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Figure 1: Recreation of a Brooklyn Bridge-like street view, from an artist-provided city and a procedurally generated bridge.

Abstract
In this paper we introduce a method for designing a class of engineering structures, namely suspension bridges.
These bridges are ubiquitous in the industrialized countries, often appearing in known city landscapes, yet they
are complex enough that hand-based modeling is tedious and time consuming. We present a method that finds the
right proportions for such a structure through an optimization method that tries to distribute the tower positions
while maintaining cable width to be a finite number. By simultaneously optimizing the span and sag of the cables
of a bridge, we optimize the geometry and soundness of the structure. We present the details of our technique
together with examples illustrating its use, including comparisons with real structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling— I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

One of the main challenges in computer graphics is the cre-
ation of realistic models of human-made structures. At the
same time, there is an increasing need to develop interac-
tive, user-friendly editing tools allowing a broader range of
public to generate new content.

The current approach to 3D modeling is to manually cre-
ate 3D geometry using tools like Autodesk Maya or 3ds
Max. This process is time consuming, tedious and repetitive,
but gives to the artist full control of the final 3D model. How-
ever, sometimes there are situations where reference images
are not available, so this approach can be difficult to recon-
cile with a demand for visual realism.

In the last decade, procedural modeling has emerged as
a powerful technique for generating architectural geome-
try [WWSR03] [MWH∗06]. Later, Lipp et al. [LWW08] in-
troduced a visual editing paradigm with direct, fine-grained
local control of all aspects of the grammar for individual
buildings, but the underlying paradigm did not change: the
user still is expected to generate rules that are applied to sets
of shapes, resulting in new product shapes. This again, re-
quires the user to know the intrinsic parameters of the struc-
ture to create, or infer them in a trial and error process. We
present a method to automatically compute feasible dimen-
sions for a suspension bridge, while leaving control in the
designerÕs hands for deciding the most relevant parameters
of the model. This method, based on practices in the field
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of structural engineering, is intended to quickly create novel
and physically realistic suspension bridge structures, using
simple optimization techniques and a minimum of user ef-
fort. It is important to clarify that in this work we are not go-
ing to deal with aerodynamic stability or responses of earth-
quakes, which is left as future work.

Resulting from the application of our proposal, we can
enumerate our main contributions:

• an automatic mechanism for the computation of the con-
structive bridge parameters given very simple and intu-
itive inputs.

• an automatic way of generating structurally feasible pro-
cedural bridges.

• we present a measure that determines how close a model
is to being structurally feasible. It is enabled by a formula-
tion that agrees closely with engineering constructive pro-
cedures, and it matches with available data.

2. Previous work

Very little has been published in the graphics literature on the
problem of the automatic generation of man-made structures
beyond buildings and houses.

The current trend in procedural building modelling is to
use grammar-based procedural techniques that have shown
promising results, as shown by Wonka et al. [WWSR03] and
later improved by Müller et al. [MWH∗06]. Later, Lipp et
al. [LWW08] introduced a real-time interactive visual edit-
ing paradigm for shape grammars, allowing the creation of
rulebases from scratch without text file editing.

Müller et al. [MZWVG07] and Koutsourakis et al.
[KST∗09] present methods to automatically recover shape
grammars from real-building photographs by combining the
grammars with image-based analysis. Aliaga et al. [ARB07]
presented Style Grammars for quick visualization of build-
ings and structures. In that work, they proposed an automatic
grammar derivation system from existing buildings.

In the context of plant modeling, static analysis has been
used to balance the weight of branches for creating realis-
tic tree structures [HBM03]. The problem of creating truss
structures (a common and complex category of buildings)
in Computer Graphics was first presented by Smith et al.
[SHOW02]. In that work, they also used an optimization pro-
cedure to simultaneously find the location of the joints and
the strengths of individual beams in a truss structure. How-
ever, their technique can only be applied to sets of rigid bars,
which precludes the inclusion of funicular structures as pre-
sented here.

Whiting et al. [WOD09] studied the problem of proce-
dural modeling structurally-sound masonry buildings. Their
method automatically tunes a set of user-chosen degrees of
freedom to obtain buildings that are structurally sound. We
also aim at building structurally sound suspension bridges,
but we use engineering standard procedures to obtain feasi-
ble structures in a much shorter period of time.

2.1. Representing Bridge Structures

In the following explanations, we refer to Figure 2 for the
definitions. Let K be the length of the main span of the bridge

(the distance between the two towers), f be the sag (the ver-
tical distance between the anchor point of the main cable at
the towers and the lowest point of the cable).

Figure 2: General structure of a suspension bridge.

If concentrated vertical loads are applied on a cord, fas-
tened at its ends and considered weightless, it will assume
a definite polygonal form dependent upon the relations be-
tween the loads. This polygon receives the name of funicular
polygon (from Latin, funiculus, "of or like a cord or thread").
If the loads are continuously distributed, as when hanging
free under its own weight, the funicular polygon becomes a
continuous curve.

Let ω be the load per horizontal linear unit at any point
having absissa x. In general, we can distinguish between the
dead load ωD (given by the bridge itself) and the live load
ωL, but here we will use the total load computed as ω =
ωD + ωL. Then, the following differential equation of the
equilibrium curve can be obtained [Mel13]

H
d2y
dx2 =−ω (1)

where H is the horizontal component of the cable tension.

• For a uniformly distributed load, i.e. for a constant load
ω, if we take the origin of coordinates at the lowest cable
point, the integration of the previous equation will give

y =
ωx2

2H
(2)

Hence, in this case the equilibrium curve is a parabola. In
this case H is

H =
ωK2

8 f

• If the load is not constant per horizontal unit, but per unit
length of the cord, then the equilibrium curve takes the
form of a common catenary:

y =
1
2c

(ecx + e−cx −2)

with c = g/H, and g the gravity.

In the following, we will assume a constant load per hori-
zontal length unit. If needed, form Equation 2 we can find
the total length of the cable as

L = K
(

1+
8
3

n2
)
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Quite often bridge designers refer to the sag/span ratio n =
f/K to describe a suspension bridge. In general, this ratio is
approximately about 1/16 [Che98].

At any point along the cable, we can compute the tangent
of the angle φ the cable makes with the horizontal axis as

tg(φ) = 8 f x
K2

and then the vertical component of the cable tension can be
computed from V = H · tg(φ) and the cable tension as T =
H · sec(φ). Thus, the largest stress in the cord (at the anchor
points) can be calculated as

Tmax =
ωK2

8 f

√
1+
(4 f

K

)2
(3)

2.2. Optimizing Bridge Structures

In theory, suspension bridges can be infinitely long if an
infinitely strong cable can be provided. However, the real
limit of span attainable with a suspension bridge is deter-
mined by the condition that the cable shall have a finite
cross section A. In fact, one can directly compute the max-
imum span practicable for suspension bridges [RBBB94],
but this would give us an unrealistic result which can be too
large for our purposes. Thus, the standard bridge designing
procedure [OSH99] is to find H from Equation 1, and then
find Tmax from Equation 3. Using a safety factor (usually 3),
the required ultimate strength of the cable is computed and,
from a set of tabulated values, one, or a group of, galvanized
bridge ropes is selected that will meet the required strength.
Once the cross section A is computed, it must be verified
that it is an acceptable value, and if not, the computations
must be restarted with a new set of K and f values [CL05].
While optimizing a suspension bridge, it must be noted that
not only the central span must be considered, but also the
side spans. So, for the bridge to cover a given total length l,
it must be computed the cable cross section A both for the
central and for each side span, keeping the maximum value.
Thus, if A(∗Span) is the cross section for either the central
or any of the side-spans, our basic function is

max(A(CentralSpan),A(SideSpan))

This function can be considered as an energy function,
which can be computed for a generic bridge as shown in
Figure 3. As expected, for a value equal to half the length of
the bridge it takes minimum values with C0 continuity. This
is not a problem, as we do not want the optimum values,
but a set of values that would allow the construction of a
feasible bridge. Feasible bridges are those that are lower in
the landscape than the brown line shown in the figure. In
that figure we also show a possible path for an optimization
run, from the initial value to the final one that satisfies the
imposed constraints.

In general, values of cable cross section area vs. ultimate
strength are tabulated (e.g. [Lex11]), but we performed a
simple linear regression for standard galvanized steel bridge
strands, obtaining an excellent linear regression of the form
Tbreak = mA with A the area of the cable cross section (Tbreak
in units of 2000lb, and A in square inches, but conversion
is simple as 1lb = 2.2046kg and 1m = 0.0254in) and m was
found to be 76.669 with a correlation coefficient of 99.989%.

Figure 3: Energy landscape for our two-parameter struc-
ture: span and sag. The brown line marks the feasible region:
values below represent all feasible bridges, although we are
only interested in the first one that satisfies this condition.

Finding actual information of the load, both dead and live,
of real bridges is feasible only for a few examples, like the
Golden Gate bridge in San Francisco, USA. Thus, here we
propose that the total load of a bridge will be linearly related
with the traffic it will hold. In particular, we propose that the
load per unit length ω is a factor times the number of ef-
fective lanes in the bridge. We compute the effective lanes
by considering the total number of lanes among all decks,
plus the train railways as one lane each. We estimated this
factor from the date of the Golden Gate bridge data, so we
decided to call it GoldenFactor and in our case it has a value
of 5300kg/lane. This value gives a perfect matching for the
Golden Gate bridge, but it turns out to be also a good ap-
proximation for the other bridges in Table 1, as we will see
in Section 2.3

We performed tests with a few numerical optimiza-
tion methods, like the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [NW07], or the L-BFGS-B algorithm,
which is a constrained variant of the previous one
[BLNZ95]. We obtained the best results with a simple mod-
ification of Powell’s method [PVTF02] to find the minimum
of our objective function, which consists in adding an early
termination criteria as soon as a function is evaluated below
a user-provided threshold. In our case, this threshold was set
to the maximum feasible cable diameter, which resulted in
very good results for existing bridges, as can be seen in Sec-
tion 2.3. We set the bounds for the optimizations with the
following criteria:

• A span cannot be larger than the real bridge length.
• A span must be larger than a minimum distance that, in

our case, was selected to be the distance between the river
shores at a given depth.

• A sag must be smaller than half the current span.

There is no need to add a lower bound for the sag as the
function rises rapidly to infinite as the sag goes to zero, as
shown in Figure 3. In the case of the BFGS and Powell’s
method, we added the constraints in the form of penalizing
terms to the target function. Initialization was set to the real
bridge length minus a few meters for the span, and to a few
meters high for the sag.
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Country Main Span Side Span Length REAL length Height above road Cables Lanes Trains cable diameter
Golden Gate Bridge USA 1280 343 2737 1966 152 2 6 0 0.92

Akashi Kaikyō Bridge Japan 1991 960 3911 3911 217.08 2 6 0 1.12
Humber Bridge UK 1410 280(N)/530(S) 2220 2220 125.5 2 4 0 0.68

Manhattan Bridge USA 448 221 2089 890 61.3 4 7 4 0.54
Brooklyn Bridge USA 487 283.464 1833.68 1053.9 43.12 4 6 0 0.38

Table 1: Figures of some of the most famous bridges: the Akashi Kaikyō Bridge is the longest bridge currently built, while
Humber Bridge was the longest from 1981 until 1998 (now it is the 5th). The "Length" column indicates the "official" length of
the bridge, while the column "REAL length" shows the length of the suspended part of the bridge, including the central span
and both side spans. All length measurements are in meters.

The procedure to generate the actual bridge from these
parameters is more or less straightforward. In particular, we
implemented a method that takes a (linear) street segment as
input in OSM format [Ope09], and creates from it the decks
and, if needed, the supporting structures for multiple decks
(e.g. for the Manhattan Bridge). Then, the street segment
is sampled along its length to locate the anchorage blocks
and the towers, which are positioned taking into account the
span length obtained from the already described procedure.
If multiple towers are allowed, the suspended length of the
bridge is divided in the side spans, and as many central spans
as needed given the computed span length. Finally, the ca-
bles are created following Equation 2 with the obtained sag,
span and cross section as control parameters. The suspender
cables are added at regularly spaced distances from the an-
chors and towers, from the decks up to the main cables. It is
important to note that our procedural implementation does
not require the construction of the whole bridge from scratch
every time a parameter changes during optimization, as only
the affected parts need to be re-computed: the cables and
the position of the towers, but the towers themselves or the
decks do not need to be rebuilt. Of course, any other pro-
cedural mechanism would work, like the one described by
Benes et al. [BSMM11], which could be used as well.

2.3. Results and Discussion

The procedure presented in this paper has been implemented
as a module of the skylineEngine system [RP10], which
works on top of SideFX’s Houdini3D modeler [Sid10]. The
first thing to verify is the concordance of our computations
with actual bridge measurements. In Table 2, in the last col-
umn, we can find the results of evaluating the functions al-
ready described with the actual span and sag for their re-
spective number of lanes and cables. We can see that con-
cordance is high in spite of the crude approximation repre-
sented by the GoldenFactor, showing a concordance between
0% for the Golden Gate bridge (which is not surprising, as
the GoldenFactor was computed for this particular bridge)
to about to 24% for the Humber bridge. This is probably be-
cause this bridge is asymmetrical, its south side span being
almost twice the northern side span. The other bridges show
even smaller errors, so we can say that this estimation is ef-
fective enough in the context of Computer Graphics.

The other columns in Table 2 show the result of using this
cable function in an optimizing procedure. Here, we feed the
optimizer with an initial span and sag values, as described in
Section 2.2. We let the algorithm optimize these values until
a value smaller than a prescribed maximum cable area was
found. As described, we added an early termination criteria,
to stop as soon as an evaluation satisfied this criterion, but

Span Sag D iterations Ddirect
Golden Gate Bridge 1010.90 81.40 0.97 1 (early) 0.92

Akashi Kaikyō Bridge 1953.72 234.63 1.13 1 (early) 1.19
Humber Bridge 1110.00 138.74 0.69 2 (full) 0.89

Manhattan Bridge 474.35 100.0 0.44 2 (early) 0.49
Brooklyn Bridge 474.35 100.0 0.38 2 (early) 0.45

Table 2: Results from the optimization for our set of known
bridges: Final span, sag, cable diameter and number of it-
erations. Early/full in the last column refers to an early quit
because a feasible bridge was achieved, or the final result
of the converged optimization. Column Ddirect refers to the
value obtained for the diameter when the functions are eval-
uated with the exact span and sag for the respective bridges.
Lengths measured in meters.

we did not had to make use of this criterion except for the
Humber bridge, which has a special asymmetrical structure,
as already mentioned. Observe the similarity of the results
for the Manhattan and Brooklyn bridges, which is to be ex-
pected as these bridges share a very similar structure, differ-
ing only in the number of lanes each carries, which is the
reason for their different cable diameters.

Figure 4: Manhattan and Brooklyn bridges on a New York
map, obtained with the described procedure.

In Figure 4 we can see a part of New York with Manhat-
tan and Brooklyn bridges on it, with their values obtained
with the presented method. The values used are in Table 2.
In Figure 5 we can see three steps in the optimization of
Akashi Kaikyō Bridge, from the initial values (span = 1500,
sag = 10, diameter = 6.42), at the end of the first iteration
(span = 1953.72, sag = 166.37, diameter = 1.31), and the
final optimized value (span = 1955.49, sag = 244.42, diam-
eter = 1.11). Both images are simple screen captures of our
procedural modeling framework. As can be seen from these
results, we have presented a method that can produce struc-
turally feasible suspension bridges from a few very intuitive
parameters: the number of lanes the bridge will hold, its total
length, the number of cables it will have and a maximum ac-
ceptable cable cross section area. All the other constructive
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Figure 5: Three steps in the optimization for Akashi Kaikyō Bridge: initial values, at the end of the 1st iteration, and final result.

parameters are automatically obtained with an optimization
procedure.

Although our algorithm is based on standard engineer-
ing procedures, one limitation it presents is the need to
have more or less accurate information regarding the bridge
length, the number of lanes it will have, the number of ca-
bles it will use, and the maximum feasible cable cross sec-
tion area. In our experience these last parameters are easy to
fix after a couple of trials, and, as the optimization step is
almost immediate (less than a second), the whole process is
quite fast.

2.4. Future Work

As we mentioned in the introduction, throughout this work
we have not dealt with aerodynamic stability or with dy-
namic response analysis, needed to compute the responses
of earthquakes. This is a complex topic which involves care-
fully tuned simulations that are beyond the scope of this pa-
per and are left for future work.

Also, from the approach proposed in this paper, several
new lines for future research are possible. First of all, al-
though the work by Smith et al. [SHOW02] covers a wide
range of truss structures, funicular structures like the ones
studied in this paper have not been studied enough. There
are several other classes of bridge structures based on ca-

bles, like cable-stayed bridges, which need special consider-
ations. Also, cables are used in other architectonic structures,
like sport stadiums, monuments or special buildings like the
Milwaukee Art Museum (MAM) by the architect Santiago
Calatrava, which is located on Lake Michigan in Milwau-
kee, Wisconsin. It is precisely those structures that are the
most easily recognizable by the final user, so their recreation
becomes vital when reconstructing a real urban landscape.
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