
EUROGRAPHICS 2010/ A. Hast and I. Viola Poster

GPU Destruction: Real-Time Procedural Demolition of

Virtual Environments

Derek John Morris1 and Eike Falk Anderson1

1Interactive Worlds Applied Research Group, Coventry University, United Kingdom

Abstract

We introduce a method for the real-time simulation of destructible materials for use within videogame environ-

ments. Our system combines a number of existing techniques in a Graphics Processing Unit (GPU) based imple-

mentation that employs procedural geometry generation to reduce content creation times while retaining artist

control.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Gaming

1. Introduction

In recent years, videogames have become increasingly com-

plex, aiming to immerse the player in virtual game worlds

that employ 3D animated graphics to provide players with

the illusion of realism. A major contributing factor to this

end has been a steep rise in the quality of real-time computer

graphics, fuelled by dramatic advances in computer graph-

ics hardware combined with the evolution of algorithms and

methods that more realistically model the real world.

One particular area that contributes significantly to the

perception of a realistic virtual environment is the behaviour

of various materials when they are broken apart or destroyed.

‘GPU Destruction’ is a real-time simulator for destruc-

tible materials that can be used within a videogame or sim-

ilar real-time graphics application. To achieve this, most of

the simulation processing is performed on the GPU in or-

der to make most efficient use of system resources (see Fig-

ure 1).

2. Background

The majority of investigations into the simulation of de-

formable bodies have aimed to obtain a high level of accu-

racy with the associated cost of high system resources. In

the domain of real-time computer animation, such as found

in videogames, however, some of these accuracies can be

Figure 1: GPU Destruction method.

traded for higher operating speed as long as the perceived

visual representation remains acceptable.

Significant progress in the computer graphics area was

made by O’Brien and Hodgins who introduced methods for

modelling and animating first ‘brittle fracture’ [OH99] us-

ing a tetrahedral finite-element method, which was then ex-

tended to also model ‘ductile fracture’ [OBH02].

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org


D.J. Morris & E.F. Anderson / GPU Destruction

Parker and O’Brien [PO09] present a fully working real-

time system that has been implemented into a published

videogame title, which has a tetrahedral finite element

method at its core that uses strain and stress tensors to model

the internal forces within a material. A simplified version

of the techniques by O’Brien and Hodgins [OH99] is used

to propagate cracks throughout a material at points where

stresses exceed a certain threshold. In order to mask the low

resolution of the underlying tetrahedral mesh in destroyed

areas, pre-fabricated sections of geometry (‘splinters’) that

more accurately represent the fractured material are inserted

at the edges. The system runs on multiple Central Processing

Unit (CPU) cores in order to optimize the operating speed.

A different approach to representing destroyed sections of

a material has been demonstrated by Scheepers and Whit-

tock [SW06]. In their method the material is created and

stored in pre-shattered form as a collection of voronoi tiles.

To achieve the splintering effect, a spline is carved along the

required shatter line and the voronoi tiles adjacent to the line

are lifted out of position.

3. GPU Destruction

Our method is based on the work presented by Parker and

O’Brien [PO09], which is used in combination with other

methods (see Figure 1). At the heart of our system lies the

migration of the majority of processing from the original

concept onto the GPU, making optimal use of the graphics

hardware, in particular the geometry shader and StreamOut

mechanism [Mic09] to output the results of the simulation

timestep into a vertex buffer for further processing (imple-

mented using DirectX and HLSL on DX10.1 class hard-

ware). An element stiffness matrix per tetrahedra is derived

within the vertex shader and output into a custom vertex

format. These stiffness matrices are later combined into an

overall stiffness matrix that fully describes the material do-

main. This is combined with a fast method of processing col-

lisions with external objects [Zin08] that allows simple prim-

itive types to be transferred to the GPU via the hardware’s

constant registers. Rather than requiring artists to provide

the ‘splinter’ edges of the damaged materials, these are pro-

cedurally generated within the geometry shader. The method

we are currently evaluating for this employs a 3D voronoi di-

agram that is generated based on object material specific pa-

rameters, effectively translating the 2D method by Scheepers

and Whittock [SW06] into the third dimension. This signif-

icantly reduces content creation times but retains artist con-

trol, which is particularly important for videogames.

Our system provides:

• A real-time simulation of deformable and destructible ma-

terials suitable for implementation within a videogame

environment.

• Full use of modern GPU features utilising implicit multi-

threading and consequently freeing up CPU resources for

use in other game components.

• Procedural geometry creation techniques that save valu-

able content creation time.

4. Summary and Future Work

The simulator presented here is work in progress, which

promises to improve the efficiency of previous implemen-

tations both in terms of hardware acceleration and the cost

to artists in terms of content creation time.

For the purposes of this work we have used objects that

that have simple geometrical shapes, such as fences and

walls that have a straightforward tetrahedral representation.

For integration into a production environment beyond the

prototype stage, rather than setting tetrahedra and all asso-

ciated material properties explicitly within the application,

it would be sensible to simplify usage of the system by pro-

viding a separate tool to create and tweak tetrahedra for dif-

ferent types of objects and to allow modification of material

parameters in real-time.

With future advances in GPU technology on the horizon,

it should not only be possible to simulate different material

types that deform and fracture in a visually plausible man-

ner under real-time conditions with minimal intervention by

the CPU, but many of the used techniques could be imple-

mented using GPGPU methods and expressed in a more gen-

eral form with the intention of moving towards having a fully

GPU-based physical simulation of all aspects of the game

world.

References

[Mic09] MICROSOFT: DirectX 10 developer documenta-
tion: ParticlesGS sample. MSDN Library - available
from: http://msdn.microsoft.com/en-us/library/

ee416421(VS.85).aspx, 2009. 2

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture. ACM

Trans. Graph. 21, 3 (2002), 291–294. 1

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and
animation of brittle fracture. In SIGGRAPH ’99: Proceedings of

the 26th annual conference on Computer graphics and interac-

tive techniques (1999), pp. 137–146. 1, 2

[PO09] PARKER E. G., O’BRIEN J. F.: Real-time deformation
and fracture in a game environment. In SCA ’09: Proceedings of

the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation (2009), pp. 165–175. 2

[SW06] SCHEEPERS F., WHITTOCK A.: The wrecked road in
cars - or how to damage perfectly good geometry. In SIGGRAPH

’06: ACM SIGGRAPH 2006 Sketches (2006), p. 97. 2

[Zin08] ZINK J.: Dynamic particle systems. In Program-

ming Vertex, Geometry, and Pixel Shaders. GameDev.Net, 2008.
Available on-line at http://wiki.gamedev.net/index.php/
D3DBook:Table_Of_Contents. 2

c© The Eurographics Association 2010.

http://msdn.microsoft.com/en-us/library/ee416421(VS.85).aspx
http://wiki.gamedev.net/index.php/D3DBook:Table_Of_Contents

