coordinates denote the change in the Betti numbers of the complex
induced by the operator. Operator MiC(i + 1)C, 0 < i < n — 1, has coordinates

Ty = Tjyr1 = 1,Ij = 0,] € {0, 1, ,n}\{z,z + 1},Cj = 0,] € {0, 1, ,TL}

Operator MiCiCycle, 0 < i < n, has coordinates
€T, = C = 1,!13]' =C; = O,] S {O, 1, ,n}\{z}

We will show that:
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(1) the 2n + 1 (2n + 2)-tuples corresponding to our operators are linearly independent, and

(74) any (2n + 2)-tuple in the hyperplane II can be expressed as a linear combination of 2n + 1
(2n + 2)-tuples corresponding to our operators,
which will imply the claim.

A linear combination

n—1 n
> aMiC(i+1)C + Y - B;MiCiCycle

=0 =0
vanishes if and only if

(Oég,(l/o,o, cey O) + (0,0&1,0[1, ,0) + ..+ (0, ..O,ozn_l,ozn_l,O, .oy O)—|—
(60707 ”70750707 70) + (Oyﬁbov ”70761707 7O> +..+ (07 -*70767”07 e 07ﬁn) = 07

which is equivalent to

(oo + Bo, o+ aq + Prya1 + s + Bay ooy o + 1 + Bu—1, @1 + B Bo, b1, -, Bn) = 0.

It follows that a; = 0,0 < i <n—1, 5; = 0,0 < ¢ < n, implying that the tuples corresponding
to our operators are linearly independent.

A tuple (ag, ay, .., an, bo, by, .., by) in the hyperplane II (i. e., such that > (—1)‘a; = > (—1)%;)
=0 i=0

can be expressed through the 2n + 1 independent (2n + 2)-tuples corresponding to our operators

as

n—1 n
> aMiC(i+1)C + Y B MiCiCycle

=0 i=0

if
(g + Bo, a0+ 01 + P1,00 + g + PBa, .., a2 + a1 + Bn_1, 1 + B, Bo, s -, Bn)
= (a07 Qay, .., Qn, bOa b17 sy bn)

It follows that

Bi =b;,0<i<n,
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and
g = ag — bo,
o) = a; — by —ap = (a1 — ag) — (b — bo),
ay =as —by—ay; = (ag —a; +ag) — (bg — by + by), -,
Apo1 = (a1 —apo+ ..+ (=1)"ag) = (bp_1 — bp—2+ .. + (—=1)"by) = a,, — b,.

In ShOI't, o; = E(—l)i_jaj - Z(—l)i_jbj, 0 S 7 S n—1 (Oén_l = Qp — bn) and ﬁz = bi,
7=0 j=0

0 < ¢ < n. Thus, each operator satisfying Euler-Poincaré formula on a cell complex I' can be

expressed as a linear combination of our operators.

In the space (hyperplane) of dimension 2n + 1, a generating set consisting of 2n 4 1 independent
tuples forms a basis for the hyperplane.

6.2.2 Comparison with homology-preserving operators and handle opera-
tors

Virtually all proposed sets of basis Euler operators on 2D and 3D cell complexes contain M £V
(Make Edge and Vertex) and M E'F' (Make Edge and Face) operators, which are the same as our
MOC1C (Make O-cell and 1-cell) and M 1C2C (Make 1-cell and 2-cell) homology-preserving
operators, respectively.

Several homology-modifying operators have been proposed for manifold 2-complexes bounding
a solid in [E3, called boundary models. In these models, there is only one implicitly represented
volumetric cell (corresponding to the cavity determined by the complex), which is not necessarily
a topological cell.

The glue operator in [EW79] merges two faces and deletes both of them. It corresponds to the
connected sum operator on manifold surfaces. If the two glued faces belong to two different
shells, one shell is deleted (3, is decreased by one). If the two glued faces belong to the same
shell, a handle (genus) is created (/; is increased by two).

In [BHS80, MS82, Man88], the topology-modifying operator is called M RK I’ (Make Ring, Kill
Face). It is similar to the glue operator in [EW79], but it imposes less restrictive conditions on
the glued faces, and it deletes only one of the faces.

Homology-modifying operators defined for non-manifold 2-complexes in E3 [LLO1] are called
M ECh (Make Edge and Complex Hole), M F K C'h (Make Face, Kill Complex Hole) and M FC'c
(Make Face and Complex Cavity). They are the same as our operators M 1C'1Cycle, M2C K1C'y-
cle (Make 2-Cell Kill 1-Cycle, which can be expressed as K 1C1Cycle, M1C2C') and M2C2Cy-
cle, respectively. For 3-complexes in E? [MSNK89, Mas93], an additional homology-modifying
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operator is defined, called MVIKCc (Make Volume, Kill Complex Cavity). It is the same as
M3CK2Cycle (Make 3-Cell, Kill 2-Cycle) operator, and can be expressed as K2C2Cycle,
M2C3C.

In [GomO4], the operators in [MSNKS89] have been extended to complexes called stratifications,
in which cells, called strata, are defined by analytic equalities and inequalities. The cells are
not necessarily homeomorphic to a ball, and they may have incomplete boundaries. Among
the operators on stratifications proposed in [Gom04], operators on topological cells with com-
plete boundaries can be classified as homology-preserving operators (called cell subdividers) and
homology-modifying ones (called global hole shapers). Both types of operators are instances of
the operators we proposed here.

A cell subdivider subdivides an i-cell by inserting into it an (¢ — 1)-cell. This operator is equal
to the M (i — 1)C'iC operator.

A global hole shaper either attaches or detaches a cell, thus creating a hole. There are two in-
stances of this operator: the attached topological ¢-cell creates an ¢-hole or the detached topolog-
ical i-cell creates an (i — 1)-hole. The first instance of this operator corresponds to MiCiCycle.
The second instance corresponds to KiC M (i — 1)Cycle (Kill i-Cell, Make (i-1)-Cycle), and can
be expressed as M (i — 1)C(i — 1)Cycle, K(i — 1)CiC.

The inverse homology-modifying operators attach or detach a cell, thus deleting a hole. They
correspond to KiCiCycle and MiC K (i—1)Cycle (inverse to KiC M (i—1)Cycle), respectively.

(Homology-modifying) handle operators on a manifold cell 2-complex I triangulating a surface
S have been introduced in [LPT*03]. They are based on handlebody theory for surfaces [Mat02],
stating that any surface .S can be obtained from a 2-ball by iteratively attaching handles (0-, 1-
and 2-handles).

Attachment of a 0-handle is also an initialization operator. It creates a new surface with one face,
three edges and three vertices. It can be expressed as M 0C0Cycle operator, two M0C1C oper-
ators and one M 1C2C operator, which together create a triangle. The operator that corresponds
to attaching a 1-handle identifies two boundary edges of I' (incident in exactly one face) with no
vertices in common. The operator that corresponds to the attachment of a 2-handle identifies two
edges on the boundary of I with two vertices in common. They can be expressed through our
operators in a similar manner.

Handle operators have been extended to 3D in [LT97]. The operator that creates a new 3-ball
(initialization operator) corresponds to the attachment of a 0-handle. Other operators identify
two boundary faces (incident in exactly one 3-cell) of a cell 3-complex I triangulating a solid
S. The attachment of a 1-handle (2-handle or 3-handle) can be applied if the two identified
boundary faces have no edges (some edges or all edges) in common. The handle operators in
3D generalize the glue operator in [EW79]. They can be expressed in terms of our operators in a
similar manner.
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6.2.3 Topological operators on the incidence graph

It can be noticed that the homology-preserving operators are equivalent to the updated operator
defined in Section 4.1 for Morse complexes. In particular, KiC(i + 1)C, operator is equivalent
to remove(; ;1) operator while KiC' (1 + 1)C,. operator is equivalent to TEMOVE(; 41y OPErator.
Similarly to what we have done in Section 4.2, we have considered the effect of homology-
preserving and homology-modifying operators on the incidence graph structure G = (N, A, ).
KiC(i + 1)C operator deletes an i-node and an (i + 1)-node from NN, and suitably reconnects
the remaining nodes.

The contract operator, KiC(i + 1)C.,(q,p,p’), is feasible on incidence graph G = (N, A) if
(7 + 1)-node ¢ is connected to exactly two different i-nodes p and p’, and there is exactly one arc
in A connecting (i + 1)-node ¢ and i-node p (¢((g,p)) = 1).

e It deletes nodes p and ¢, all the arcs incident in (7 + 1)-node ¢ and all the arcs incident in
i-node p and connecting p to (i — 1)-nodes, and it replaces all the arcs incident in i-node p
and connecting p to (i + 1)-nodes with arcs connecting i-node p’ to the same (i + 1)-nodes.

e The label ¢'((p',r)) after KiC(i + 1)Ceo(q, p, p') is increased by the product of the label
of the arc connecting nodes p’ and ¢ and the label of the arc connecting nodes p and r.

The removal operator KiC'(i + 1)C(q, p, p') is dual.

The inverse MiC(i + 1)C operators on graph G = (N, A, ) insert two nodes in /N and arcs
incident in them in A. MiC'(i + 1)C..(q, p,p’) is specified by

e the two nodes ((i 4 1)-node ¢ and i-node p) to be inserted;

e i-node p’ that is the only i-node (except for i-node p); that will be connected to (i+ 1)-node
q;
e the (i + 2)-nodes that will be connected to (i + 1)-node g¢;

e the (i — 1)-nodes and (i + 1)-nodes that will be connected to i-node p, together with the
multiplicity (labels ') of all the inserted arcs.

MiC(i + 1)Cer(q,p, ') is feasible if all the specified nodes are in IV, and the label o((p', 7))
before the refinement for each (i + 1)-node r that will be connected to i-node p is greater than or
equal to ©'((p',q)) - &' ((p,r)). Its effect is to add nodes p and ¢ in N and all the specified arcs in

Aandtoset ¢'((p',7)) = o((p',r)) — ¢ (¥, 0)) - &' ((p, 7))
The second instance MiC(i + 1)Cy, (g, p, p’) has a completely dual effect.
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The effect of homology-modifying operators on the incidence graph G = (N, A) is as follows.
Operator KiCiCycle(p) deletes i-node p and all the incident arcs from the graph. It is feasible if
i-node p is not connected to any (i + 1)-node in N. The inverse MiC'iCycle(p) operator creates
i-node p and arcs connecting it to (¢ — 1)-nodes. It is specified by (i — 1)-nodes that will be
connected to ¢-node p, together with the multiplicity () of the corresponding arcs. It is feasible
on the incidence graph G = (N, A) if all the (¢ — 1)-nodes to be connected to p are in N.

6.3 The Hierarchical Cell Complex (HCC)

In this Section, we introduce a hierarchical model for a cell complex, that we call a Hierarchical
Cell Complex (HCC), and we discuss its major properties. We define an HCC' in terms of the
refinement operators introduced in Section 6.2.

A Hierarchical Cell Complex (HCC') is generated from a n-complex I' at full resolution by it-
eratively applying simplification operators KiC'(i + 1)C and KiCiCycle. By applying first the
homology-preserving operators, we obtain a complex I having the same homology as the origi-
nal complex I" but with fewer cells and such that no homology-preserving operator is feasible on
I". By applying next the homology-modifying operators to iteratively remove the cells of IV, the
homology is affected at each step and the process is repeated until all the cells in the complex
but one have been deleted. At each step, when we apply a homology-modifying operator, we
remove a top cell from the complex. After each application of a homology-modifying operator,
we perform feasible homology-preserving ones.

We call the application of a simplification operator a simplification modification. The complex
obtained as the result of the simplification sequence (see Figure 6.4), is the coarsest representa-
tion of the original cell complex I'. We denote such coarsest complex as I'g. It represents the
first component of an HCC'.

The second component of an HC'C' is the set M of the refinement modifications which are
inverse with respect to the simplification modifications in that have produced I'g from I'. Each
refinement introduces new cells (two cells if it is homology-preserving, one if it is homology-
modifying).

The third component of an HC'C' is the dependency relation between the modifications in the
set M of all refinement modifications. We consider, for simplicity, the creation of the coarse
complex ['p as a dummy refinement modification that we denote as pg (i.e. o generates I'p).
We define the dependency relation between the refinement modifications in M as follows:

e a homology-preserving refinement i = MiC(i + 1)C, which creates cells p and ¢ and is
defined by the cells that will appear on the immediate boundary or co-boundary of either p
or q, directly depends on a refinement p*, if ©* creates a cell that will be on the immediate
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Figure 6.4: A sequence of simplifications applied on a cell complex to produce a coarsest repre-
sentation. 2-cells are illustrated in yellow, 1-cells are shown as black lines and 0-cells are the red
points. Cells deleted at each simplification are shown in blue.

boundary or co-boundary of p or q.

e a homology-modifying refinement i = MiCiCycle, which creates i-cell p and defined
by the (i — 1)-cells that will be on the immediate boundary of p, directly depends on a
refinement p*, if ©* creates a cell that will be on the immediate boundary of p.

An HCC is thus a triple (I'g, M, R), where R denotes the direct dependency relation defined
above. The dependency relation between refinement modifications is the transitive closure of the
direct dependency relation. It is a partial order relation, since a cell is never introduced twice
by the modifications in M. An HCC' can be naturally encoded as a Directed Acyclic Graph
(DAG@), in which the nodes encode the modifications in M, the root encodes the creation of the
base complex I'p (modification 1), and the arcs describe the direct dependency relation k.

In Figure 6.5 an example of the 7 C'C' built from the sequence of simplifications shown in Figure
6.4 is illustrated. The base complex I3 is indicated as the root of the model while the remaining
nodes store the refinement operations. An arrow connects two nodes when there is a dependency
relation among them.

Figure 6.6 shows the dependency relations among three different refinements extrapolated from
the hierarchical model shown in Figure 6.5. To perform refinement 7 a specific set of cells are re-
quired in the boundary and co-boundary of the newly introduced cells p and ¢q. The dependency
relations with refinements 4 and 5 assure that such cells will be present in the complex once
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Figure 6.5: HC'C model built from a sequence of simplifications. The root refinement corre-
spond to the base complex I'z. Remaining nodes indicate a refinement operation each one, with
the introduced cells colored in blue. Arrows represent the dependency relation.
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Figure 6.6: Dependency relation between the refinement 4,5 and 7 from the multi-resolution
model shown in Figure 6.5.

refinement 7 is performed. Refinement 4 reintroduces the 1-cell r; and O-cell z; required by re-
finement 7 while refinement 5 reintroduces the 0-cell z5. Remaining cells required by refinement
7 are in the base complex.

From an HC'C, a large number of complexes at intermediate resolution can be obtained by
applying sequences of refinement modifications in M to the base complex I's. A sequence
U = [uo, ft1, --, pi] is said to be feasible if each refinement y; in U is feasible on the complex
obtained from the base complex 'z by applying all the refinements preceding y; in U. For
a feasible sequence U = |[uo, i1, pbo, .-, fim) Of refinement modifications in M, the complex
obtained from the base complex I'p by applying U is called the front complex associated with U,
and we denote it as [';;. A front complex is a complex at an intermediate resolution.

The refinement modification x, which creates the cells p and ¢ (if ¢ is homology-preserving), or
the cell p (if 1 is homology-modifying) is feasible on a front complex 'y (at some intermediate
resolution) if and only if all the cells on the immediate boundary and co-boundary of the cells p
and ¢ (if 1 1s homology-preserving) or all the cells on the immediate boundary of the cell p (if
is homology-modifying) are in the complex I'y, i.e., if the sequence U that creates 'y from I'p
contains all refinement modifications on which x depends.

A large number of adaptive morphological representations can thus be extracted from an HC'C
defined by the triple (I'z, M, R) by considering the closed sets of refinement modifications in
M plus 1y under the dependency relation R. Recall that the dependency relation R is a partial
order relation, and thus it defines a closure operator on the set M of refinement modifications.
We denote a closed set of such refinement modifications as U. Set U implicitly defines complex
I'y representing an approximation of the original complex.

The set U = { o, f41, f12, ---, ptm } Of refinement modifications in M is closed with respect to the
dependency relation R if for each 7, 1 < ¢ < m, each refinement modification on which the re-
finement ; depends is in U. If the sequence U = [, ft1, ft2, --., im) Of refinement modifications
in M is feasible, then the set U = {1, 11, fi2, ---, ftm } 18 closed with respect to the dependency
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relation R.

Two feasible refinement modifications p; and p» on a complex are interchangeable if the se-
quence (1, o) of refinements (consisting of ;1 followed by 115) produces the same complex as
the sequence (fi9, 111) (consisting of ps followed by 111). Any two independent refinement modi-
fications y; and p9 are interchangeable. Thus, a closed subset U/ of refinement modifications can
be applied to the base complex Iz in any total order U that extends the partial order, producing
a complex I'y; at an intermediate resolution. An HC'C' encodes a collection of all complexes
at intermediate level of detail which can be obtained from the base complex I'p by applying a
closed set of modifications on I'g.

From an HCC' it is thus possible to dynamically extract representations of the original cell
complex I' at uniform and variable resolutions. The basic query for extracting a single-resolution
representation from a multi-resolution model is known as selective refinement. A selective
refinement query consists of extracting from an HCC' a complex with the minimum number
of cells, satisfying some application-dependent criterion. This criterion can be formalized by
defining a Boolean function 7 over all nodes of an HC'C', such that the value of 7 is true on nodes
which satisfy the criterion, and false otherwise. The same value of 7 is associated with the cells
created by the modification encoded in the node of the HC'C' (p and ¢ for homology-preserving
modification, p for homology-modifying modification). The selective refinement query consists
of extracting from the HC'C' an intermediate complex of minimum size among the complexes
encoded in the HC'C' that satisfies 7. Equivalently, it consists of extracting a minimal closed set
U of modifications in M, such that the corresponding complex satisfies 7. Such closed set of
modifications uniquely determines a front complex, which is obtained from the base complex
I'p, by applying to it all modifications from U/ in any order that is consistent with the partial
order defined by the dependency relation. Criterion 7 can be defined based on various conditions
posed on the cells in the extracted complex, like the size of the cell (which may be expressed as
the maximum distance between its vertices or the diameter of its bounding box) or the portion of
the complex in which full resolution is required (while in the rest of the complex, the resolution
may be arbitrarily low).

6.3.1 Homology-preserving HC'C

We have implemented a version of the HC'C' based on the homology-preserving operators and
on the incidence graph. The motivation for this choice is in the computation of homology and
homology generators at multiple resolutions. A sequence of homology-preserving operators
can be applied on a complex at full resolution, until no such operator is feasible, producing a
simplified complex with the same homology as the initial one. Homology and its generators can
be computed on the simplified complex, the root of the HC'C), using existing techniques based

on boundary matrices. Homology generators could then be extracted on any complex implicitly
encoded in the HCC'.
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We encode the initial full-resolution complex as an incidence graph. Thus, we show how the
operators defined in Section 6.2 are defined on the incidence graph and we discuss how we
encode the HC'C' based on such representation. Note however that our definition of the HC'C'is
independent of the specific implementation data structure. We have chosen the incidence graph
as the basis of our implementation since it can effectively and efficiently encode arbitrary cell
complexes in any dimension.

The HC'C'is encoded as a Direct Acyclic Graph (D AG). Its root represents modification i that
creates the base graph G and the complex ['p at coarsest resolution. The other nodes represent
refinement modifications in M and arcs represent direct dependency relations. The root stores
G as an incidence graph and the pointers to its child modifications that depend on 1. Each
node in the DAG encodes the two nodes p and ¢ created, a pointer to the node p’ (it can be
NULL) with the multiplicity of arc (g, p’), a list of pointers to the nodes that will be connected to
p or g with the multiplicity of the connecting arcs, dimension ¢ of g, the type of refinement, and
two sets of pointers (to parent and child nodes) encoding the direct dependency relation.

6.3.1.1 Comparison with pyramids on 2-maps

An alternative approach to hierarchical representation of cell complexes is a pyramidal model,
defined on quasi-manifolds represented as 2-maps [BK0O] and n-G-maps [SDLOS5]. The n-maps
[BKOO] and n-G-maps [Lie94] are data structures proposed for modeling cell complexes sub-
dividing quasi-manifolds in arbitrary dimensions. Quasi-manifolds are a subclass of pseudo-
manifolds. n-maps and n-G-maps are both implicit representations, in which the cells are repre-
sented through sets of incident abstract elements, called darts. The data structure implementing
n-G-maps occupies twice as much space as the n-maps data structure. In [DHO7], it has been
shown that the /G is more compact than the n-G-map. The storage cost of the /G (in the case

d
of manifold domain) and n-map encoding a simplicial complex 3 with n; i-cells is Y (i + 1)n;

i=1
and ng(d + 1)(d 4+ 1)! + ng(d 4 1)!, respectively.

Each level in a map pyramid is a map. The first level describes the initial full-resolution complex,
while the other levels describe successive reductions of the previous levels. The reduction is
obtained by applying the removal and contraction operators [DLO3]. In 2D, these operators
merge regions (2-cells) in the lower level into one region in the successive level (contraction
operators) and simplify the boundaries between the new merged regions (removal operators).

Compared with pyramidal models, the HC'C' has a wider representation domain, since it can
represent arbitrary cell complexes and this also is entirely supported by the encoding of the HC'C
as an incidence graph. This is true also if we restrict our consideration to homology-preserving
HCC's. Another important advantage of the HC'C' is its greater adaptivity, and thus the larger
number of complexes that can be extracted from it. In a map pyramid, a contraction kernel at
level k describes a set of cells that are merged into one cell from one level of the pyramid to the
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next one. This merging (a set of contractions) can be seen as a macro-operator, consisting of a
sequence of contractions (i.e., KiC(i + 1)C., operators). All the operators in this sequence are
either performed (at levels greater than k), or neither of them is performed (at levels less than k).
The removal kernel at level £ describes the simplification of the boundaries of the merged cells.
We build the HC'C using the same removal (K /C(i + 1)C,.) and contraction (KIC(i + 1)C,,)
simplification operators, but we consider each of them separately and we do not group them into
macro-operators.

6.3.1.2 Experimental evaluation

The purpose of our experiments is twofold. In the first set of experiments, two simplification
strategies to build the HC'C' have been tested: one approach is based on performing simplifi-
cations one at the time, and the other one on performing a set of independent simplifications.
Successively the capabilities of the HC'C' to extract adaptive representations at variable resolu-
tions have been tested and the timings have been compared for the two approaches.

The experiments have been performed on 2D and 3D simplicial complexes available on the
Web and encoded as an /G, that become cell complexes after undergoing some simplifications.
The initial size of these complexes is between 400K and 953K triangles for 2D data sets, and
between 68K and 577K tetrahedra for 3D data sets. Experiments have been performed on a
desktop computer with a 3.2Ghz processor and 16Gb of memory.

(a) (b) (d)

Figure 6.7: The base complex (a) of the FERTILITY data set, and complexes obtained from it
after 300K (b), 600K (c) and 700K (d) refinements equally distributed on the domain.

To build the HCC, we start from the complex at full resolution and perform all feasible homol-
ogy preserving simplifications, according to some predefined error criterion, until the coarsest
representation is reached. Incidence graphs, similarly to the majority of data structures proposed
in the literature for representing cell complexes, can encode only complexes in which each cell
has a non-empty immediate boundary and if it has a non-empty co-boundary (if it is not a top
cell), then it has a non-empty immediate co-boundary. Thus, we introduce one additional condi-
tion for the feasibility of simplification operators on the incidence graphs, namely that after the
application of the operator each i-node is connected to at least one (¢ — 1)-node (1 < i < n), and
(if it does not correspond to a top cell) to at least one (i + 1)-node (0 < i < n — 1).
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The implementation of the simplification algorithm is independent of the error criterion. We have
used a geometric criterion computed on the vertices of the cells to be deleted. The simplification
is guided by a priority queue in which feasible simplifications are sorted according to the selected
criterion. We have implemented two different simplification approaches. In the first one, called
simplification step by step, simplifications are taken from the priority queue in ascending order
and performed if still feasible. After each simplification, the local connectivity of the nodes
involved in it changes and each new feasible simplification is enqueued. The algorithm ends
when there are no more feasible simplifications.

The second approach, called batch simplification, tries to execute at each step a large number
of feasible independent simplifications (that involve nodes not involved by any other already se-
lected simplification). At each step, we build a priority queue with all the feasible simplifications
sorted in ascending order. We select a set of simplifications from the queue, we perform all of
them, and we initialize a new priority queue. In all the complexes we used in the experiments,
the DAG produced with the batch method has approximately half the depth of the DAG produced
with the step by step method. A shallower DAG guarantees a faster traversal and, thus, a faster
refinement process. Refinements on the HC'C' built on 3D data sets with the batch method are
between 2 and 10 times faster than those on the C'C built with the step by step method.

Our experiments also show that the storage cost of the H(C'C' encoding structure is around 25%
lower than the storage cost of the incidence graph representing the complex at full resolution.
The storage cost of the incidence graph at full resolution is between 4.8MB and 398MB for 2D
data sets, and between 118MB and 980MB for 3D data sets. The storage cost of the correspond-
ing HCC'is between 3.3MB and 273MB, and between 4.8MB and 398MB, respectively. This
behavior can be explained by the fact that the representation of a deleted arc in each node in the
HCC' is more compact than the arc encoding in the incidence graph (one reference instead of
four). Thus, even if the total number of arcs represented in the HC'C' is larger than the number
of arcs in the incidence graph, it is usually less than four times larger.

In Figure 6.7, we show examples of extractions at uniform resolution performed on the FERTIL-
ITY data set. The initial complex has approximately 2500K cells.

In Table 6.1, a summary of the results obtained with the two approaches are shown. The columns
show, from left to right, data set name (Data set), total number of cells (Cells), number of sim-
plifications (Simpl. Num.), time needed to perform them (Simpl. Time), time needed to build
the HCC (HCC Time), storage cost of the HCC (HCC storage), time needed to perform
all the refinements in the HC'C (Ref. Time), storage cost of the cell complex at full resolution
(Full complex) and storage cost of the base complex (Base complex).

We notice that the time needed to perform all the refinements is always much less than the time
needed to perform all the simplifications (refinement is 5 to 10 times faster than simplification).
An important aspect is that the storage cost of the HC'C' structure plus the base graph is less
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Data Simpl.  Simpl. HCC  HCC Ref Full Base

set Cells Num. Time Time storage Time complex complex
Step-by-step simplification

ERrROS 2859566 1429781 744 53 2549 18.1 349.0 0.0002

HAND 1287532 643694 354 2.3 117.2  7.58 157.1 0.01

D VASELION 1200002 599999  26.7 2.1 105.8 6.8 146.4  0.00028

Batch simplification
EROS 2859566 1429781 218.8 64 241.0 187 349 0.0002
HAND 1287532 643741 99 2.6 120.7 7.6 157.1 0.004
VASELION 1200002 599999  90.7 23 110.5 7.7 146.4  0.00028

Data Cells Simpl. Simpl. MCC MCC  Ref Full Base

set Num. Time. Time. storage Time complex complex

Step-by-step simplification
VISMALE 297901 147594  45.1 0.6 40.4 5.1 48 0.46
BONSAI 1008357 498790 380.6 2.7 1469 27.2 162.5 1.8
HYDROGEN 2523927 1248743 8643.8 7.8 395.7 4195 4074 4.4

3D

Batch simplification
VISMALE 297901 148116  69.2 0.7 37.6 2.5 48 0.28
BONSAI 1008357 501524 3058 2.69 1264 104 162.5 0.89
HYDROGEN 2523927 1253913 14129 74 3213 339 407.4 2.7

Table 6.1: Experimental results for the DAG construction. The storage cost is expressed in
Megabytes and the computation time in seconds.
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2D 3D

Data Refinement Time Data Refinement Time
Perc. Perc.

set step-by-step batch set step-by-step batch
50% 0.80 0.92 50% 3.45 0.12

ERrROS 80% 1.42 1.01 VisMale 80% 3.77 0.15
100% 2.63 2.60 100% 4.01 0.53
50% 0.31 0.57 50% 15.3 0.65

HAND 80% 0.45 0.65 Bonsai 80% 17.4 0.69
100% 1.20 1.19 100% 19.1 1.88
50% 0.73 0.69 50% 106.3 8.1

VASELION  80% 1.01 0.99 Hydrogen  80% 127.7 8.7
100% 1.10 1.06 100% 172.1 11.3

Table 6.2: Experimental timing results (in seconds) for extraction at variable resolution.

than the storage cost of the graph at full resolution, with the exception of the largest tested
(HYDROGEN) data set using the step-by-step method. Although the total number of simplifi-
cations is slightly higher for the batch simplification approach, the time required to perform all
simplifications that lead to the base complex is less in the case of step-by-step simplification,
since it requires fewer computations. On the other hand, the HCC generated through batch
simplification uses less memory and consequently can be visited in less time. Also, the DAGs
produced by the batch approach have less dependency relations compared to the ones produced
through step-by-step simplification.

In Table 6.2, timing results for performing extractions at variable resolution are shown. Column
Perc. indicates the desired percentage of operations performed inside a query box. Ref.Time
indicates the time needed to perform the required number of refinements with the step-by-step
method (step) or the batch (batch) simplification methods. The query box has been chosen by
hand to cover a relevant part for each data set and with size between 15 and 30 percent of the
whole data set at full resolution. The extraction times for refinements are similar for the two
methods in the 2D case, while they differ considerably in the 3D case. The explanation is that in
2D each 1-node in the graph is connected with at most two different O-nodes and two different
2-nodes, while in 3D the number of connections between 1-nodes and 2-nodes is larger, and thus
the simplification method has a significant impact.

In Figure 6.8, we show examples of refinement queries at uniform and variable resolution per-
formed on the VASELION data set. The holes that seem to appear in the crown of the lion are
rendering artifacts.

149



(b)

Figure 6.8: The representations obtained from the M C'C' after (a) 10000, (b) 50000 and (c)
2000000 refinements. (d) The complex at full resolution of the VASELION data set. In (e) the
representation obtained with a query at variable resolution.

6.3.2 Homology computation on HC'C

In this section, we describe a method exploiting the HCC' representation for computing ho-
mology and homology generators efficiently. We address the problem of computing homology
and homology generators on a cell complex I" using the Smith Normal Form reduction (SN F’)
[Ago05]. Computation of the SN F' reduction is highly dependent from the number of cells in I"
and is generally slow. We plan to compute the SN F' reduction on the base complex I' stored in
the root of an homology-preserving H C'C' obtained simplifying the original complex I'.

In a homology-preserving HC'C', the homology of the base complex is the same as the homology
of any other complex implicitly encoded in the HC'C' (included I"). However, the Smith Normal
Form (SN F') reduction algorithm on the base complex I'g is much faster than the SN F' com-
puted on I' (or any other front complex I';; extracted from the HC'C'). Then, we are interested
in extracting representations, increasing the resolution of I's. as well as the resolution of the
homology generators, computed on I'p, to agree with the resolution of the front complex I'y.

6.3.2.1 Computation of homology generators

Let consider a base complex I'z, on which the homology generators have been computed, and
a front complex I'y; extracted from ['z. For each refinement in the feasible sequence U =
({1, . - ., 1] applied on G'p, the homology generators are modified according to algorithm Ex-
pandGenerators described below. In [CDFI13] has been shown that, when applying MiC'(i +
1)C only the H,; generators are affected.

Let us consider refinement modification Make i-cell (i+1)-cell, undo of a K'iC'(i+1)C, denoted
MiC(i + 1)C.y(q, p), which creates an i-cell p and an (i + 1)-cell ¢ (the case of a refinement
MiC(i + 1)C;, is entirely dual). Operator MiC(i + 1)Ce.(q,p) is applied on a complex I'
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producing a refined complex I".

Algorithm ExpandGenerators checks in I if the (i + 1)-cell introduced ¢ breaks a (7 + 1)-cycle
corresponding to an H,;, generator in I". This is done by considering the number of (7 4 1)-cells

in the co-boundary of i-cell p that are involved in H;,; generators. This idea is illustrated in
Figures 6.9(b) and 6.9(c), where

- operator M0C1C,,(q1,p1,p’), illustrated in Figure 6.9(b), modifies one of the two H;
generators in the torus. It can be noticed that the new O-cell p; has exactly one incident
I-cell belonging to the blue (bold) 1-chain. Thus the 1-cycle has been broken by the
refinement and 1-cell ¢; is added to the 1-chain to reconstruct the cycle;

- operator M0C1C,, (g2, p2,p’), illustrated in Figure 6.9(c), does not affect the generators.
Note that O-cell p; has no incident 1-cell belonging to some /{; generator.

Algorithm 3 ExpandGenerators(p, q, G)

Require: p is an i-cell
Require: ¢isan (i + 1)-cell
Require: G is the set of H;,, generators
1: // C'is a map from a generator g to an integer m
: C' = empty map
: /| Extract the (i + 1)-cells on the co-boundary of p
: for all cofaces r of p do

2

3

4

5: /I G, is the set of generators involving r

6: G, = getGeneratorsOn(r, )

7: Il Consider the number of incidences between p and r
8:  for all generators g in G, do

9 Clg]l=getIncidence(p,r)+C[g]

10: // Expand the generators on q if necessary
11: for all pairs (g,m) in C' do

12:  if mis odd then

13: addGenerator(g, ¢, G)

14: return GG

In the description of algorithm ExpandGenerators(p,q,G), p and g denote, respectively, the i-cell
and the (7 + 1)-cell introduced by the refinement operator, and G represents the generators of I'.
The algorithm makes use of a map C' from a generator g to an integer m, that, for each generator
g, stores the number of (i + 1)-cells in the co-boundary of i-cell p which also belong to g.

Algorithm ExpandGenerators(p,q,G) uses the following three functions:
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e getGeneratorsOn(r, G), which returns the set of generators G, containing cell r in their
chain,

e getIncidence(p,r), which returns the number of times i-cell p appears on the boundary of
(i +1)-cell 7,

e addToGenerator(g,q, G), which updates the generators in G by adding (i + 1)-cell ¢ to
the (¢ + 1)-chain corresponding to g.

Algorithm ExpandGenerators(p,q,G) considers only the (i + 1)-cells, in the co-boundary of p,
that are part of one or more H; ; generators. For each such (i 4+ 1)-cell r, G, is the set of
generators involving r (getGeneratorsOn(r,G)). In map C, for each generator g € G,, the
number of times the i-cell p appears in the boundary of r is updated (getIncidence(p,r)). Once
all the cells in the co-boundary of p have been examined, cell ¢ is added to generator g only if
the number m of incidences for g is odd (addGenerator(g, q, G)).

In Figure 6.9 (b), the 1-cell ¢; will be included in the blue generator since p; is incident to an
odd number (one) of 1-cells in the blue generator. On the contrary, In Figure 6.9 (c), the 1-cell
@2 1s not refining any generator and indeed the 0-cell p is incident to an even number (zero) of
1-cells in the blue generator.

(0} (D) ()

(a) (b) ©

Figure 6.9: (a) A cell complex representing a torus. Black dots represent O-cells. Red (dot-
ted) and blue (bold) edges correspond to the two H; generators. (b) Application of operator
MOC1C..(q1,p1, '), which affects one of the homology generators. (c) Application of genera-
tor M0C'1C..(qo, p2, '), which does not affect the homology generators.

6.3.2.2 Experimental results
Using the HC'C' and the expandGenerator algorithm we have performed tests on the 2D and 3D

complexes described in Table 6.3, extracting different representations of the homology genera-
tors computed on them. All complexes are simplicial complexes, that become cell complexes
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Dataset Cells | HCC | Homology SNF Tot Ref Uniform Generators
cost(MB) Time Time Ref. Time | Ref. Time

4K 0.03s
GENUS3 40K 3.3 (1,6,1) |[92x107% | 0.15s | 10K 0.07s| 5K 0.03s
16K 0.12s
144K 1.8s
FERTILITY | 1.4M 122 (1,8,1) [83x107% | 931s | 362K 4.6s | 68K 1.48s
579K 7.52s
200K 2.6s
HAND 2.1M 177 (1,200 |98 x107° | 149s | 500K 6.8s | 19K  1.6s
800K 11.2s
320K 0.5s
BUDDHA 3.2M 273 (1,208,1) 0.02s 23.7s | 800K 4.3s | 162K 3.6s
12M  19.2s

75K 1.0s
SKULL 748K 84 (1,2,1,0) 0.007s 6.4s 187K 29s | 191K 2.6s
299K  5.0s
1.2M  7.5s
FERT-SOLID | 6.2M 720 (1,4,0,0) 8.8s 74.5s | 3.1M 29.1s | 267K 10.9s
49M 69.3s

Table 6.3: Experimental results obtained by refining four 2D shapes and two volumetric datasets
and by computing homology generators on them through the Smith Normal Form (SN F') reduc-
tion. The columns from left to right indicate: the name of the dataset (Dataset) , the number
of top cells (Cells) in the datasets, the storage cost of the HC'C' (HCC cost), the Betti numbers
(Homology), time required to compute them on the base complex (SNF Time), the time needed to
extract the complex at full resolution and to expand all the generators (Tot Ref Time), the number
of refinements and the time needed to extract the complex and the geometry of the generators at
uniform level of detail (Uniform Ref. and Uniform Time) and the number of refinements and the
time needed to extract the complex and the generators concentrating the resolution only in the
neighborhood of the generators (Generators Ref.) and (Generators Time). The time is expressed
in seconds.

after undergoing some simplification.

First the time required to compute the homology and its generators has been evaluated by using
the HC'C'. To this aim, the homology generators have been computed on the base complex, en-
coded in the root of the HCC'. This computation requires between 8.3 x 10~ and 8.8 seconds
depending on the dataset (column SNF Time in Table 6.3). Then, all the refinements in the HC'C
are performed, by applying, when necessary, the refinement of the generators, as described in
Section 6.1. This produces the representation of the complex at full resolution together with the
homology generators. The total cost of this computation is the sum of the time required to com-
pute the homology of the base complex (column SNF Time) and the time needed to fully refine
the complex and its generators (column 7ot. Ref. Time). This takes from a minimum of 0.15to a
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(a) (b)

Figure 6.10: The H; generators computed on the FERTILITY dataset (a) and on the HAND dataset
(b) by fully refining the cell complex.

maximum of 83.3 seconds. Applying the same SN F’ reduction directly on the original complex,
requires about 2.6 hours on a relatively small complex (the dataset GENUS3), while it results in
very high computation times for the other datasets.

Figure 6.10 shows the /{; generators computed on two 2D shapes FERTILITY and HAND and,
in Figures 6.12(b) and 6.12(c), we show the [, and H, generators computed on the 3D SKULL
dataset.

Then, an attempt in extracting different representations of the complex by expanding the com-
puted generators at different resolutions has been done. First, the extraction of representations
at uniform resolution has been considered: representations obtained from the base complex are
extracted by applying approximatively 20%, 50% and 80% of the total possible refinements (col-
umn Uniform Ref. in Table 6.3). Refinements are forced to be evenly distributed inside the
complex in order to obtain a uniformly refined complex. We can notice (see column Uniform
Time) that the time required depends on the number of refinements performed and is between
0.03 and 7.5 seconds for extraction at 20% resolution and between 0.12 and 69.3 seconds for
extraction at 80% resolution.

Then, representations of the complexes have been extracted varying the resolution inside the
domain. The objective has been to obtain a cell complex, and the corresponding homology
generators, with a maximum resolution only in a neighborhood of a specific homology class,
as explained below. This corresponds to computing the generators (H;) of degree 7 on the base
complex and, by traversing the HC'C, to perform only those refinements that involve some ¢-cell
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(a) (b)

Figure 6.11: The H; generators computed on the FERTILITY dataset and on the HAND dataset.
In (a) and (b) the generators obtained by refining the cell complex only in a neighborhood of the
generators (selective refinement at variable resolution).

belonging to any generator of degree ¢ and those on which they depend. This kind of selective
refinement produces cell complexes with a lower number of cells outside the area around the
generators and thus leads to a further saving (15-30%) with respect to extracting generators at
maximum resolution. Note that the extraction at variable resolution is a distinctive feature of the
HCC which cannot be performed on other hierarchical models. Examples of variable resolution
extractions are shown in Figure 6.11 and in Figure 6.12(d).

6.4 Future developments

We have defined a hierarchical model, called Hierarchical Cell Complex (HCC), based on a set
of homology-preserving and homology-modifying operators. We have defined the HCC' in a
dimension-independent way on arbitrary cell complexes. We have implemented a version of the
HCC based on the homology-preserving operators and we have demonstrated experimentally its
properties. We have also applied the HC'C' to homology computation implementing an algorithm
for computing homology and homology generators with coefficients in Z, on the base complex
(the coarsest one) and using our model to extract the homology generators at uniform or variable
resolution levels.

Our current and future work moves in the same direction. We are interested in enhancing the
expressive power of our model by enabling the extraction of shapes at variable resolutions and
with variable homology. To do this we are defining a multi-resolution model based on both
the homology-preserving and homology-modifying operators. We recall that an homology-
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(b) (c) (d)

Figure 6.12: The H; and H, generators computed on the SKULL dataset. In (a) the original
dataset, in (b) and (c) the H; and H, generators computed at full resolution and in (d) the H;
generators extracted at variable resolution and visualized inside the extracted cell complex.

modifying operator changes the number of cells in a complex I' plus its Betti number and Euler
characteristic. Specifically, a KiC1Cycle (Kill i-Cell and i-Cycle) operator deletes an i-cell and
destroys an i-cycle, thus decreasing the numbers n; and [3; by one. It is feasible on a cell com-
plex I' if the co-boundary of the cell to be deleted is empty. Thus, the set of homology-modifying
operators deleting on a i-cell from a cell complex are always performed from the cell of higher
dimension to the cell of lower dimension.

6.4.1 A proposal for a homology-modifying HC'C

The homology-modifying HC'C'is built from a sequence of simplifications. All the homology-
preserving operators are performed first, in order to reduce the complexity of the cell complex
I' as much as possible. Once I reaches its coarsest representation I, we compute homology
and homology generators as usual with the Smith Normal Form (SN F') reduction algorithm
[Ago05]. From this point, I'” can be further reduced applying a homology-modifying operator
for each homology generator computed on I".

All the homology-modifying operators are performed reaching the base complex I'p (note that
some homology-preserving operators could be triggered during this step). Then the homology-
modifying HCC' structure is reconstructed from the sequence of simplification operators per-
formed. The homology-modifying operators are encoded in DAG nodes. For each MiCiCycle
operator, undo of a KiCiCycle , introducing an i-cell p and augmenting the i-Betti numbers
by one, a new DAG node y is instantiated; ; will be connected, through a dependency relation,
to all the DAG nodes introducing an ¢-cell in the H; generator restored by M:CiCycle opera-
tor. DAG nodes representing the homology-preserving refinements are encoded as described in
Section 6.3.1. In Figure 6.13(a), we show an example of a M 1C'1C'ycle operator applied on a 1-
dimensional cell complex. The 1-cells in colored in blue after the refinement are part of the new
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(a) (b)

Figure 6.13: (a) M1C1Cycle(p) operator and (b) example of a good “independent” homology
generators (on the left) and of bad generators (on the right).

(a) (b)

Figure 6.14: (a) example of the original torus extracted with all its homology generators; (b)
example of the same torus extracted killing one of its /{; generators

H, generator restored by M 1C'1C'ycle and thus the DAG node (encoding M 1C'1C'ycle operator)
will be dependent from all the DAG nodes introducing such cells (%1, t5 and ¢3).

From the homology-modifying H C'C' obtained different representations can be extracted refining
the base graph G'z. As for the homology-preserving HC'C' the resolution level is increased by
successive refinements based on a geometrical criterion. However, in this model the homology
of the extracted cell complex is chosen a priori. For each homology-modifying refinement we
chose if enable the update of the corresponding Betti number.

In Figure 6.14(b), we show an example of a torus, extracted from a homology-modifying HC'C
built from the torus shown in Figure 6.14(a), with a 2-cell killing one of its H; generators.

6.4.2 Current and future work

We would like to adapt the HC'C' model to a class of complexes more suitable for a practical
use, the simplicial meshes. We will consider two simplification operators for generating the
hierarchical model: simplex collapse [KMS98], which is an instance of simplification operator
KiC(i + 1)C(q,p), and edge contraction, a widely used operator in mesh processing which
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has been proven to be homology-preserving [ALS12]. We will evaluate the expressive power
of a model based on such operators. Will be fundamental to have a compact representation to
overcome the storage costs required encoding massively all the incidence relations among the
simplexes of the simplicial complex. In other words, since the homology computations algo-
rithms are well suited to be adapted on simplicial complexes, our effort will concentrate initially
on the data structures used to represent such complexes.

We are interested in extracting “good looking” homology generators during the refinement pro-
cess. This task can be intuitively described as the computation of homology local properties (see
[ZCO08] for a formal definition). We want to compute a ’good” set of generators representing the
homology we have on ' and we want the smallest cycles as possible to represent each gener-
ator. In the left part of Figure 6.13(b) the notion of good generator is shown from an intuitive
point of view. The generators, depicted in red and blue, are good since they are independent (not
self contained). Conversely, the /{7 generators shown in the right part of Figure 6.13(b) are not
acceptable from this point of view since the blue generator is contained in the green generator
even if the smallest 1-cycles on the cell complex are not. A description for the quality of the
homology generators can be found in [CFO8] with a method for localizing the homology gener-
ators producing cycles as smallest as possible. We are planning to implement such method on
our homology-modifying HC'C' for computing generators on the base complex I's. The set of
generators would be refined afterward during the extraction of a refined representation and we
are planning to define a method for maintain the good quality during the process.
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Chapter 7

Multi-resolution Model for Triangulated
Scalar Fields

By using the multi-resolution model for scalar fields described in Chapter 5, we can inspect a
scalar field from the point of view of its morphology, but a huge problem in the analysis of a
scalar field is the complexity of real datasets and their dimension. In this chapter we present a
new multi-resolution model able to extract representations at different level of resolution both
the geometry and the morphology of a scalar field. A first attempt of coupling the geometric and
morphological part of a scalar field in a multi-resolution model has been done in [DDFMV10].
The model in [DDFMV10] is composed by three interconnected graphs, one representing the
modifications of the geometry and the others representing modifications which involve also mor-
phology (see Section 2).

The new model, called Multi-Tessellation based on Forman Gradient (MTF(G), is a multi-
resolution model for scalar fields My, = (X, f) defined on a triangle mesh > on which a Forman
gradient V' has been computed. The structure of an M T F'G is a single hierarchy described as a
D AG with two types of nodes:

- geometric nodes, denoted Node,,, representing modifications on the mesh of X
- topological nodes, denoted Node;, representing modifications on V' (or, alternatively, on

the topology of the ascending/descending Morse complexes that can be computed on V)

The MT F'G nodes represent the available refinement modifications for the geometry or the mor-
phology of M, which are undo operators with respect to simplifications performed during the
construction of MTFG.

In Section 7.1, we describe the operators used for simplifying M both from the geometric and
topological point of view and required to build an MT F'G. For the geometric simplification we
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have been inspired by the geometric multi-resolution model defined in [MDDF*08] called the
Multi-Tessellation; We will use a well known simplification operation for simplicial complexes
which deletes an edge, collapsing one of its vertices in the other one, the edge-collapse. For the
topological simplifications, we use the same remove operators used for the M M C' (see Section
5) . We define a remove operator on a Forman gradient V' and we will describe the resulting
updates on V' in Section 7.1.2. In Section 7.2 we define the MTFG as the model, obtained
from a sequence of simplifications (geometric and topological), composed of a set of refinement
modifications and a dependency relation among such modifications. Moreover we describe the
encoding structure defined for the M7 F'G and we will compare our model to the one presented
in [DDFMV10] highlighting similarities and differences.

7.1 Geometric and topological update operators

In this section, we describe the update operators we use to modify the geometry and the mor-
phology of a scalar field My, = (3, f) defined on a triangle mesh ¥. In Subsection 7.1.1, we
describe the modification operators used to simplify and refine the triangle mesh, namely edge-
collapse and vertex split operators, respectively. In Subsection 7.1.2, we present the modification
operators for simplifying and refining the Morse complexes computable on V. Such operators
are equivalent to remowve and insert, described in Section 4. We will describe them in terms of
updates on a Forman gradient.

7.1.1 Geometric update operators

We use two operators to modify the geometry of the triangle mesh 32: the edge-collapse operator
is used during the simplification step to coarsen ., while the vertex-split operator is encoded in
the MTF'G and used to refine X..

7.1.1.1 Edge-collapse operator

An edge-collapse is a well known simplification operator for simplicial complexes. It is a local
update that acts on a triangle meshes by contracting an edge e, with endpoints v; and v9, to one
of its endpoints (i.e., v1), sometime called half-edge collapse.

According to the notation illustrated in Figure 7.1(a) we denote as:

e v, the vertex deleted by the edge-collapse,

e 1, the vertex surviving after the edge-collapse,
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e ¢ = (v, vy) the edge collapsed,
e ¢ the triangle on the left of edge e by considering e as directed from v; to vs,
e t(") the triangle on the right of e,

vél) and vér) the vertices of t) and "), respectively, different from v; and v,,

tgl) and tY) the triangles adjacent to ¢!Y) and ("), respectively, on the edge opposite to vs,

tgl) and tér) the triangles adjacent to ¢!) and ("), respectively, on the edge opposite to v;.

The edge-collapse, denoted collapse(vy, vs), applied on the edge e = (v, v2), removes edge e,
vertex vy and triangles t® and t) from ¥ (see Figures 7.1(a) and 7.1(b)).

As a consequence,

° tgl) become adjacent to £

. tgr) become adjacent to £,

e all the triangles incident in v; become incident in vs;
Since edge-collapse turned to be useful in various applications involving topology, it was ob-

served that contracting edges in a simplicial mesh could change its homology groups. In [DEGN99]
the so called link condition is defined as condition for an edge-collapse to preserve homology.

Definition 7.1.1. An edge e = (v1,v2) € ¥ satisfies the link condition if and only if Lk(v;) N
Lk(vy) = Lk(e).

In [DHKS13] a weaker and more local variant of the link condition is defined, called p-link

condition. Since our model works on a triangle mesh, we require an edge e, involved in a collapse
operator, to satisfy the link condition only.

7.1.1.2 Vertex-split operator

A vertex-split is defined as the undo of an edge-collapse simplification. It is a local update that
acts on triangle meshes by expanding a vertex v; into an edge e having its endpoints at v; and vs.

The vertex-split, denoted split(vs), is feasible on the vertex vy if:

- vertex vy 1S in 2;
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- all the vertices, adjacent to v when the inverse collapse(vy, v1) was applied, are adjacent
to vp in 2.

Vertex-split operator introduces vertex v, in ¥ as edge e = (v2, v;) and the two triangles ¢%) and
t() incident in e. As a consequence,

° tgl) is not adjacent to tgl) anymore and both tgl) and tgl) become adjacent to t;

e 1) is not adjacent to " anymore and both ¢\ and ¢\’ become adjacent to ¢(");

e all the triangles incident in v; become incident in vs.

7.1.1.3 Edge-collapse and vertex-split on a Forman gradient

Edge-collapse and Vertex-split operators performed on the triangle mesh X reduce or augment
the number of simplexes of .. Then, we have to modify also the pairings in the Forman gradient,
computed on M, accordingly. The key idea of a gradient update is to locally modify V' without
modifying the number of critical simplexes and maintaining the gradient flow.

Intuitively, the number of critical simplexes is maintained if the edge-collapse does not remove
simplexes that are critical and if all the paired simplexes involved are still paired after the edge-
collapse. Let X, be the set of simplexes in a V'-path vp;, and let vp(; ;1) be the V-path, cor-
responding to vp;, after the edge-collapse. Let X.,.,, the set of simplexes removed by the edge-
collapse. Them, the gradient flow is maintained if Evm oy = Yop; — Lrem for each V-path vp;.
In other words, the gradient flow is maintained if all the simplexes, inside a V/-path involved in
the edge-collapse, are still in the V' -path after, excepting the simplexes removed by the edge-
collapse. Specifying some preconditions for V' in the neighborhood of an edge collapsed we can
obtain these properties.

An edge-collapse, collapse(vy, vq), is feasible if:

- t® and t™) are not critical,

- all the edges on t¥) and (") are not critical,
- v; has more than three incident triangles,

- vy 1s paired with edge e in V/,

- vél) is not paired in V' with edge (vél), v1),

- v{"” is not paired in V with edge (v\", vy).
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(a) (b) (c)

Figure 7.1: (a) the simplexes involved in a edge-collapse. (b) result of the edge collapse and in
(c) the gradient arrows (green) that are valid for the edge-collapse.

In Figure 7.1(c) we show all the possible gradient arrows that can appear in the neighborhood
of a feasible edge-collapse. Gradient arrows not showed in the figure are pairing simplexes not
involved in the edge collapse or are not valid for the collapse operator. The allowed gradient con-
figurations guarantee another nice property during a simplification/refinement operation. When
an edge-collapse (or a vertex split) is performed, the modifications on the local frame of the For-
man gradient V' are entirely and unambiguously determined by the gradient arrows present in V'
before the operation. In Section 7.2.2 we will show that no information are stored about how
to update the Forman gradient when performing a vertex-split encoded in the multi-resolution
model.

The edge-collapse applied on edge e simplifying the simplicial complex locally, as described in
Subsection 7.1.1.1. We have to update the gradient encoded in tgl) and t(lr) in the worst case.
Since the updates required are symmetrical on the left and on the right part, with respect to the
collapsed edge, we will describe them for the left side only.

The updates on V' depend on the edges (vél), v2) and (vél), vl). If these edges are both paired

with a triangle then no updates are required on V, (see Figure 7.2(a) and 7.2(b)). Otherwise, if
the edge (vél), v1) is paired with a vertex (v; or vél)) this gradient pair must be updated in the
local frame codified in t\”, (see Figure 7.2(c) and 7.2(d)).

The updates on the Forman gradient V' during a vertex-split are handled in a similar fashion not
changing the number of critical simplexes and maintaining the gradient flow. A vertex-split will

introduce a vertex v, as well as a new edge e and the two incident triangles t) and ¢(") (see
Figure 7.3(b)).

The Forman gradient V' has to be modified in the neighborhood of the simplexes introduced.
Similarly to the collapse, we can unambiguously determine how to extend the gradient on the
new simplexes by simply knowing the gradient defined on the simplexes of simplicial mesh ..

Updates required on the Forman gradient V' to obtain V' are the following (as before we will
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A

Figure 7.2: In (a) and (b) a gradient configuration that does not require an update of V' during
an edge collapse is shown. Triangle tllef " has an arrow pointing the adjacent triangle before (blue
arrow in (a)) and after (red arrow in (b)) the edge collapse. On the contrary, if the gradient
configuration is different (in (c)) it loses the arrow pointing the adjacent triangle after the edge
collapse (see (d))

b N
453 04

Figure 7.3: In (a) is shown a set of simplexes before the edge expansion showed in (b). In (c) and
(d) the same edge expansion is illustrated showing the updates required on the Forman gradient
with two different configurations on the left and on the right of the introduced edge.
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describe the updates only for the left side):

e new edge edge e is paired in V' with vy or vy. If v, is paired with an edge that will be
redirected to vy, than e is paired with v, otherwise it is paired with v;. (See Figure 7.3(c)
and (d));

o ifedge (v:,(f), vg) is paired with vy or vél), then edge (vél), v1) is paired with t();

e if edge (vél), vg) is paired with ¢\, then edge (v:(f), vy) is paired with t();

o if edge (v, vs) is paired with £\, then edge (v\”, v,) is paired with ¢t and edge (v3”, v;)

will be paired with tgl).

7.1.2 Update operators for the Forman gradient

In [For98] the notion of cancellation has been extended to discrete Morse theory. If p and ¢
are two critical cells, in a cell complex I', with dim(p) = dim(q) + 1 and if there is exactly
one gradient path from the boundary of p to ¢, then p and ¢ can be canceled. We will describe
simplifications as performed on a pair of critical simplexes of a simplicial mesh 3. even if all the
following results hold for cell complexes.

We use two operators to modify the Forman gradient V' defined on X, the remove operator is used
during the simplification step to reduce the number of critical simplexes in V' while the insert
operator is encoded in the MT"F'G and used to refine V. Both operators have been defined for the
modification of Morse complexes and described in Section 4. In the following we will describe
them in terms of modifications on a Forman gradient IV computed on a triangle mesh.

7.1.2.1 Simplification operators on a Forman gradient

A remove; ;11(q, p,p’") applied to a discrete gradient field V' removes a critical i-simplex ¢ and a
critical (¢ + 1)-simplex p if and only if

e p and g are connected through a unique separatrix V' -path,

e ¢ is connected through a separatrix 1 -path at most to another (i + 1)-saddle p’ different

from p.

The effect of a removal removal; ;+1(q, p,p’) on V' is to remove p and ¢ from the set of critical
simplexes and to reverse the gradient arrows on the path between p and q. As a consequence, the
separatrix V/-path starting from p’ and ending in ¢ before the simplification will be extended to
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Figure 7.4: Effect of a removaly 2(q, p,p’) on a Forman gradient ' defined on a 2D simplicial
complex. (a) the original V' with the two descending 2-cells, defined in green and yellow, corre-
sponding to maximum p and p’ respectively; (b) V' is updated reversing the V -path (red arrows).
The descending 2-cells change accordingly and the green cell is merged in the yellow one.

critical ¢-simplexes, indicated with r;, previously connected with p. Removing the two critical
simplexes p and ¢ the separatrix V' -path connecting p with the z; critical (i — 1)-simplexes be-
come normal V' -paths.

Let us consider for example a removaly 5(q, p, p’) on a triangle mesh; ¢ is a critical edge and p and
p’ are two critical triangles. Starting from ¢ the separatrix V5-path connecting ¢ to p is reversed.
As a consequence p and ¢ are no more critical simplexes. In Figure 7.4 is presented the effect of
aremove; 2(q, p,p') on a Forman gradient V. In Figure 7.4(a) the original Forman gradient F is
shown overlayed with the two 2-cells forming the descending Morse complex colored in yellow
and green for p’ and p, respectively. In Figure 7.4(b) the Forman gradient obtained after the
removey 2(q, p,p’) is shown. The critical simplexes p and ¢ are removed from V' and separatrix
V,-path is reversed (red arrows). As a consequence the two 2-cells are merged. It can be noticed
how, by reversing the V5-path, the V-paths starting from p’ fully cover the mesh.

A remove; ;_1(q,p,p’), applied on a discrete gradient field V/, removes a critical i-simplex ¢ and
a critical (7 — 1)-simplex p if and only if
e p and q are connected through a unique separatrix V' -path

e ¢ is connected through a separatrix V' -path with at most another (7 — 1)-saddle p’ different
from p.

The effect of a removal remove; ;—1(q, p,p’) on V is to remove p and ¢ from the set of critical
simplexes and to reverse the gradient arrows on the path between p and ¢q. As consequence of
these updates, the separatrix V' -path starting from p’ and ending into ¢ before the simplification
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Figure 7.5: Effect of a removaly 2(q, p,p’) on a Forman gradient V' defined on a 2D simplicial
complex. In (a) the original gradient V' with the two ascending 2-cells, defined in green and
yellow, corresponding to the minimum p’ and p respectively. In (b) V' is updated reversing the
V-path (red arrows). The ascending 2-cells change accordingly and the green cell is merged in
the yellow one.

will be extended to the r; critical (¢ — 1)-simplexes previously connected with p. Removing the
two critical simplexes p and ¢ the separatrix V' -path connecting p with the z;, critical (i + 1)-
simplexes become normal V' -paths.

In Figure 7.5, an example of a remove; o(g, p, p’) on a Forman gradient Fis illustrated. In (a) the
original Forman gradient F' is shown overlayed to the two 2-cells forming the ascending Morse
complex colored in yellow and green for p’ and p, respectively. In (b) is shown the Forman gra-
dient obtained after the remove; o(q, p, p’). The critical simplexes p and ¢ are removed from F'
and the separatrix V-path is reversed (red arrows). As a consequence the two 2-cells are merged.
It can be noticed how, reversing the V;-path, the V -paths starting from p’ fully cover the mesh.

7.1.2.2 Refinement operators on a Forman gradient

An insert; ;+1(q,p,p’), undo of a remove; ;11(q, p,p’), introduces in the Forman gradient two
critical simplexes. The feasibility condition for an insert; ;+1(q, p, p’) operator is the presence of
the critical simplexes p’ U RU Z U S'in F,

e critical simplexes r; € R must be connected with a separatrix V;-path with p/,

e critical simplexes 2z, € Z must be connected with a V;-path with the simplex ¢ that will be
critical,
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e critical simplexes s, € S must be connected with a V,  o-path with the simplex p that will
be critical.

The updates required by the operator will restore the two critical simplexes p and ¢ by reversing
only the arrows in the V'-path between them.

Dually, an insert; ;—1(q,p,p’), undo of a remove; ;_1(q,p,p’), introduce in the Forman gradi-
ent two critical simplexes. The feasibility condition for an insert;;_(q,p,p") operator is the
presence of the critical simplexes p’ U RU Z U S'in F,

e critical simplexes r; € R must be connected with a separatrix V;-path with p’,

e critical simplexes z;, € Z must be connected with a normal V;,-path with the simplex ¢
that will be critical,

e critical simplexes s, € S must be connected with a normal V;_;-path with the simplex p
that will be critical.

The updates required by the operator will restore the two critical simplexes p and ¢ by reversing
only the arrows in the V'-path between them.

To successfully apply an insert,;(q, p, p’) operator in any dimension, the V'-path between ¢ and
p must be known. This path is always a sub-path of the separatrix 1/ -paths connecting p’ with
one of the nodes r; € R passing by ¢ and p. Thus, starting from p and traversing the separatrix
V-path vp,, between p’ and r;, until reaching ¢, the separatrix V-path between ¢ and p can be
reconstructed in linear time in the number of simplexes composing vp,.

In Figure 7.6 an example of an insert, »(q, p, p’) is shown. In Figure 7.6(a) the original Forman
gradient V' is illustrated. All the critical simplexes required for the insert operator (namely p’, z;
and z) are in V. Critical 2-simplex p’ is connected through a V -path, passing through ¢, to p and
the two critical O-simplexes z; and 2, are connected through a V' -path to g; thus, the feasibility
conditions are satisfied. In Figure 7.6(b) Forman gradient V' obtained and the corresponding
descending Morse complex I'; are shown. The two critical simplexes p and ¢ are introduced in
V', and the V' -path connecting them is reversed (red arrows) by restoring the 2-cell corresponding
to p.

7.2 Multi-tessellation based on Forman gradient

A Multi-Tessellation based on Forman Gradient (MT F'G), computed from a scalar field My, =
(X, f) and a Forman gradient V' on it, is defined as a quadruple (X5, V5, M, R) where:
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Figure 7.6: Effect of an insert; 2(q, p, p’) on a Forman gradient V' define on a two-dimensional
simplicial complex. In (a) the original V' with the ascending 2-cell corresponding to p’ colored
in yellow. In (b) V' is updated restoring the separatrix V -path (red arrows) and reintroducing p
and q as critical simplexes.

., called base mesh, is the triangle mesh obtained by simplifying >:;

Vg, called base Forman gradient, is the coarsest Forman gradient obtained by simplifying
Vi

- M = (Mg, My) is the set of refinement modifications which are inverse of the simplifi-
cations performed on the triangle mesh (My) and on the Forman gradient (My,);

‘R is the dependency relation between the modifications in M.

The dependency relation between two modifications is defined differently if they are both in
My, both in My or mixed. Thus, we defined the set of dependency relations R as a triple
(R4, Ri, Ry,) Where:

- R, are the (geometric) dependency relations involving two modifications in My;

- ‘R are the (topological) dependency relations involving two modifications in My ;

- R, are the (mixed) dependency relations involving a modification in My, and one in My, .
We recall that a vertex-split in My, expands a vertex v; into an edge e having its endpoints
at vy and v, and it is feasible on vertex v if vertex v, is in X all the vertices, adjacent to v
when the dual collapse(vy, v1) was applied, are adjacent to v; in ¥ (see Section 7.1.1.1). An
insert operator, undo of a remove operator, introduce into the Forman gradient V' two critical

simplexes. The feasibility condition for an insert, (g, p,p’) operator is the presence of the
critical simplexes p’ U RU Z U S in V (see Section 7.1.2).
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Definition 7.2.1. A modification split(v,) € My directly depends from another modification
split(v)) € My if the vertex introduced by split(vy) is in the set of vertices required by split(vy).
The resulting dependency relation is in R,.

Definition 7.2.2. A modification insert(q,p,p’) € My directly depends from another modifi-
cation insert(qi, p1,p}) € My ifinsert(q., p1,p}) introduces a critical simplex included in the
sets of critical simplexes p' U RU Z U S of insert(q, p,p’). The resulting dependency relation is
in Rt.

Definition 7.2.3. A modification insert(q,p,p’) € My directly depends from a modification
split(vy) € My if split(vy) introduce a simplex that will be transformed in critical by insert-
(q,p, D). The resulting dependency relation is in R,

Note that modifications in My, never depend from modifications in M. Intuitively, this means
that the model is always able to refine the geometry of > independently of the critical simplexes
in V. Dependency relation R is a partial order relations since a simplex is never introduced twice
in X and a critical simplex is never introduced twice in V. The dependency relation between
refinement modifications is the transitive closure of the direct dependency relation.

Similarly to what we have described in Sections 5 and 6, a large number of meshes at intermediate
resolution can be obtained by applying a sequence of refinement modifications in M to the base
mesh Y. or to the base gradient V3. The notion of feasible sequence of modifications, front
complex, interchangeable modifications and closed set of modifications are the same as for the
MMC and HCC multi-resolution models.

From an MT F'G it is thus possible to dynamically extract representations of the original triangle
mesh X and of the corresponding Forman gradient V' at uniform and variable resolutions. A
selective refinement query on the M'T'F'G consists of extracting from a mesh with the minimum
number of simplexes and a gradient with the minimum number of critical simplexes, satisfying
some application-dependent criterion. Differently from the M MC' and HC'C, two different
criteria, 7s; and 7y, are defined on the modifications in My, and M, respectively,. The selective
refinement query consists of extracting from the M7 F'G an intermediate mesh of minimum size
among the meshes encoded in the M T F'G that satisfies s, and extracting an intermediate Forman
gradient V' that satisfies criterion 7y .

7.2.1 Building an MTFG

An MTF@ is built from a triangle mesh > and a Forman gradient V' defined on X by alternating
sequences of geometric and topological simplifications.

All the feasible edge-collapse operators are performed (see Section 7.1.1.1). Edge-collapse sim-
plifications are the first tool we use to reduce the resolution of > and, consequently, its storage
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cost. The definition of a simplification algorithm is a fundamental step for the construction of a
multi-resolution model. As discussed in Section 6.3.1.2, different simplification algorithms lead
to different hierarchical structure of the models. For the MT'F'G, we selected a batch simplifica-
tion, maximizing the number of independent simplifications performed (and thus of independent

refinements) in order to maximize the number of representations that can be extracted from the
MTFG.

When all feasible edge-collapses have been performed, the queue of the topological simplifi-
cations (see Section 7.1.2) is constructed by only a percentage of all the feasible topological
simplifications. This percentage can be a user-defined parameter. We have fixed this parameter
based on the persistence range. At each iteration all the simplifications having a persistence value
lower than the 10% of the maximum persistence value are performed. Performing some topolog-
ical simplifications will unlock new edge-collapses (since some critical simplexes are removed
and some arrows are flipped). Similarly to the geometric simplifications, we want to perform
as much topological simplifications as possible by distributing them throughout the dataset. To
achieve this result, we use a support data structure encoding the incidence graph of the critical
points of the scalar field (the M IG described in Section 3.1). The MIG is extracted from V
and kept up to date during the undergoing of topological simplifications as described in Section
4.2. Note that the M I is used here only for the seek of efficiency. The simplification process
could be performed by computing, after each simplification, all the possible pairs of critical sim-
plexes and choosing among them the best candidate for the simplification. This interchange of
geometric and topological simplifications continues until no more simplifications are available.

Once all the simplifications have been performed the base mesh >z and the base Forman gra-
dient V are obtained as well as to all the modifications My and M, , undo of simplifications
performed on X and V' respectively. X5 and Vj are stored in the root of a D AG structure. Then
the MTFG is built as a DAG where the nodes corresponds to performable modifications and
the arcs to the dependency relation between two nodes.

7.2.2 Encoding an MTFG

We distinguish among two types of M1 F'G nodes, geometric nodes (Node,) and topological
nodes (N ode;).

A geometric nodes (N ode,) encodes the vertex-split refinement, undo of an edge-collapse collapse-
(v9,v1). Node, representing a vertex-split split(v;) encodes:

e a vector vv of vertices adjacent to v, when the collapse(vy, v1) was applied;
e the coordinates of the new vertex inserted vo;

e the index v of the vertex v; that will be on the boundary of the new edge with v,;
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e the set of Node, from which this operation depends;

e a Boolean value indicating whether the split has been applied or not.

Vertices in vv are stored in a specific order such that in the first two positions of the vector will be
stored the two vertices vél) and vér) (see Section 7.1.1.1). Memory occupied by vertex v- instead
is used differently before and after the expansion is executed. If the expansion is not yet applied
integer v indicates the index of vertex v;. After the expansion, its value will be replaced with the
index of the new vertex v,. This is an implementation trick to have access in constant time to a

vertex during the extraction of the front complex '.

All the indices of a vertex in the M1 F'G are encoded as signed integers. We have to distinguish
between vertices encoded in the base mesh Yz and vertices that will be introduced by some
Node,. To do this, we store all Node, in consecutive memory cells. Then, a vertex is represented
in the MTFG with:

e anegative integer —1, if the index correspond to the i-th vertex in X,

e a positive integer 4, if the index corresponds to the vertex introduced by the i-th Node,.
If the expansion encoded in Node, has been applied, v represent the actual index of the
vertex in the front complex 3.

In this way we can reorganize the indexes of the vertices in the Indexed data structure with ad-
jacency (IA data structure), encoding the triangle mesh (see Section 3.3), only at the end of the
selective refinement.

A topological DAG node (Node;) encodes the refinement modification, undo of a remove, ;-
(q,p,7'), applied on V' during the simplification step. Node; representing an insert, ,(q, p, p’)
operator encodes:

e the set of vertex indices indicating the simplex p that will be critical (critical triangle if
b = 2, critical point if b = 1);

e the pair of vertex indices indicating the edge ¢ that will be critical;

e aset of Node; from which this operation depends;

e aset of Node, from which this operation depends;

We can estimate the storage cost for the MT F'G by considering the storage cost of the IA data
structure for the base mesh X g, the storage cost of the base Forman gradient V5, the storage cost
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for each single node and arc of the D AG encoding the MT' F'GG. We are considering the storage
cost of a pointer as 4 bytes.

A geometric M7 F'G node requires 4 bytes for each vertex in vv, 32 bytes for the coordinates of
vy (3+1 floats), 4 bytes for vertex v; and 4 bytes for each pointer to a Node, and 1 byte for the
boolean. In total 37 + 4|vv| + 4| Node,| bytes.

A topological MT F'G node occupies 4 bytes for each vertex used to indicate the critical sim-
plexes (depending from the operation we need 6 or 4 vertices), 4 bytes for each Node; and 4 bytes
for each Node,. Thus, overestimating the amount of vertices required, 24+4|Node;|+4|Node,|,
we can overestimate the number of Node, (one for each vertex) and thus it will cost in total
48 + 4| Node,| bytes.

Y., as described in [Nie97], occupies 35|V | 4+ 24|T'| where |V| and |T'| represent the number of
vertices and triangles, respectively, in 2.

7.2.3 Selective refinement on an MTFG

The purpose of combining geometry and morphology in a multi-resolution is the extraction of
geometrical representations that conforms with the level of detail required by the simplified mor-

phology.

On the MTFG hierarchy we can perform selective refinement queries setting the desired res-
olution for the topology of M and for Y. Performing a selective refinement query requires a
Level-Of-Detail (LOD) criterion 7 for each component of M = (My, My).

We consider a criterion 7y, satisfied by triangle mesh >z and a criterion 7y for the base Forman
gradient V. By varying 7y, the extracted scalar field will have as Forman gradient Vp (thus the
same morphology of the scalar field encoded on the base triangle mesh) and as triangle mesh
the mesh Y/, extracted from X5, with resolution 7x.. By varying 7 instead, the extracted scalar
field will have a Forman gradient V', extracted from Vj, with resolution 7y, and, as underlying
geometry, the triangle mesh Y’ extracted from > g on which the modifications in My, triggered
by the modifications in M, are applied.

When both 7, and 7y vary, the extraction is performed on the geometry of M first. Once the
triangle mesh Y’ satisfying 7x; has been extracted the morphological modifications are considered
and the Forman gradient V' satisfying 7, is extracted. Note that during the extraction of V"', 3/
could be refined further if some morphological modification requires a higher resolution level on
Y. Both extractions start from the root of the D AG structure. All the MT F'G nodes satisfying
the criteria are applied as well as the D AG nodes from which they depend.
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(a) (d)

Figure 7.7: Extraction of representations of the EGGS dataset at different resolution levels. (a-b)
Topological refinement are executed without changing the underlying geometry. (c) Also the
geometric representation is refined until the top mesh is reached (d). Figures illustrate the top
cells of the descending Morse complex with different colors.

Thanks to the D AG structure of the multi-resolution model also extractions at variable resolu-
tion can be performed. These type of queries, for both 75, and 7/, consider a Region Of Interest
(ROI), where different resolution levels are imposed with respect to the remaining parts of the
dataset. The selective refinement query is performed on the M7 F'G similarly to extractions at
uniform resolution. The DAG is traversed starting from the root and only the M7 F'G nodes,
representing modifications inside the window query, are performed. Thus, we need a spatial
representation for both the modifications in My and M,y,. A geometrical modification in My
is localized considering the coordinates of the vertices involved. A topological modification in
My is localized considering the coordinates of the vertices forming the two critical simplexes
involved. The region of interest can be equivalent for both the modification types or not.

7.2.3.1 Some preliminary results

We have implemented the MT'F'G' and we are currently testing our implementation working with
synthetic and real datasets. We collect here only preliminary results obtained working with the
synthetic EGGS datasets. In Figure 7.7, we show the results obtained from a selective refinement
query executed on the EGGS dataset. In Figures 7.7 (a) and (b), we show the results obtained by
augmenting, progressively, the topological resolution of the dataset. In Figure 7.7 (c) and (d), we
have augmented the topological resolution further as well as the geometric resolution until the
original complex (Figure 7.7(d)) is extracted. Note that we are showing only one of the possible
features that can be extracted from the Forman gradient. For all these queries the topological
extraction is performed at first. When the Forman gradient V' has been extracted at the desired
resolution the geometric refinements are executed. Note that in Figure 7.7, the boundaries of the
terrain are excluded from the geometric simplification to overcome the collapse of the terrain
mesh.

In Figures 7.8 (a) and (b), we show the results obtained from a selective refinement query concen-
trating the geometric resolution only in a subset of the domain. In Figure 7.8 (a), the geometric
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(b)

Figure 7.8: (a-b) Extraction of different representations obtained through a selective refinement
query at variable resolution. The triangle mesh ¥ is extracted at full resolution only inside the
red box. Figures illustrate the top cells of the descending Morse complex with different colors.

resolution is incremented inside the red box, and in Figure 7.8 (b) the dimensions of the query
box are augmented. Also in these kind of queries the extraction of the Forman gradient V' is per-
formed, followed by increasing in the geometric resolution. Working with real datasets we will
aim more to the topological extraction, with respect to what we have done in these preliminary
experiments, since the presence of noisy critical simplexes is the best environment to study the
expressive power of such queries.

A first attempt, for the experimental evaluation of our model, has been done computing the
ascending and descending Morse complexes on the extracted representations. We have noticed a
considerable reduction in the timings required to extract such complexes in particular when the
resolution is localized. Referring to the figures, the extraction for both the Morse complexes on
the fully refined scalar field (Figure 7.7 (d)) takes 2.2 seconds (1.7 seconds for the 2-cells and
0.5 for the 1-cells). Reducing the geometric resolution (Figure 7.7 (c)) the timings decrease to
1.3 seconds for the Morse 2-cells and 0.4 seconds for the 1-cells. Localizing the resolution only
inside a small subset (Figure 7.8 (a)) it takes 0.13 seconds for computing the Morse 2-cells and
0.05 seconds for the 1-cells.

7.2.4 Comparison with the Multi-resolution Morse triangulation

As far as we know, only one model addressed the problem of extracting representations the
inspection of both the topology and the geometry of a terrain, the Multi-resolution Morse trian-
gulation (M MT) presented in [DDFMV10].
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As described in Section 2.3, an M MT encodes the Morse complexes, computed on a two-
dimensional scalar field My = (X, f) defined on a triangulated mesh ¥ encoding multiple
representations of the critical net.

Three types of simplification are identified on such model and this represent the main difference
with the MT F'G, where we identify only two types of modifications. The M MT includes three
models, one for the triangle mesh X, one for the 1-skeleton of the MS complex encoded as
collection of edges from X and one for the combinatorial representation of the 1-skeleton of the
MS complex.

Consequently in an M MT the model structure is represented through three DAGSs intercon-
nected where an MT F'G provides one DAG structure having two types of modifications en-
coded.

For both M'T'FG and M MT', the simplification operator used for reducing geometrical resolu-
tion is the edge-collapse. In an M M'T' any valid edge-collapse is performed and, based on the
ascending/descending Morse cells it affects (2-cells only, 1-cells only or 1-cells and 0-cells), it is
related to a modification on the geometry or the topology of the 1-skeleton of the Morse-Smale
complex, encoded as a graph GG. The main drawback of an M MT is that the edge-collapse may
create new critical points.

On the contrary, building an MT F'G, a valid edge-collapse can only affect the geometry of ¥..
Changes in the topology of the Morse complexes are caused only by a topological simplification
operator. The number of edge-collapse operators selected during the building phase of an M MT'
is higher than on the MTFG since, as described in Section 7.1.1.3, an edge-collapse in an
MTFG is considered as valid if it respects also the local Forman gradient configuration. The
M MT model stores in the root of the D AGs three structures, the base triangle mesh, the edges
composing the 1-skeleton of the MS complex and the graph structure of this latter. Similarly, the
MTFG stores the triangle mesh Y5 but only the base Forman gradient is stored in addition.

Considering expansion to higher dimensions, the edge-collapse operator is defined also for tetra-
hedral meshes thus the MT'F'GG can be extracted to 3D and higher dimensions. The M MT" can
not be extended in higher dimensions; it is based on the 1-skeleton of the Morse-Smale complex.
As described in Section 2.1.3, this feature is impossible to compute in general but considering
the 1-skeleton of the Quasi Morse-Smale complex (see Section 2.1.3), it could be computed in
the 3D case at most. However edge contraction may affect the boundary of the cells in the MS
complex and thus the 1-skeleton encoded is not enough (the 2-skeleton of the MS complex have
to be encoded at different level of details).
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7.3 Current and future work

Our work is still concentrated in improving the experimental evaluation of the Multi-Tessellation
based on Forman gradient model performing various selective refinement queries at uniform and
variable resolution levels, in particular on real dataset.

A first effort will be the improvement of geometry simplification. We are planning to improve
our simplification algorithm base on edge-collapse in order to enhance the quality of the meshes
extracted. Error estimators such as Quadric Error Metrics (Q EM) [GH97] are well established
tools for the simplification of meshes in order to obtain representations with good quality at each
step of our process.

The Forman gradient V' is also a suitable tool for homology computation. In particular, an as-
cending/descending Morse complex computed on a scalar field My, = (X, f) is a cell complex
with the same homology as . Moreover, homology computation can be performed on the as-
cending/descending Morse complex knowing only the incidence relations among its cells. This
correspond to compute all the separatrix V'-paths of V. Again, we could perform these com-
putations on the base Forman gradient improving the computational speed considerably. Note
the Morse complexes computed from any function f defined on > have the same homology as
. Thus, we could use the model also for the homology computation on shapes assigning an
arbitrary function value to all the vertices of X (i.e. their index).

Another aspect we want to consider is the agreement between the geometric representation ex-
tracted from an MT F'G and the function values defined on its vertices. Since the model modifies
the number of simplexes in X2, but not the function values defined on its vertices, we could obtain
geometric representations that disagree with the ascending and descending paths described by
the Forman gradient. This problem has been studied in [BHEP04] and [WGS10] and described
in Section 2. We are planning to relax the problem addressed in [BHEP0O4] modifying the func-
tion f, at the end of a selective refinement query, computing the new function f’ based on the
gradient paths in the extracted gradient V’. In other words, we want to use the Forman gradient V'
as constrain to modify the vertices values. Since all the vertices are in some V' -path in V' ending
in a minimum, we are planning to rescale the function value of every single V/-path such that any
vertex in the path will have a function value higher than its predecessor. The V' -paths defined on
the triangle mesh will be used as well to prevent the creation of new critical simplexes.

We are also considering to extend the model to the 3D case. The edge-collapse is defined for
tetrahedral meshes as it is for triangles. We should study carefully a gradient configuration,
defined for all the tetrahedra incident in the collapse edge, in order to maintain the gradient
flow after edge-collapse and in order to not introduce new critical simplexes; in other words a
local gradient configuration having the same good properties of the configuration described in
Section 7. Moreover the simplification of V', in dimensions higher then two is complicated. As
described in [GRSW13] the ¢-cancellation operator in higher dimensions, can lead to a change
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in the connectivity of the critical points remaining if a subset of the V' -path is shared by multiple
separatrices. Problems occur when a single separatrix can merge and split and, in the 3D case,
this occurs at saddle-saddle simplifications only. During 1-cancellation(p, ¢) of 1-saddle p and
2-saddle ¢, g can be connected to an arbitrary number of 1-saddles different from p. Changing the
direction of a V'-path, connecting p and ¢, can lead to a change in the connectivity of the critical
points remaining if a subset of the V/-path is shared by multiple separatrices. To overcome this
problem we are planning to investigate the behavior of our simplification operator remove. In
particular, by considering the two macro-operators defined in Section 4.3.2, we hope to able
to enforce a connectivity, in the neighborhood of each critical point pair, compatible with the
Forman gradient update.
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Chapter 8

Curvature-based Segmentation of
Tetrahedral Manifolds

The aim of morphological analysis is to provide a tool for understanding the structure of a scalar
field through structural representations of the field so that its basic features can be easily recog-
nized. In our work we used curvature to support morphological analysis.

The local curvature of a surface is very descriptive and it is an important tool in geometry process-
ing. The applications of curvature estimation to the analysis of discrete surfaces have been exten-
sively studied, and these include mesh simplification [HG99, SheO1], alignment [RLO1], ridge-
valley line detection [OBS04], non-photorealistic rendering [Rus04], segmentation [LPRMO02,
LDBO05], partial shape matching [GG06], symmetry detection [MGPO06], denoising [MDSBO03,
KSNSO07], and remeshing [KNSS09].

Curvature estimation methods can be broadly classified into two categories: fitting methods and
discrete methods. The former use local regression to estimate the parameters of continuous
models and evaluate curvature using its continuous definition. The latter find discrete analogues
to the continuous elements involved in defining curvature so that the notion can be evaluated
directly in the discrete domain.

This chapter will focus on discrete methods. While fitting methods are more tolerant to noise and
tessellation artifacts, they are computationally more intensive. This is a drawback in applications
that require curvature to be estimated in real time, e.g., physical simulation, non-photorealistic
rendering, or real-time shape analysis for robotics applications. Discrete methods are simple to
implement, require fewer computations, and are trivially parallelizable.

A volume dataset can be seen as a 3-manifold embedded in 4D space (hypersurface) and, as such,
is amenable to 3D curvature analysis. Similarly, such analysis can be conceived for hypersur-
faces in 4D space which are not the graph of a 3D scalar field, such as isosurfaces of time-varying
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scalar fields or tetrahedral meshes defined by animation sequences [PHO8]. However, the appli-
cation of curvature and its discrete variants to volumetric shape analysis remains comparatively
unexplored. One exception is the concept of discrete distortion introduced in [MDFPOS8] as
a discrete approach to curvature for three-dimensional tetrahedralized shapes embedded in 4D
space.

Considering 3D scalar fields, these values of the field can be viewed as constraints on the vertices
of a tetrahedral mesh. From this perspective, the values induce a distortion of the geometry
of the mesh. As for surface curvature, discrete distortion highlights the local curvature of the
constrained shape (the graph of the 3D scalar field) which cannot be perceived in the three-
dimensional domain. As curvature gives interesting insights in terrain analysis, we show that
distortion provides additional information to analyze the behavior of the intensity field. A null
distortion value highlights a linear behavior of the intensity field, while a constant distortion
corresponds to a uniform non-linear behavior. We observe that directions in which distortion
changes indicate interesting directions in which the intensity field varies its growth speed.

Our contribution here concentrate on the study of segmentations based on the distortion values
computed on a tetrahedral mesh. We will apply our approach to the analysis of the morphology
of scalar fields through examples on synthetic, biological and medical datasets. We have studied
the interaction between the resolution of the tetrahedral mesh approximating the field and the
distortion values, showing that we can reasonably approximate the 3D image at fairly low reso-
lutions [FIM™12]. We will show also results on Morse segmentations based on the intensity and
on the distortion values. Moreover we will discuss the existing definitions of distortion for dis-
crete surfaces, classifying them into two categories, intrinsic and extrinsic, and we will present
a generalization of extrinsic distortion to nD, deriving a weighting that can be used to compute
mean curvature. We have analyzed the behavior of the operator on 3-manifolds in 4D and com-
pared it to the well known Laplace-Beltrami operator [SFIM13]. We will show results obtained
comparing the behavior on a suite of dataset sampled under varying conditions of resolution,
distribution of samples, and noise.

In Section 8.1 we present a small overview on the many methods proposed in literature for com-
puting curvature in the context of discrete representations. In Section 8.2 the classification in in-
trinsic and extrinsic curvature definition is given in the 2D and 3D case. In Section 8.3 we apply
the notion of discrete distortion to the analysis of the morphology of scalar fields through exam-
ples on synthetic, biological and medical datasets. In Section 8.4 we present the generalization
for the extrinsic distortion to n dimensions and we validate such generalization experimentally
applying also the obtained operator to the segmentation of 3-manifold hypersurfaces in 4D.
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8.1 Discrete curvature

Curvature is an important notion in mathematics that found a great interest in the last century.
Curvature is also used to study the local geometry and topology of surfaces from the metric point
of view.

Let us consider a plane m which contains the unit normal vector n, at a point p on a surface patch
S. The plane 7 intersects S in a curve C' containing p with a curvature £ at the point p. We recall
that the curvature £ at a point p = ¢(ty) of a parametric curve (¢(t)),cr is given by

_ 1 [d@In @)
k0= 5= TP

where ¢ is the curvature radius.

When varying plane 7 around p also C' varies. We can obtain two extremal curvatures k; < ko
corresponding to the two orthogonal curves C and C at the point p.

Definition 8.1.1. Gaussian Curvature - At a point p of a surface the Gaussian curvature K, is
defined as K,, = kiks.

Definition 8.1.2. Mean Curvature - At a point p of a surface the Mean curvature H, is defined
as K, = —’“;r’”.

From these two definitions we can see that both the Gaussian and mean curvature depend on the
local geometrical shape of a surface. Curvature is a mathematical tool defined for smooth, at
least C?-continuous, surfaces.

Definition 8.1.3. Gauss-Bonnet Theorem - Given a compact surface S with possible boundary
components 9S we have [ [ Ky ds+ [, ko(m)dl = 2mx(S) where x is the Euler characteristic
of surface S and k4 indicates the geodesic curvature at boundary points.

The importance of this theorem is the connection between the geometrical and topological prop-
erties of a surface S defined, respectively, by Gaussian curvature and by the Euler characteristics.

With the development of discrete geometry, many authors tried to define a discrete counterpart of
curvature based on the properties observed in the continuum [GG06, HBB*09, Sha06, SMS*03].

Here, we will assume familiarity with the fundamental notions of curvature in the continuum and
refer the interested reader to the relevant texts [Car76]. In the context of discrete representations
of 2D surfaces such as meshes and point clouds, curvature is a well-studied area within geometry
processing due to its numerous applications to shape [GG06, HBB*09]. There are a plethora of
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methods for curvature evaluation, each with advantages and disadvantages. These methods can
be broadly classified into fitting methods and discrete methods.

Concentrated curvature [Ale57, Tro86] is a simple and efficient method to define a discrete cur-
vature. Dyn et al. discuss how to optimize the triangulation of the boundary of a 3D object based
on discrete curvature [DHSJLO1].

Fitting methods use local regression to fit a continuous function, such as a polynomial, to the sur-
face data near a point of interest. Once the parameters of such a function are determined, a cur-
vature estimate can be computed analytically or using finite element methods [GG06, HBB*09,
Ham92, SW92, PWHY 09, CS92]. Other approaches, rather than fitting a model to surface points,
fit the curvature tensor to normal variations in a local neighborhood [Rus04, KSNSO7]. In con-
trast, discrete approaches [SW92, Tau95, MDSBO03, PSKA02, LBS07, CSMO03] compute quan-
tities that approximate curvature values directly on the discrete surface without explicitly fitting
a continuous model.

In the 3D case, the Ricci tensor is used to define the curvature notion for three-dimensional
shapes [And05], and, in the discrete case, the Laplace operator is generally used to define a
discrete approach to curvature [RWP06].

In the 4D case, curvature is one of the most important mathematical notions on which general
relativity is based. Curvature of the space-time gave an important contribution to understand
many phenomena in physics (black holes, gravitational lenses, light trajectories, interaction be-
tween planets, ...). Based on Aleksandrov’s concentrated curvature, Regge introduced a discrete
version of curvature for the four dimensional space-time [Reg61].

Within the context of 3-manifolds in 4D, there is much less work within the geometry processing
community. Hamann introduces a generalization of the polynomial fitting approach to extend
to such data [Ham94a], but this is based on a continuous method rather than a discrete one.
Within the discrete setting, the notion of discrete distortion arises as a purely discrete analog to
continuous curvature [MDFPOS8]. It has been successfully used in several applications, includ-
ing morphological analysis [MDFMO09], guiding multi-resolution simplification [WDFM10], and
medical visualization [FIM*12].

8.2 Discrete intrinsic and extrinsic distortion

In this Section we present our categorization for the notion of distortion in intrinsic and extrinsic
distortion. A first notion of discrete distortion derives, as described in [MDFPOS8], as discrete ana-
log to continuous curvature. This particular notion of discrete distortion is an infrinsic measure
based on a generalization of concentrated curvature [Ale57, Tro86] and angle deficit [MDSBO3].
In 2D, however, the previously-introduced notion of distortion is based on dihedral angles and is
related to mean curvature [MDFM12] and, as such, is an extrinsic measure.
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8.2.1 Intrinsic distortion in 2D

In the 2D case a notion of discrete distortion has been introduce in [MDFMO0S] as discrete coun-
terpart of the concentrated curvature.

Given a triangulated surface, and a vertex v in its interior, we consider the local neighborhood
of v. If v lies inside a triangle, then this is a whole disc; if v is located on an edge then it is the
union of two half discs; finally, if v is a vertex, then its local neighborhood is the union of as
many angular sectors as the number of faces incident in v. In this last case, the sum of angles of
all these sectors may not be equal to 27. In case it is not, v is called a singular conical point. We
consider the total angle w, at v given by the sum of angles at v of all triangles incident in v. The
concentrated Gaussian curvature at a vertex v is defined as

K((v) =21 —w,

if v 1s an internal vertex

Kw)=7—w,

if v lies on the boundary of the surface.

8.2.2 Extrinsic distortion in 2D

Distortion has been previously defined at a vertex [MDFM12] as follows. The idea is to compute
the sum of the angle deficits of the dihedral angles at the edges incident on v, with respect to the
flat angle. Vertex distortion at an internal vertex v of the triangulation is defined as

where ey, ..., ey are the edges incident on v, and ©,, is the dihedral angle formed between the
two triangles incident at edge e;.

A weighted version of this formulation can be used to estimate mean curvature. This weighted
form coincides with the cylindrical approximation method [DHSJLO1]. For each edge, the in-
tegral form is obtained by weighting the angle by half of the edge length for each vertex in the
edge. Another factor of one half is introduced by the fact that the one of the principal curvatures
of a cylinder is null, thus causing the mean curvature to be one half that of the non-null principal
curvature. The final punctual form of the mean curvature estimate is obtained by dividing by the
area A, associated with the vertex p, computed as the sum of fractional areas of all triangular
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faces incident on p. This fraction can be taken to be a fixed 1/3, leading to the barycentric for-
mulation, or the Voronoi region can be used instead. The final expression of the punctual form is
thus:

N
- 1
H(p) = v 2 lesll(m = ©,)-

8.2.3 Intrinsic distortion in 3D

For tetrahedral meshes embedded in four-dimensional Euclidean space a separate notion of dis-
tortion has been introduced [MDFPOS], in this case, as a generalization of Aleksandrov’s concen-
trated curvature [Ale57] to higher dimensions, which can be considered a discrete counterpart
to the scalar Ricci curvature [JKGO7]. A similar approach has been independently proposed
[YJLGOS8]. This is an intrinsic measure based on angle deficits and, given a tetrahedralized
manifold embedded in 4D space, the intrinsic distortion at an internal vertex p can be defined as

The graphical representation of a scalar field f defined on a tetrahedral mesh Y. is a hypersurface
(Z; f) in R*, namely, a tetrahedral mesh embedded in R*. Hypersurface (¥; f) is generally
curved due to the effects of the scalar field values. As for concentrated curvature, one may
compare the defect solid angle at the vertices of >, when applying the scalar field.

The discrete distortion at a vertex v of Y is defined as the quantity

D(p) = 4m — iwi,
i=1

where wj is the solid angle at v of the ¢-th tetrahedron incident at said vertex.

Intrinsic distortion for 3D scalar fields has similar properties as concentrated curvature for 2D
fields. Concentrated curvature gives positive values to locally convex, or concave, areas of the
surface, negative values to saddles, and null values to flat areas. Similarly, positive values of
distortion correspond to locally convex, or concave, portions of the hypersurface which is the
graph of the field. Negative values correspond to saddle and degenerate saddle configurations.

Constant scalar fields are distortion-free (i.e., their distortion is null). This can easily be under-
stood since, for a constant scalar field, mesh (X; f) is only a translation, in the fourth dimension,
of the mesh X decomposing the domain of the field. Hence, the Euclidean geometric structure of
the mesh is preserved. More generally, affine scalar fields are distortion-free, since they combine
rotations and translations of the whole mesh. Hence, the geometrical structure is not subject to
any distortion.

As a consequence, piecewise linear scalar fields are distortion-free at the interior vertices of re-
gions where the field is linear, as they act affinely within such regions. Another relevant property
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is that distortion is mesh-dependent. This means that the distortion value at a vertex depends on
the way in which the neighborhood of such vertex is triangulated.

8.2.4 Extrinsic distortion in 3D

We can extend to the 3D case the extrinsic distortion previously defined for the 2D case. Extend-
ing the idea to compute the sum of the angle deficits of the dihedral angles at the edges incident
on v, and considering the dihedral angle at the triangles incident in a vertex v we can defined an
extrinsic notion of distortion for the 3D case as

D(p) = Z (ﬂ-_@fi>’

Tij €St? (p)

where fi,..., fn are the edges incident on v, and Oy, is the dihedral angle formed between the
two tetrahedra incident at face f;.

In [SFIM13] we have proposed a generalization of the extrinsic distortion to nD, deriving also
a weighting that can be used to compute mean curvature on tessellated hypersurfaces. We will
present such generalization in Section 8.4. We have studied the behavior of such operator on
3-manifolds in 4D and compared to the well-known Laplace-Beltrami operator (described in
Section 8.4.1.1) using ground truth hypersurfaces defined by functions of three variables, and a
segmentation application, showing it to behave as well or better while being intuitively simple
and easy to implement.

8.3 Intrinsic distortion for 3D data analysis

In this Section are illustrated some experimental results which show the behavior of discrete
distortion as a tool for analysis of 3D scalar fields. Because of the large size of current data sets,
it is also important to perform accurate analysis on low-resolution representations of the field.
Thus, the influence of mesh resolution on distortion has been studied by considering variable-
resolution conforming tetrahedral meshes extracted from a hierarchy of diamonds according to
a user-defined threshold on the approximation error. In this case, resolution can be coarsened
locally in less interesting regions, without affecting the quality of the approximation.

In [FIM™12] we have applied the notion of intrinsic distortion to the analysis of the morphology
of 3D scalar fields through examples on synthetic, biological and medical datasets. In particular,
the interaction between the resolution of the tetrahedral mesh approximating the field and the dis-
tortion values has been studied, showing that is possible to reasonably approximate the 3D scalar
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Intensity field Distortion field

Figure 8.1: Intensity field (left) and distortion field (right) for synthetic data set sampling function
f(z,y,2) = sin(z) + sin(y) + sin(z) over a 65% grid.

field at fairly low resolutions. Moreover, results obtained by computing Morse decompositions
based on the intensity and on the distortion values are shown.

One way to perform morphological analysis is to automatically decompose the domain of the
field into meaningful parts in order to support understanding and semantic annotation. Segmen-
tation has been the basic tool to support reasoning on terrains and 3D shapes. The segmentations
proposed here, are based on the values of the scalar field or on discrete distortion, in a similar
way as done for terrains where segmentations are computed based on elevations and/or on curva-
ture values. We will show results on comparing segmentations of the 3D scalar fields, obtained
through Morse decompositions of the intensity and of the distortion fields. To this aim, results
on both synthetic and real data set are shown.

8.3.1 3D datasets and distortion

Tetrahedral meshes considered are all extracted from a multi-resolution representation of 3D
scalar fields provided by a regular tetrahedral hierarchy. The efficient representation of a reg-
ular tetrahedral hierarchy developed is called a hierarchy of diamonds, and has been discussed
in [WDO09].

First example is a synthetic dataset defined over a regularly sampled domain of 65° vertices. The
intensity field is obtained by sampling the ANALYTIC function f(z, vy, z) = sin(z) + sin(y) +
sin(z). The relationship between the intensity field and the induced distortion field over this
domain is illustrated in Figure 8.1 along the boundary of the cubic domain using a blue-red color
scale to indicate the low and high scalar and distortion values.

The second dataset, the NEGHIP, is a simulation of the spatial probability distribution of elec-
trons in a high potential protein molecule. The knowledge of electron distribution within such
molecules is important in pharmacology to understand the interactions between molecules and an
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organism. The inhibition of some protein molecules can reduce complications in diseases such as
cataracts and neuropathies for diabetic subjects. The understanding of the catalytic mechanism
and the electrostatic potential of the molecule plays a relevant role here. It may help to study, at
the atomic scale, the transfer of electrons and protons in complex biological processes such as
oxidation/reduction in relation to metallic ions by considering the reaction between hemoglobin
(containing iron ions) and the oxygen molecule.

In Figure 8.2, the intensity and distortion fields are shown for the tetrahedral mesh extracted
from the hierarchy computed on the NEGHIP dataset at variable resolution corresponding to 0%
approximation error. The range of colors used for visualization goes from blue for low values to
red for high values, with gray indicating mean values.

Intrinsic 3D distortion highlights the growth behavior of the density scalar field, which is max-
imal around the atoms. The density field grows quickly around atoms within small regions and
then stabilizes its growth. Distortion becomes nearly constant in such case. It was also observed
that, within regions where the electron density has low values, many small regions have high dis-
tortion values. This indicates changes in the electron density and may be due to the interference
between adjacent atoms or to some artifacts in the processing of the data. Regions in blue (for
distortion) indicate that the scalar field grows differently in different directions. This corresponds
to saddle regions where the convexity of the electron density field changes.

The third dataset, the CTA-BRAIN, is a CTA-scan of a human brain with an aneurysm. Com-
puted Tomographic Angiography (CTA) is a minimally invasive technique that uses imaging
technologies (e.g., X-rays) to explore the structure of vessels and tissues. A contrast agent is gen-
erally used to produce clear images.The original dataset has 512x512x120 vertices and measure
the intensity of the contrast agent. To show the behavior of the intensity field and of distortion, a
variable-resolution mesh from the diamond hierarchy has been extracted, which has 1.74 million
vertices and 9.52 million tetrahedra.

Figure 8.3 illustrates the dataset, where the scalar field corresponds to the intensity of the contrast
agent, and its distortion, through equally spaced horizontal slices. The geometric structure of the
scanned region is well represented by distortion. Most regions have gray or light blue color,
which indicates a uniform distribution of the contrast agent within the brain. The regions with
high distortion correspond to changes in the intensity of the contrast product.
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Figure 8.2: Twelve equally spaced slices (along the z-axis) of the intensity field (left), and the

distortion field (right) of the NEGHIP dataset at 0% error. The colors of the distortion field are
scaled to highlight the extreme values.
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Figure 8.3: Seven equally spaced slices (along the z-axis) of the CTA-BRAIN dataset at 10%
error illustrating the scalar field (left), and the distortion field (right). The colors of the distortion
field are scaled to highlight the extreme values.
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8.3.2 Distortion and mesh resolution

The validity of distortion analysis has been demonstrated on lower resolution approximations
by considering the distribution of distortion values over a set of extracted meshes with increas-
ingly fine resolution. Results are shown on the two real data sets only, NEGHIP and CT-BRAIN
datasets. The error associated to a diamond 9 is computed as the maximum difference between
the intensity values of all grid points within the domain of 9, and the values obtained by linear
interpolation over the vertices of the tetrahedra of §. Extracted a series of meshes ¥, of uniform
approximation error ¢; from Ay, the distortion of the vertices of these meshes is evaluated using
threshold values of ¢; € {30%, 10%, 5%, 2%, 1%, 0%} of the total error.

Figure 8.4 shows the Cumulative Distribution Function (CDF) of the discrete distortion (hor-
izontal axis) of the vertices of each mesh. The sharp spike in the CDF of all datasets around
a null distortion value indicates that the vast majority of vertices have (nearly) null distortion.
As the resolution increases, this spike becomes steeper, indicating that the increased resolution
is distributed among regions with nearly null distortion. Thus, the distortion is concentrated in
relatively few vertices within the mesh, and appears prominently in lower resolution approxima-
tions. For example, when ¢ = 0, more than 94% of the 129 K vertices in X4y have distortion
D(v) < |1], and for € = 2%, more than 83% of the 33 K vertices in Y5y have distortion
D(v) < 1]

Similarly, Figure 8.5 shows the CDF of meshes Y., using threshold values of ¢; € {99%, 75%,-
50%, 30%, 10%, 5%} extracted from the CTA-BRAIN dataset. These meshes illustrate the same
general trend as the Neghip approximations, although they are a bit noisier since they are scanned
images.

These experiments indicate that a fairly accurate understanding of the behavior of scalar field can
be obtained via its discrete distortion even at lower resolutions, without the need to compute the
distortion on the field at full resolution.

8.3.3 Morse Decompositions

In this Subsection, Morse decompositions of the synthetic and real data sets are computed us-
ing the intensity and the distortion fields. The experiments have been performed by using the
watershed by simulated immersion implementation (see Section 2.1.4).

Lets consider the distribution of the intensity and distortion values for the synthetic data set
shown in Figure 8.1. Figure 8.6 shows the ascending and descending Morse 3-cells computed
based on the intensity and on the distortion fields. It is clear how the distribution of the intensity
and of the distortion values influences the corresponding segmentations. Both ascending and
descending Morse 3-cells obtained from the intensity field consists of 1,331 cells and have a
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Figure 8.4: Cumulative distribution functions of distortion values (horizontal axis) over increas-
ingly fine meshes extracted from the NEGHIP dataset.
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Figure 8.5: Cumulative distribution functions of distortion values (horizontal axis) over increas-
ingly fine meshes extracted from the CTA BRAIN dataset.

regular structure. The ascending decomposition obtained from the distortion field consists of
12,972 cells, while the descending one consists of 3,738 cells. The decomposition pattern in
the ascending and descending distortion-based complex varies in different portions of the mesh.
This is due to the function sampling that is different from its period.

Figure 8.7 shows Morse 3-cells built from the full-resolution tetrahedral mesh discretizing the
NEGHIP dataset. Visualization is thresholded along an isovalue to better illustrate the structure
of the molecules. The ascending and descending Morse 3-cells obtained from the intensity field
consist of 104 cells and of 41 cells, respectively. The ascending and descending Morse 3-cells
obtained from the distortion field consist of 3,654 ascending cells and 23,334 descending cells,
respectively.

Some components of the descending decomposition represent the location of atoms (i.e. maxima
of the density) and the proper space in which electrons revolve around. Due to the interference
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Ascending decomposition Ascending decomposition

Descending decomposition Descending decomposition
of intensity field of distortion field
(1331 cells) (3738 cells)

Figure 8.6: Morse 3-cells for the ANALYTIC data set defined by intensity function f(z,y,z) =
sin(z)+sin(y)—+sin(z). Minima or maxima vertices are colored in red, vertices on the boundary
of several regions in blue and vertices within a region in yellow.
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of electron density of adjacent atoms, some components are created and correspond to some
maxima of the density field. These components do not properly contain atoms.

Figure 8.8 illustrates the intensity field, the corresponding distortion values and the segmenta-
tions obtained from a uniform resolution mesh >:;yy, extracted from the CTA-BRAIN dataset (see
also a view as set of slices in Figure 8.3).

The decomposition obtained from the intensity field consists of 37,631 ascending 3-cells and of
23,835 descending 3-cells, while the decomposition obtained from the distortion one consists of
136,641 ascending 3-cells and 128,687 descending 3-cells. Figure 8.9 shows the largest segments
from the segmentations. Observe that, while the descending regions are more structured and
follow the field values, the ascending regions are much more influenced by the boundary and
by the less relevant regions of the original scalar field. The former therefore seem to provide
a more meaningful decomposition. The large number of cells in the descending decomposition
computed on the basis of distortion is due to the fact that there is a large number of small areas in
which the concentration of the contrast agent changes abruptly (i.e., distortion has a maximum).

8.4 Generalizing extrinsic distortion to nD

In [SFIM13] we have proposed a generalization of the extrinsic distortion to nD, deriving also a
weighting that can be used to compute mean curvature on tessellated hypersurfaces.

The generalization can be done by considering the dihedral angle at adjacent simplexes. On a
discrete n-dimensional manifold, embedded in (n 4+ 1)D, represented by a simplicial complex
Y., pairs of adjacent n-simplexes form a dihedral angle determined by the two hyperplanes con-
taining each of them. Assuming the manifold is orientable, the signed dihedral angle formed
by these hyperplanes can be determined in a straightforward manner, leading to formulate the
general expression for extrinsic distortion:

Tij €St? (’U)

where ©;; represents the signed dihedral angle between the simplexes o, and 0, and 7;; € St2(v)
is defined as true if 0;,0; € St(v) and 7;; = 0; N 0, where 7;; is an (n — 1)-simplex. This is to
say 0; and o; are adjacent and their union has disk topology.

The weighting that leads to a mean curvature approximation can also be generalized, inferring it
from Dyn’s cylindrical approximation in 2D [DHSJLO1]. Two adjacent n-simplexes will meet at
an (n — 1)-simplex 7;;, and the edge length used in the 2D case can be generalized to the volume
of 7;;. Just as in the 2D case one half of the weighted angle went to each vertex on the edge,
in the general case 1/n goes to each of the vertices at the simplicial intersection. Finally, the
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NEGHIP field

Ascending decomposition Ascending decomposition
of original field (104 cells) of distortion field (3,654 cells)

Descending decomposition  Descending decomposition
of original field of distortion field
(41 cells) (23,334 cells)

Figure 8.7: Original field and distortion field, and segmentations, for variable resolution NEGHIP
data set at 0% approximation error. Segmentations are shown with minima (ascending) or max-
ima (descending) vertices in red, vertices on the boundary of more than one region in blue and
vertices within a region in yellow
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BRAIN field BRAIN distortion

Ascending decomposition Ascending decomposition
of original field (37,631 cells) of distortion field (136641 cells)

Descending decomposition Descending decomposition

of original field of distortion field
(23,835 cells) (128,687 cells)

Figure 8.8: Original field and distortion field, and segmentations, for CTA-BRAIN data set at
10% resolution.
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BRAIN field

Ascending regions with number Descending regions with number
of tetra between of tetra more
13,000 and 100,000 than 20,000

Figure 8.9: Ascending and descending 3-cells using a threshold to visualize distinct regions
formed by a large number of tetrahedra.

cylindrical generalization has n — 1 null principal curvatures and thus its mean curvature is given
by 1/n-th of the non-null value. This all leads to the final weighted expression:

- 1

H(v) = > (=07,

2
n?|jv
H || TijESt2(’U)
where ||v|| is the n-dimensional barycentric volume associated with vertex v and ||7;;|| is the
(n — 1)-dimensional volume associated with the simplex 7;; at the intersection of the adjacent
simplexes o; and 0.

Derivation The derivation of the above weighting is provide here. Note that this is not intended
as a proof of convergence. Remarking that when two hyperplanes in R"*! intersect, the intersec-
tion is an (n — 1)-affine plane P,,_1, lets approximate smoothly the piecewise linear hypersurface
through a cap of the curved nD hypersurface C,,(r) = S! x P,,_;, where r is a positive real num-
ber. The cap is obtained from an arc of the circle S}. The hypersurface C,(r) is isometric to the
hypersurface defined by

Co(r) ={(z1,...,2041) : g;i + xiﬂ _ 7,2}’
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which can be seen as the image of two functions f:
fo(zr, .. xn) = £/12 — 22,

This hypersurface is also isometric to the graph C”,,(r) of the translated functions r — f. Let us
define g as

g(x1, .. ) =1 — /12 — 22,
where ¢(0,...,0) = 0 and g—i((), ...,0) = 0 for all 7. Then, the second fundamental form at
the origin of C”,,(r) reduces to the Hessian matrix of g at the origin whose coefficients are all 0
except the last diagonal one, which is equal to 1/r. Consequently, the mean curvature of C”,,(r)
at the origin is simply # Thus the mean curvature of C,,(r) at any of its points is equal to #

The total curvature of the cap approximating the piecewise linear hypersurface is thus equal to
the integral over the cap of % Since the cap is tangent to the piecewise linear hypersurface,
then, at the contact point, the cap and the piecewise linear hypersurface have the same normal
vectors. This means that the angle defining the arc of S} of the cap is equal to m minus the angle
O between the two normal vectors at the contact points, which are simply the normal vectors of
the hyperplanes whose intersection is approximated by the cap. Thus the total mean curvature

over the cap is
1

Ti; Nvl|r(m — 64)—
Iy (e — ©35)—
where 7;; N v represents the intersection of 7;; with the neighborhood of v. Now, supposing that
in the neighborhood on the hypersurface around the vertex v the mean curvature H, is constant,

then the total mean curvature over the neighborhood is equal to H,||v||. Hence

Hylloll= ) Nl

Tij €Sst? (’U)

(T —©y)

From this is obtained

1
H, =
nvl

> (m=0y)lmnol

Tij €S2 (’U)

Supposing, when computing the mean curvature at all vertices v, the volume neighborhoods
around v divide every (n — 1)-simplex into n subsimplexes of the same volume (e.g. as in a
barycentric configuration), then it holds that ||7;; N v|| = 1 ||7;;|| and thus:

Aw) = —— S (m—6y)mll

2
" ||U|| TijEStQ(’U)
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8.4.1 Experimental comparison on analytic surfaces

In order to evaluate the proposed method, a set of analytic 3D surfaces embedded in 4D as been
used with ground-truth mean curvature values as well as a segmentation application based on
Morse decomposition [CFI12]. In all cases the results are compared with those obtained using
the Laplace-Beltrami operator. Laplace-Beltrami operator is one of the best known tools for the
computation of mean curvature on discrete surfaces [MDSBO03]. It can be readily generalized to
3D manifolds and, as a well-known discrete operator and estimator of mean curvature, we use it
as a basis for comparison of our operator.

8.4.1.1 The Laplace-Beltrami operator

We consider the Laplace-Beltrami operator because of how well established it is in the literature
as a discrete estimator of mean curvature. A thorough comparison of a large set of curvature
operators is beyond the scope of our work and, for such a comparison, we refer the reader to
published works [GG06, KSNS07]. Our main goal is to compare our approach to a well known
one, establishing it to behave as well as said approach with some advantages, and thus placing it
in context.

Value Laplace-Beltrami operator at a vertex v is given by

K(v) = ﬁ Z w;(v — x;)

1€EN1 (v)

In 3-manifolds, the mean curvature value is given by 3 ||K||. Here, V(v) denotes the tetrahedral
volume assigned to vertex v and w; denotes the weight associated with the edge (v, z;). In 3D,

this weight is given by
1 : .
wi =g zj:@ cot o

where E{ is the length of the edge opposite to edge (v, z;) within the j-th tetrahedron incident on
(v,2;), and o is the dihedral angle at this opposite edge.

For the value of the volume V' (v) we simply use barycentric volumes, obtained as 1/4th of the
sum volume of all tetrahedra incident on v. Alternatively, it is possible to use Voronoi volumes,
though we have found that, in the 3D case, it does not reliably improve the accuracy of the mean
curvature estimate.

The scalar value of the operator as defined above would always be a positive quantity, given that
it is a fraction of the norm of the K vector. However, we can set the sign of the scalar value
by setting it to match the sign of the dot product between K and the manifold normal (positive
when they are in agreement, negative when opposite). In the case of graphs of scalar fields, as
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Figure 8.10: A z = 0 slice of the different tessellations used (lowest resolution for each shown
for illustrative purposes) illustrated on our sixth analytic function; (a) regular grid, (b) irregularly
sampled, (c) diamond mesh.

we will be examining, we can simply use the sign of the last component of K for efficiency and
simplicity.

8.4.1.2 Operator evaluation

The proposed operator is evaluated by considering analytic functions and comparing the result
to the corresponding known analytic mean curvature values. The functions are those suggested
by Hamann [Ham94b] as well as a second trigonometric function. They are as follows:

1. Quadratic polynomial: 0.4(z2 + % + 22)
Quadratic polynomial: 0.4(x? — y? — 2?)

Cubic polynomial: 0.15(x3 + 22%y — z2% + 2y?)
Exponential: exp(—0.5(2? + y? + 2?%))

Trigonometric: 0.1(cos(mz) + cos(my) + cos(mz))

A

Trigonometric: sin(7z) + sin(7y) + sin(wz)

The functions are sampled in the [—1, 1]? real interval using three different approaches. In the
first, a uniform grid of samples is used which is then tessellated using a stencil Voronoi approach.
That is to say, a cube is Voronoi-tessellated in the 3D domain and then repeated over the entire
grid. This is equivalent to a Voronoi tessellation of the grid samples in the domain, but clearly
more efficient. In the second approach, we create irregular tessellations. For a given number of
vertices, we randomly sample the interior of the interval and Delaunay-tessellate said samples.
In order to discourage poorly-shaped tetrahedra, the boundary is uniformly sampled, a minimum
distance constraint during the sampling is enforced, and the final mesh is relaxed with 100 iter-
ations of Laplacian smoothing. Finally, also diamond meshes are used [WDF11]. Figure 8.10
illustrates these approaches by showing a 2D slice of the sixth function above.
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Figure 8.11: Average normalized RMS error of weighted distortion (blue) vs the Laplace-
Beltrami operator (red) as a function of increasing resolution on (a) uniform grid (b) irregular and
(c) diamond meshes, and also (d) as a function of the number of tetrahedra incident per vertex
on irregular tessellations.

The first experiments show how the error with respect to ground truth values of mean curvature
changes as a function of increasing resolution. Using the Root Mean Square (RMS) error nor-
malized in each case by the range (maximum minus minimum) of analytic values taken by each
function in the interval and averaged over the six functions. Figure 8.11 illustrates these results.

Figure 8.11(a) shows the result on uniform grids. It can be seen, while both operators converge,
the weighted distortion does so more quickly, achieving an average reduction in error of 29%
compared to the Laplace-Beltrami operator. On the non-grid tessellations, both operators are less
well-behaved. This is mitigated by smoothing the estimates using 50 iterations of local averaging.
Figures 8.11(b) and 8.11(c) show these results on the irregular tessellation and diamond meshes.
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Figure 8.12: Average normalized RMS error of weighted distortion (blue) vs the Laplace-
Beltrami operator (red) on regular grid tessellations of fixed resolution and increasing Gaussian
noise. (a) Noise is added in the vertical direction with standard deviation as a percentage of
the field range. (b) Noise is added in the surface normal direction with standard deviation as a
percentage of the average edge length.

A further comparison, in the irregular tessellations, express the estimation error as a function of
the number of tetrahedra incident on each vertex. For fixed incidence number, the normalized
RMS error is evaluated over the vertices with this valence and average the results over all irregular
tessellations and all functions. While both operators converge to the analytic values of mean
curvature as vertex valence increases, the weighted distortion error is found to be much lower
than that of the Laplace-Beltrami operator. This is illustrated in Figures 8.11(d).

Finally, the behavior of the operators under increasing noise is evaluated. For each uniformly
sampled mesh, two forms of noise are added. In the first case, to simulate image noise, Gaussian
noise is added to the field component of the vertex coordinates as a proportion of the range of
analytic values. In the second, the Gaussian noise is added in the normal direction as a proportion
of the average edge length. As Figure 8.12 illustrates, the operators behave very similarly under
these conditions.

8.4.1.3 Application to segmentation

To further evaluate the proposed operator, an application to the segmentation of hypersurfaces
in 4D space has been explored. The idea is to extend to 3D the intuition that shape boundaries
often perceptually align with concavities, which correspond to regions of negative mean cur-
vature. While this intuition is common, it should be noted that if one scales the function by a
factor, the Euclidean curvature values may change in a relatively complicated way. Pottmann
and Opitz argue that it may be more natural to use isotropic curvatures [PO94]. Based on the
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concavity intuition, a hierarchical Morse decomposition of the mean curvature field defined at
the vertices of the tetrahedral mesh is applied. To finds segment centers at locations of high
(positive) curvature and boundaries at areas of low (negative) curvatur, the descending Morse
complex is used. Over-segmentation is countered applying hierarchical region-merging based on
the notion of persistence, which relates to the “height” difference between adjacent segments.

Data sets considered are FUEL, NEGHIP and SILICIUM. They and their segmentation results
using Laplace-Beltrami, weighted and unweighted distortion are shown in Figure 8.13. For each
data set, we empirically chose a merging threshold that results in a number of segments between
20 and 40.

For each dataset, increasing artificial noise is added to the field, the Laplace-Beltrami and distor-
tion fields is recomputed, and the segmentations re-obtained using the originally chosen threshold
for each set. After that the similarity to the original segmentation is measured. For this last step is
used the Hamming distance metric proposed by Huang and Dom [HD95, CGF09b]. It performs
a volumetric analysis of the 3-cells of both the decompositions. The original metric defines the
similarity between two 3-cells searching, by starting from a region s; in the first decomposition,
the region s, in the second decomposition with the largest common volume. Thus, the value
of such metric corresponds to the ratio between the number of tetrahedra assigned to the same
3-cell in both the decompositions and the total number of tetrahedra. It is also interesting to
compare the ratio of the number of segments in each segmentation n/m, where m > n. While
this “region number” metric is much less discriminative, it gives an intuitive sense of how the
number of segments grows as a result of noise. Given that these images are originally captured
on a regular grid, image noise is simulated by adding Gaussian noise to the field component of
the data with standard deviation set as a percentage of the field range. The results are illustrated
in Figure 8.14. As the curves show, the distortion operator in both its weighted and unweighted
forms, maintains higher similarity to the noiseless segmentation under increasing noise.
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Figure 8.13: Segmentations of FUEL, NEGHIP, and SILICIUM volume datasets obtained using
a hierarchical descending Morse complex on the Laplace-Beltrami, weighted and unweighted
distortion fields.
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discontinuity in the x axis.

204



Chapter 9

Concluding remarks

In this thesis we have investigated the analysis of scalar fields focusing our attention on methods
rooted in Morse theory. The main contributions of this thesis are in these directions:

e a dimension-independent representation, called the Morse Incidence Graph (M IG), for
the ascending/descending Morse complexes and for the 1-skeleton of the Morse-Smale
complex [CFI10];

e primal/dual interpretation of the descending and ascending Morse cells in terms of sim-
plexes of the primal simplicial mesh and of the cells of its dual mesh [WIFF13];

e a compact encoding of the Forman gradient field on triangle and tetrahedral meshes s using
local frame representation [WIFF13];

e the evaluation and comparison of the Forman-bases and watershed methods for computing
Morse complexes on unstructured triangular and tetrahedral meshes [FIMS13];

o the definition and implementation of two dimension-independent simplification operators,
called remove; ;11 and remove; ;_1, on the M IG [CFI11];

e a theoretical and experimental comparison between the remove operators we have defined
and i-cancellation operator [CFI13b];

o the definition of a multi-resolution model for the morphology of scalar fields in any dimen-
sion, called the Multi-resolution Morse complex, and its implementation for the 2D and
3D cases [CFI12];

e the definition of a multi-resolution model for both the morphology and the geometry of
two-dimensional scalar fields, called Multi-Tessellation based on Forman Gradient;
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e the definition and implementation of the multi-resolution model for cell complexes, called
the Hierarchical cell complex, and its application to the efficient computation of homol-
ogy and homology generators [CFI13a, CFI13c];

e a first attempt to generalize the notion of extrinsic distortion in three and higher dimen-
sions and investigation of new approaches to the analysis of 3D scalar fields through seg-
mentation and analysis of 3-manifold hypersurfaces that are not graphs of 3D scalar fields
[FIM*12, SFIM13].

In Chapter 3, we have presented a primal/dual interpretation of the descending and ascending
Morse cells in terms of simplexes of the primal simplicial mesh associated with a 3D scalar
field and of the cells of its dual mesh. The MS complex has been described combinatorially
as collections of cells from the dually subdivided mesh which is the intersection of the primal
and dual ones. This led to simple descriptions of morphological features in terms of only the
vertices and top simplexes of the primal mesh. We have also proposed a compact encoding of
discrete vector fields using the local frame representation, which associates information with the
top simplexes in the primal mesh, and which we apply to the discrete Morse gradient field.

In Chapter 4, we have described a simplification operator (remowve) on the dimension-independent
graph-based representation for Morse complexes described in Chapter 3.1, the MIG. The
remove operator has two important properties. First, it forms a basis for the set of topologically
consistent operators on Morse complexes: any such operator can be expressed as a sequence of
remove operators. Second, it reduces the size of the M IG at each step, both in terms of the
number of nodes and of the number of arcs. The i-cancellation operator is guaranteed to re-
duce only the number of nodes in the M I G, but, in general, it increases the number of its arcs,
thus increasing the total size of the M I(G. We have presented the results of the experiments
evaluating the remowve operator. From our experiments it follows that the majority of simplifica-
tion operators evoked at the beginning of the simplification process are saddle-saddle operators,
implying the importance of saddle-saddle operators that reduce the size of the Morse incidence
graph at each step. We have compared the remove operator with the existing simplification -
cancellation operator defined in the literature. We have shown that the number of arcs in the
graph simplified using i-cancellation operator always exceeds the number of arcs in the graph
simplified using remove operator, thus influencing both the storage requirements and the time
complexity of the simplification algorithm. We have applied the simplification algorithm using
remove operator on several 2D and 3D data sets, and we have evaluated the time complexity and
memory requirements of the algorithm at different persistence thresholds. We have also defined
and implemented a set of dimension-independent refinement operators, that are the inverse of the
atomic and macro simplification operators defined in Chapter 4.

In Chapter 5, we have defined a multi-resolution representation for the two Morse complexes,
based on the remove operator and its undo refinement operator, called the Multi-resolution
Morse complex. The M RMC' is dimension-independent. We have developed a graph-based
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model to encode an M RM C' and we have called this model Multi-Resolution Morse Incidence
Graph (MM IG). An MM IG is generated from the iterative generalization of the M I G at full
resolution, and consists of the MG representing the complexes at the coarsest resolution, of
a set of refinement modifications reversing the simplification ones applied in the generalization
phase, and of a dependency relation among such modifications. We have implemented two data
structures for encoding an M M I(G, in 2D and 3D, and we have compared their performances
both from the time efficiency and storage cost points of view. To overcome the limitations of
the M RMC' we have presented, in Chapter 7, a new multi-resolution model for scalar fields
My, = (3, f) defined on a triangle mesh ¥ on which a Forman gradient V' has been computed.
The Multi-Tessellation based on Forman Gradient (M'TFG) is able to support the extraction
of representations of both > and V' at different level of details. We have described the model
as well as its encoding used in its implementation. We have compared the M7T F'G with the
only comparable model known in literature, the Multi-resolution Morse Triangulation (M MT')
[DDFMV10]. Here, we have just present some preliminary results on synthetic data sets. We are
currently performing extensive experiments on such model.

In Chapter 6, we have defined a hierarchical model, called the Hierarchical Cell Complex (HC'C'),
based on a set of homology-preserving operators (called KiC'(i + 1)C' Kill i-cell (i+1)-cell) and
a set of homology-modifying operators (called KiCiCycle Kill i-cell and i-cycle). We have
defined the HC'C' in a dimension-independent way on arbitrary cell complexes and we have
compared its 2D instance with a pyramidal model based on n-maps. The first advantage of the
MCC over pyramidal models is its space efficiency. This is a consequence of the fact that inci-
dence graph, which is the basis for the HC'C, occupies less memory than an n-map representing
the same complex [DHOS5]. The second advantage is a wider representation domain. Incidence
graph can represent arbitrary cell complexes, while n-maps can represent (closed orientable)
quasi-manifolds, which are a class of pseudo-manifolds. The third advantage of the HC'C' is
its greater adaptivity, and thus a larger number of topological representations of the complex
that can be extracted from it. In a pyramid based on a 2-map, a contraction kernel at level &
describes a set of regions that are merged into one region from one level of the pyramid to the
next one. This merging (a set of edge contractions) can be seen as a macro-operator, consisting
of a sequence of edge contractions (i.e., K0C'1C operators). All the operators in this sequence
are either performed (at levels greater than k), or neither of them is performed (at levels less than
k). The removal kernel at level k describes the simplification of the boundaries of the merged re-
gions. In the 2D instance of our multi-resolution model, we built the M C'C using the same edge
removal (K1C2C') and edge contraction (X 0C1C') simplification operators, but we have consid-
ered each of them separately and we do not group them into macro-operators. Moreover, we have
studied the performances of the M C'C' varying the simplification sequence used to built it. We
have developed an implementation of the HC'C, based on our homology-preserving operators,
and we have demonstrated experimentally that distributing the simplifications throughout the
cell complex, during the simplification sequence, results in fewer dependency relations among
the nodes; thus their expressive power is higher and the storage cost is reduced. We used the
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homology-preserving HCC' as the basis for computing the homology and its generators for a
cell complex at various resolutions in an efficient and effective way. We have developed an al-
gorithm for computing homology and homology generators with coefficients in Z, on the base
complex (the coarsest one) using existing methods. The advantages of our approach are that a
homology-preserving H(C'C' concentrates the challenging computation on the base complex (the
one with fewer cells) reducing the complexity of the input. Homology generators are extracted
at uniform or variable resolution levels performing, for each refinement p, local updates in the
neighborhood of .

In Chapter 8, we have presented an innovative approach to the analysis of 3D scalar fields based
on the notion of discrete distortion, which generalizes discrete curvature to triangulated hypersur-
faces in 4D space, and on Morse decomposition. We have proposed the use of a multi-resolution
model based on clusters of tetrahedra, called diamonds, which enables the analysis of a the graph
of 2D scalar fields through crack-free approximations encoded as tetrahedral meshes. One impor-
tant aspect of using mesh-based multi-resolution models is that the scalar filed can be analyzed
by using much fewer samples than in the full-resolution one. This facilitates our analysis of
large 3D volume datasets by using significantly fewer resources. The other aspect that we have
shown through our experiments is the utility of discrete distortion in analyzing approximated
representation of the 3D scalar field, thus giving good insights about the field behavior already
at low resolutions. We have also examined the previously-existing notions of distortion and note
that they can be divided into intrinsic and extrinsic categories depending on whether they are
defined using the interior angles or the dihedral angles of the tessellation. We have a presented a
new discrete operator generalizing the notion of extrinsic distortion to nD. We have analyzed the
behavior of the operator on 3-manifolds in 4D, comparing it to the well known Laplace-Beltrami
operator, using ground-truth analytic surfaces with varying conditions of resolution, sampling
distribution, and noise. We have also investigated it in the context of an application that uses the
mean curvature field to obtain a volumetric segmentation, examining the stability of the segmen-
tations under increasing image noise. In each case we showed that extrinsic distortion behaves
similarly or better than the Laplace-Beltrami operator while being intuitively simple and easy to
implement.

Current and future developments

Also thanks to the active community working in scalar fields analysis and since the promising
results obtained during these three years, we are planning to study further many of the topics
addressed during the thesis work.

As discussed in Section 3.2, a further analysis of the representation through the lens of our pri-
mal/dual interpretation reveals that the discrete vector field is a labeling of the 1-skeleton of the
dually-subdivided mesh > g. In this interpretation, there is a one-to-one correspondence between
the nodes of >s’s 1-skeleton and the simplices of >, and between the edges of X g’s 1-skeleton
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and the incidence relations of > whose dimensions differ by one (i.e. the relations encoded in the
Incidence Graph). The Forman gradient restrictions discussed in Section 1.4 imply that regular
nodes in the 1-skeleton have valence one and critical nodes have valence zero. This interpreta-
tion opens the possibility of extending our representation in the immediate future to more general
cell complexes, such as irregular hexahedral meshes. Both our Forman gradient encoding and
our formulation of morphological features are independent of the topological data structure used
to encode the mesh (as long as it encodes the vertices and the top simplexes), of the method in
which the Forman gradient is computed and of the algorithms used for feature extraction. Thus,
we are planning to investigate the application of such methods in higher dimensions. However,
since the quick growth of possible valid cases for a Forman gradient V' ( 97 in 2D and 51,030
in 3D), we are considering other encodings for the gradient. The encoding will be still based on
the top simplexes of the representation, but it hould represent only the gradient arrows actually
present in V', exploiting the restrictions in the pairings imposed by discrete Morse theory (i.e.
if a vertex v; is paired with edge (v, vs), (v1, v2) will be not paired with any other triangle or
vertex in the triangle mesh ).

Regarding the multi-resolution analysis, we are currently working in improving the experi-
mental evaluation of the Multi-Tessellation based on Forman gradient model performing vari-
ous selective refinement queries at uniform and variable resolution levels. We are planning to
improve considerably the geometry simplification, implementing tools well established in litera-
ture for mesh simplification (such as Quadric Error Metrics (Q) E M) [GH97]) in order to obtain
better shapes during the simplification (and consequently refinement) step. Moving forward to
real-time computation we would consider, as long term goal, multi-resolution structures alter-
native to the classic Multi-Triangulation in order to reduce the D AG traversal cost. Following
the approach described in [CGGT05] we could move the granularity, of our refinement steps,
from triangles to precomputed patches including multiple vertex-split operators in one refine-
ment macro-operator. A similar idea could be also applied to the topological refinements. Since
the Forman gradient is a suitable tool for the homology computation we will adapt our model
to this purpose computing homology and homology generators on the root of the model and ex-
tracting representations of the homology generators. This can be achieved with a minor effort
since the boundary matrices used for the computation of homology are easily extracted from a
Forman gradient V. As for the H HC' complex 6, computing the boundary matrices on the base
Forman gradient will improve the computation speed considerably. We are interested also that
the geometrical representations extracted from an MT'F'G would agree with the function f de-
fined on its vertices. In other words, we would like that for each descending/ascending path in
V, the function values in f would be descendent/ascendent. This problem has been studied in
[BHEPO4] and [WGS10]. We are planning to relax the problem addressed in [BHEP04] modi-
fying the function f, at the end of a selective refinement query, computing the new function f’
based on the gradient paths in the extracted gradient V. As long term goal, we are considering
to extend the model to the 3D case. The edge-collapse is defined also the tetrahedral meshes
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as it is for triangles. We should study carefully a gradient configuration, for a neighborhood of
an edge-collapse, having the same good properties of the configuration described in Section 7.
Moreover the simplification of V, in dimensions higher then two, presents a wider set of critical
pairs that can be removed and, as discussed in [GRSW13] some of them could result in an invalid
change in the topology of the critical points of the scalar field.

We are also performing experiments on a hierarchical cell complex based on both homology-
preserving and homology-modifying operators. This version of the HCC' is built from a se-
quence of homology-preserving operators until no more simplifications can be performed. Then,
a homology-modifying operator is applied removing cells forming cycles and killing homologies
from the higher to the lower one. The HC'C' obtained allows the extraction of cell complexes,
from the base complex I'p, at different resolution and with different homologies with respect to
the initial cell complex I'. We are currently evaluating the likelihood of our model working with
two-dimensional and three-dimensional cell complexes only. Moreover, we are considering the
model as tool for the computation of the, so called, localized homology [ZCO08]. The problem
addressed in localized homology is the computation of homology generators, on a geometrical
object, which are independent and as small as possible. Performing the homology computations
on the base complex we could benefit, from the low number of cells in I'g, for retrieving the set
of independent homology generators and we could exploit the refinement process for extracting
homology generators with good quality. Independently from localized homology, we are also
planning to extend the previous approaches to the computation of homology and homology gen-
erators with coefficients in Z, adapting the HC'C' to simplicial complexes. We will consider
two simplification operators for generating an HCC': simplex collapse [KMS98], which is an
instance of simplification operator KiC'(i + 1)C(q, p), and edge contraction, a widely used op-
erator in mesh processing which has been proven to be homology-preserving [ALS12]. Since
these operators are homology-preserving, we are able to built the corresponding multi-resolution
model based on them. However, simplicial complexes have more restrictive topological con-
straints with respect to cell complexes, constraints that have to be maintained during the whole
simplification process. Thus, the challenging part would be to guarantee a sufficient reduction of
the mesh geometry in order to compute, fast enough, homology and homology generators of the
base mesh.

In the end, regarding the analysis of 3D scalar fields based on discrete distortion, we are in-
terested into increasing the robustness of the operator under conditions of irregular tessellation,
such as using intelligent smoothing schemes based on vertex valence. Our method could also
be applied to the segmentation and analysis of 3-manifold hypersurfaces that are not graphs of
3D scalar fields, as is fully permitted by the current formulation and implementation. Lastly,
other applications of mean curvature in higher dimensions are open to investigation, including
visualization, registration, matching, alignment, and simplification of volumetric datasets.
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These new analysis techniques based on discrete distortion, the efficient computation of Morse
and Morse-Smale complexes, and the efficient computation of homology and homology gener-
ators are different aspects that could be aggregated in a monolithic tool for the multi-resolution
analysis of scalar fields. The extraction of the features of the Morse and Morse-Smale as well as
homology generators complexes could give good insight on the structural characteristics of the
scalar field, while distortion values computed could be treated as an additional scalar function g
from which extract further information on the scalar field.
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Appendix A - Datasets

In this appendix we collect some information about all the datasets we have used for the exper-
imental evaluation of our work. We divide the datasets in three sets, 2D scalar fields (terrains),
3D scalar fields (volumetric datasets) and simplicial meshes (triangular and tetrahedral meshes).
All the datasets we have used are courtesy of Aim@shape [www.aimatshape.net], Volvis
[www.volvis.org]and VTerrain [www.vterrain.org] repositories.

The 2D scalar fields are all triangular meshes where a scalar function has been defined on its
vertices. All the 2D scalar fields used are terrain data sets where the scalar function is the height
function of the vertices.

- EGGS dataset is an analytic dataset deriving from the intersection of many Gaussians with
a plane. It is composed by 103041 vertices and 204800 triangles

- MATTERHORN dataset is a terrain dataset representing the Matterhorn mountain. It is
composed by 263169 vertices and 524288 triangles

- MONVISO is a terrain dataset representing the Monviso mountain. It is composed by
263169 vertices and 524288 triangles

- MONT BLANC is a terrain dataset representing the neighborhood near the Mont Blanc . It
is composed by 263169 vertices and 524288 triangles

- LAKE MAGGIORE is a terrain dataset representing the area around the Lake Major. It is
composed by 810000 vertices and 1616402 triangles

- MARCY is a subset of the bigger MOUNT MARCY dataset characterized by an irregular
triangulation. It is composed by 928 vertices and 1738 triangles.

- MALLORCA TERRAIN is a portion of Mallorca island discretized on a regular grid. It is
composed by 1825 vertices and 3454 triangles.

- USTICA dataset is a portion of the Ustica island. It is composed by 1128 vertices and 2111
triangles.
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The 3D scalar fields are all tetrahedral meshes where a scalar function has been defined on its
vertices. All the 3D scalar fields used are volume data sets generally obtained from scientific or
medical analysis.

ANALYTIC is, a synthetic dataset originated from the function f(z,y,z2) = sinx(z) +
sin(y) + sin(z). It is composed by 274625 vertices and 1250235 tetrahedra.

BUCKY is a carbon molecule having 60 atoms arranged in the form of a truncated icosa-
hedron. It is composed by 262144 vertices and 1250235 tetrahedra.

HYDROGEN consists of the high density region around the nucleus, two regions of high
density on either side, and a torus of high density around the nucleus. It is composed by
544525 vertices and 3057196 tetrahedra.

VISMALE is rotational C-arm x-ray scan of a human visage. It is composed by 619785
vertices and 3405126 tetrahedra.

ANEURYSM is a rotational angiography scan of a head with an aneurysm. It is composed
by 644114 vertices and 3616984 tetrahedra.

SILICIUM is the simulation of a silicium grid. It is composed by 113288 vertices and
633798 tetrahedra.

FUEL is the simulation of fuel injection into a combustion chamber. It is composed by
262144 vertices and 1500282 tetrahedra.

NEGHIP is a simulation of the spatial probability distribution of electrons in a high poten-
tial protein molecule. It is composed by 262144 vertices and 1500282 tetrahedra.

The cell complexes used are all triangle and tetrahedral meshes that become cell complexes after
undergoing simplifications.

GENUS3 represents a 3-torus with homology (1,6,1). It is composed 40K cells.

FERTILITY is a digital representation of the Fertility statue with homology (1,8,1). It is
composed by 1.4M cells.

VASELION is a digital representation of a vase with homology (1,0,1). It is composed by
1.2M cells.

EROS is a digital representation of the Eros statue with homology (1,0,1). It is composed
by 2.8M cells.
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HAND is a digital representation of the human and with homology (1,2,0). It is composed
by 2.1M cells.

BUDDHA is a digital representation of the Buddha statue with homology (1,208,1). It is
composed by 3.2M cells.

SKULL is a digital representation of a human skull with homology (1,2,1,0). It is composed
by 748K cells.

FERT-SOLID is a tetrahedralization of the fertility shape with homology (1,4,0,0). It is
composed by 6.2M cells.
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