
High Performance Graphics (2014)
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Interactive Rendering of Giga-Particle Fluid Simulations

F. Reichl1† and M. G. Chajdas1 ‡ and J. Schneider2 § and R. Westermann1 ¶

1Technische Universität München
2King Abdullah University of Science and Technology

Abstract
We describe the design of an interactive rendering system for particle-based fluid simulations comprising hundreds
of millions of particles per time step. We present a novel binary voxel representation for particle positions in com-
bination with random jitter to drastically reduce memory and bandwidth requirements. To avoid a time-consuming
preprocess and restrict the workload to what is seen, the construction of this representation is embedded into front-
to-back GPU ray-casting. For high speed rendering, we ray-cast spheres and extend on total-variation-based im-
age de-noising models to smooth the fluid surface according to data specific boundary conditions. The regular
voxel structure permits highly efficient ray-sphere intersection testing as well as classification of foam particles
at runtime on the GPU. Foam particles are rendered volumetrically by reconstructing densities from the binary
representation on-the-fly. The particular design of our system allows scrubbing through high-resolution animated
fluids at interactive rates.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Rendering, Animation

1. Introduction

Particle-based methods are increasingly used for simulating
high-resolution violent fluid effects with possible fragmen-
tation, splashing, and large deformations. In particular the
Fluid-Implicit-Particle (FLIP) method can easily use hun-
dreds of millions of particles and has led to a tremendous
increase in the number of particles used in visual effects sim-
ulations.

A problem that has not gained much attention so far is
how to render efficiently the gigantic particle sets resulting
from large-scale particle simulations. In particular preview-
ing tools for giga-particle-scale simulations are not existing,
yet they are important to analyze and control the visual ef-
fects created by such simulations. For instance, to detect fail-
ures early, to investigate specific fluid details, or to look at a
scene from different viewpoints to find the best angle. Pre-
viewing tools do not need to show the fluid effects in final-
film-quality, but they should show a plausible rendering that

† e-mail: reichlf@in.tum.de
‡ e-mail: chajdas@tum.de
§ e-mail:jens.schneider@KAUST.EDU.SA
¶ e-mail:westermann@tum.de

reveals the fluid surface and splashes, and support interac-
tive scrubbing through the animation to analyze the dynam-
ics over time.

Some visual effects companies have started to engage in
the issue of rendering very large particle simulations. See,
for instance, the 2013 release of Houdini by Side Effects.
However, the classical approach, which first computes a 3D
scalar field by summing up the particle smoothing kernels
and then reconstructs a polygonal isosurface from this field,
is not suited for previewing. For instance, to capture all fluid
details in the FLIP simulation shown in Fig. 1, a regular grid
of size 4K3 is required to discretize the scalar field. This
results in several gigabytes of data per time step and many
minutes of preprocessing until the fluid surface is available.

Current real-time rendering approaches for particle-based
fluid simulations can handle a few million particles [MSD07,
vdLGS09,GSSP10], but they do not scale well with the num-
ber of particles and time steps. This is due to bandwidth
and memory constraints which limit the amount of particles
that can be streamed and processed at reasonable rates. An-
other constraint is often caused by the use of a rasterization-
based rendering pipeline. Especially when many isolated
splashes occur and occlusion culling cannot be performed

c© The Eurographics Association 2014.

DOI: 10.2312/hpg.20141099

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20141099

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

Figure 1: Rendering a 500 million particle simulation, preprocessed in 12 seconds, at 72 ms per frame on a 1280×720 viewport
using ray-sphere intersections, image-based surface smoothing, volumetric foam and approximative refractions on a single PC.

effectively, the required rasterization capabilities go beyond
what is available today. Real-time approaches which can
classify and render volumetrically splashes out of the box
at runtime have not yet been proposed.

Our Contribution. We present an interactive render-
ing system for particle-based fluid simulations reaching the
giga-particle scale. Our system design builds upon a novel
binary voxel representation for particle positions. It re-
laxes bandwidth limitations throughout the entire preview-
ing pipeline and enables parallel GPU processing for high
performance rendering. It further reduces the memory re-
quirements significantly and shows no qualitative difference
to the initial data representation. The regular voxel structure
permits highly efficient data access operations, which we ex-
ploit to classify foam particles and perform ray-surface inter-
section testing and volumetric compositing with early ray-
termination.

All data processing tasks are embedded into front-to-back
ray-casting. Based on spatial particle binning, which is the
only required preprocess, all other processes are carried out
on request during rendering. In this way we can restrict
the workload, including memory transfer, to the fluid parts
which are seen.

Our rendering system displays the iso-surface by render-
ing each particle as a sphere and post-processing the result-
ing surface. Therefore, we have adapted and extended the
total-variation-based image de-noising model of Rudin, Os-
her, and Fatemi [ROF92] to work on oddly-shaped image do-
mains and allow depth-dependent smoothing strengths. We
demonstrate superior quality of this model over other avail-
able models, at similar speeds.

For the 500 million particle simulation shown in Fig. 1,
our system shows the following performance features when
rendering onto a 1280×720 viewport:

• A very low preprocessing time of less than 12 seconds.

• A time to first frame of less than 1 second.
• Rendering at 50 milliseconds per frame.
• Interactive scrubbing through the animated fluid.

Note, in particular, that the very low processing time
distinguishes our approach from existing point based ren-
dering approaches, for instance [KSW05, GEM∗13]. Such
approaches typically build upon sophisticated compres-
sion/acceleration structures and require a pre-process of the
order of many minutes for the data sets we address.

Our paper is structured as follows: First, we review pre-
vious work that is related to ours. We then describe the ar-
chitecture of the proposed previewing system. Here we in-
troduce the system’s functionality and how this is achieved.
In the next section we motivate our design decisions and dis-
cuss the trade-offs involved in making our system practical
for rendering extremely large particle simulations. Finally,
we analyze the processing and rendering performance of our
system.

2. Related Work

Due to page restrictions, we do not attempt here to survey the
vast body of literature related to particle-based fluid simula-
tions, for which our rendering system is designed. However,
Müller et al. [MCG03], Ihmsen et al. [IOS∗14], and Zhu and
Bridson [ZB05,Bri08] discuss the basic principles and algo-
rithms used in such simulations.

Rendering a fluid’s surface from particle-based simulation
data is a well-studied problem. Most commonly it is per-
formed by using Marching-Cubes-style algorithms [LC87]
to reconstruct a polygonal isosurface in the density field that
is derived from the discrete particle set, or by rendering the
surface directly via volume ray-casting in this field. Usually,
the density is first resampled to a uniform grid, so that the
surface location can be determined efficiently and cell-wise

c© The Eurographics Association 2014.

106

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

interpolation schemes can be used. The effect of the resam-
pling scheme on the quality of the reconstructed surfaces has
been studied intensively [MCG03, ZB05, SSP07, APKG07].
In the most recent approach by Yu and Turk [YT13] the re-
sampling kernels are aligned locally with the distribution
of nearby particles via principal component analysis. Es-
pecially when using GPU resampling techniques [ZSP08,
FAW10], the fluid surface can be rendered at high speed us-
ing GPU-based ray-casting. Resampling can be further ac-
celerated by considering only those grid vertices close to the
surface boundary [YHK09, AIAT12].

To avoid the memory consumption of a uniform grid,
isosurfaces can be rendered directly from the particle set.
Kanamori et al. [KSN08] evaluate ray-particle intersec-
tions on the GPU and use depth peeling to determine their
front-to-back order. Zhang et al. [ZSP08] and Goswami
et al. [GSSP10] use GPU particle binning and neighbor
search to determine ray-particle overlaps efficiently. Gribble
et al. [GIK∗07] perform direct ray-sphere intersections on
the CPU using a grid-based acceleration structure. An iso-
surface extraction technique that works directly on the parti-
cle set was proposed by Rosenberg and Birdwell [RB08].

While adaptive data structures can exploit the advantages
of uniform grids, they restrict the workload to a narrow band
around the fluid surface. The method of Bridson [Bri03]
uses sparse grids, which store adaptively refined bricks in
this band. Dynamic tubular grids and RLE encoded level-
sets [NM06,HNB∗06] do not resort to any brick representa-
tion and encode the voxels in the dynamically evolving nar-
row band. An out-of-core variant of dynamic tubular grids
was presented by Nielsen et al. [NNSM07]. The work on
dynamic sparse grids in the context of numerical simula-
tions has grown into the open source C++ library Open-
VDB [MLJ∗13]. It supports hierarchical adaptive data struc-
tures and a number of processing operators working on these
structure. Fraedrich et al. [FAW10] use a perspective grid,
which discretizes the view frustum to restrict resampling to
the visible space, at the cost of recurring resampling for ev-
ery new view.

Especially in computer games, screen-space approaches
for rendering iso-surfaces in SPH data have gained atten-
tion due to their real-time capability. Adams et al. [ALD06]
render particles as spheres and blend the contributions in
the overlapping regions. Müller et al. [MSD07] reconstruct
a triangle mesh in screen space from visible surface frag-
ments generated via rasterization, and further improve the
surface via mesh smoothing. Smoothing operators that work
directly on the depth imprint of the rendered surface parti-
cles have been proposed by Coords and Staadt [CS09] and
van der Laan et al. [vdLGS09]. In this work we improve on
these methods by extending the image de-noising model by
Rudin, Osher, and Fatemi [ROF92] (ROF) to work effec-
tively on sphere-based surface representations. We demon-
strate the advantages of this approach by comparing results

Storage
Unsorted particles

Figure 2: The preprocess: Particles are binned into bricks
and an octree is built to encode empty space hierarchically.

to bilateral filtering [TM98, PM90] and screen-space curva-
ture flow [vdLGS09]. To make fluid effects look more real-
istic, dedicated rendering techniques for pre-classified foam
particles have been presented in [IAAT12]. It is one concern
of our paper to demonstrate how foam particles can be clas-
sified and rendered efficiently for very large particle sets.

3. Data Structures and Algorithms

Our approach begins with an unordered set of particle po-
sitions. Additional attributes can be associated to each par-
ticle, such as a color index, a velocity index, a size indica-
tor, or any other classifier resulting from the application that
generates the particles.

In a preprocess, illustrated in Fig. 2, the particle set is
read and binned into a set of equally sized cubical domain
partitions, so-called bricks. Their size depends on the user-
selected resolution of the domain discretization. It generates
an array in which particles falling into the same brick are
stored in consecutive locations. For every brick, a pointer to
its first element in this array is stored. The CPU also builds
a presence-octree with non-empty bricks at its leaf nodes.
The current scene setup is transferred to the GPU, includ-
ing for every brick its worldspace position and extent, and
the octree, the latter enabling empty space skipping during
rendering.

All the datasets we use in this work contain particle posi-
tions as 32-bit floating point values per component initially.
Particle quantization and brick binning throughput is only
limited by disk I/O, which is about 40 million particles per
second on our test system.

3.1. Binary Voxel Representation

After particle binning, rendering starts instantly without any
further preprocessing of the particles. The CPU and GPU
work asynchronously during rendering: The CPU traverses
all non-empty bricks in front-to-back order and converts the
bricks lying inside the view frustum into a binary voxel rep-
resentation, as described below. The specific traversal order
mimics the order in which the bricks are rendered on the
GPU using parallel ray-casting, so that bricks to be rendered
first are converted early.

Our binary voxel representation uses a 3D Cartesian grid
to discretize the fluid domain, i.e., every brick is discretized
by a grid comprising nx× ny× nz cubical cells. The size of

c© The Eurographics Association 2014.

107

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

a cell in the domain space is set by the user. For instance,
in FLIP simulations it is set to the minimum distance below
which two particles are rendered as one single particle. In
our test scenario shown in Fig. 1, the domain was discretized
using a 40963 grid and partitioned into bricks of size 643.
In SPH simulations, the cell size is chosen to be a fraction
of the particle smoothing length, assuring that no particle
contributions get lost during conversion.

When a brick is selected for conversion, the CPU gen-
erates a 3D array that stores one bit (initially set to 0) for
every cell of this brick. Then the CPU loops over the set of
particles which was associated to the brick in the preprocess.
For every particle, it is computed into which cell this particle
falls, and the bit of this cell is set. Finally, the bits of contigu-
ous sub-bricks of size 4× 4× 8 are stored in 4 32-bit inte-
ger values. In this way, every sub-brick can be stored in one
single element of a texture on the GPU. For instance, when
bricks of size 643 are used, a 3D texture of size 16×16×8
stores all bits of one brick, and one texture lookup operation
retrieves all bits of one sub-brick. It should be noted that,
internally, the conversion process works solely on 3D arrays
of integers, using bit operations and address arithmetic.

3.2. Attribute Storage

To handle additional particle attributes as well, we store
these attributes compactly and provide a highly efficient ac-
cess operation to this encoding. The attributes of non-empty
cells in a sub-brick are written sequentially to a 1D attribute
buffer, where the order is determined by the linearized cell
indices. A 16-bit pointer to the first entry in this buffer is
stored for each sub-brick.

During rendering, the offset of a cell’s attribute is de-
termined by counting the number of non-empty cells with
lower linearized index inside a sub-brick: For an integer
value v encoding one sub-brick, the offset of a cell with lin-
earized index i in this sub-brick is computed as

baseOffset+countbits(v&((1 << i)−1)),

where baseOffset is the pointer to the sub-brick’s first
attribute, and the function countbits counts the number
of set bits in an integer value. The function is available on
current GPUs, so that, in combination with the binary voxel
representation, a highly efficient and bandwidth-oblivious
access operation is given.

3.3. Rendering

Rendering on the GPU is performed via single-pass ray-
casting inspired by [CNLE09]. The ray-caster writes out sur-
face depth and color information, as well as an image of the
volumetric foam in front of the surface. Normals are recon-
structed from the surface depth and used in deferred shad-
ing. The different images are then composited is illustrated
in Fig. 3.

Ray-caster

Depth Color & Thickness Foam

Normal & Position

Surface

Shaded
Environment

Smoothing

Shading

+

+

Final Image

Figure 3: Surface depth, color and foam are output by the
ray-caster. Normals and positions are reconstructed from
smoothed depth values and used for surface shading. The
environment is then blended with the semi-transparent fluid
surface and foam.

For every view ray, the ray-caster traverses the presence-
octree and determines the non-empty bricks in front-to-back
order, rendering them as described below. If a brick’s binary
voxel representation is not available in GPU memory, the
brick index is stored in a request buffer and the ray termi-
nates. At the end of each frame, the request buffer is read to
the CPU, and the requested bricks are converted (if not yet
done) and sent to the GPU for use in the next frame.

Since the GPU renders in front-to-back order including
occlusion culling, only non-occluded bricks are streamed to
the GPU. Bricks that are processed on the GPU are cached
in video memory using a FIFO strategy.

3.3.1. Sphere Ray-Casting

The ray-caster renders each bit in the binary voxel struc-
ture as a sphere of user-defined radius. Since spheres in one
brick can overlap adjacent bricks, an n-voxel-wide overlap is
stored around each brick. The width of the overlap regions
considers the maximum possible sphere radius in units of
cell size. This allows for an independent traversal of each
brick.

The rays are marched through the bricks in a DDA-like
manner, yielding all cells that are hit along their ways. For
every cell, its bit is fetched from the binary voxel repre-
sentation, which also brings the bits of an entire sub-brick
containing many adjacent cells into registers. When the bit

c© The Eurographics Association 2014.

108

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

is set, indicating the presence of a particle, the GPU com-
putes the intersection between the ray and a sphere located
at the cell center. To account for the sphere radius, the bits
of cells in adjacent sub-bricks need to be fetched, too, and
the corresponding particles are tested for intersections. If
no intersection occurred, the ray steps to the next cell. Oth-
erwise, the particle color (if available) and the distance of
the intersection point to the viewer is written to the color
and depth buffer, respectively, and the ray terminates. Fig-
ure 4(a) shows a fluid surface rendered as a set of (illumi-
nated) spheres at original particle positions.

3.3.2. Random Jittering

Figure 4(b) shows the same surface as in (a), but particle po-
sitions are quantized to the bricks’ cell centers. To avoid the
visible regular structure introduced by quantization, particle
positions are randomly jittered inside the grid cells: When a
particle in the cell with index (i, j,k) at time step t is ren-
dered, it is offset by a random vector.The random vector is
generated via three TEA hash [ZOC10] operations on the
Morton ordered cell index and the current time step, yield-
ing three random offsets for the x, y and z vector compo-
nents. The jitter is calculated for each particle during render-
ing, and no additional memory is required. The maximum
amount of jitter is limited by the width of the overlap region.

(a) Original (b) Quantized (c) Quantized jittered

(d) Original (e) Quantized (f) Quantized jittered

Figure 4: Top row: Direct rendering as spheres. Bottom row:
Same as top, but with image-based ROF smoothing applied.

Figure 4(c) shows sphere rendering using position quan-
tization and jittering. Compared to quantization only in (b),
the regular structure is broken up entirely, and compared to
rendering particles at their original positions in (a), the quali-
tative surface appearance can be judged as equal. Especially
when image-based smoothing and deferred shading is per-
formed, as described next, only very subtle differences in
the renderings can be observed.

3.4. Image-based Surface Smoothing

To further enhance the surface’s image obtained via sphere
rendering, we apply a screen-space post-smoothing filter to
the depth buffer. Resulting images are shown in the 2nd row
of Fig. 4.

An effective filter has to fulfill the following goals: 1)
stronger smoothing closer to the camera and weaker smooth-
ing further away, mimicking object-space filtering in the
presence of perspective projections, 2) preservation of both
features and depth discontinuities, and 3) reconstruction of
a “smooth” surface. While goals 2) and 3) can be achieved
with the ROF de-noising model, major modifications are re-
quired to achieve the first goal. In the following we will first
review the concept underlying ROF following the exposition
and solver presented by Chambolle [Cha04], and we will
then introduce the specific adaptations to reach our goals.

Total-variation-based image denoising. For a piecewise
smooth but unknown image u : Ω→ R, ROF filtering as-
sumes an additive, stationary Gaussian noise G(0,σ), such
that an image v = u + G(0,σ) is observed. To make the
problem tractable, a soft-constrained formulation is gener-
ally used to reconstruct u on a continuous domain Ω:

argmin
x

∫
Ω

(
‖∇u(x)‖2 +

1
2λ

(u(x)− v(x))2
)

dx, (1)

where
∫

Ω
‖∇u(x)‖2 dx denotes the total variation of u,

and λ ∈ R+ is an inverse data fidelity parameter dictating
the amount of smoothing. Note that, to improve readability,
we shorten u(x) to u etc.

To solve Eq. (1), Chambolle presented a fast primal-
dual solver that iteratively computes a non-linear projection
πλK(v) to obtain the smoothed image u = v−πλK(v). On 2D
domains, two dual variables p : Ω→ R2 are introduced and
a gradient descent on the Euler equation yields the following
fixpoint iteration:

p(0) := 0

p(n+1) =
p(n)+τ(∇div p−∇v/λ)

1+‖τ(∇div p−∇v/λ)‖2

(2)

Each iteration thus performs one update on p for the full
domain Ω and ‖·‖2 is a 2D vector 2-norm evaluated for each
position x separately. Chambolle shows this to converge for
certain values of τ to

πλK := lim
n→∞

λdiv p(n) (3)

Equation (2) is then discretized and, since ∇ and div
are adjoint operators, forward and backward differences are
respectively used. Finally, Neumann boundary conditions
(∇u)ν = 0 are imposed on ∂Ω. Furthermore, Chambolle
notes that τ = 0.25 shows the best convergence in practice,
although the theoretical reason is unknown.

Local estimate of λ. To mimic object space filtering (goal

c© The Eurographics Association 2014.

109

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

1), we assume an object space stationary Gaussian density
distribution Gob j(0,σ) around each particle. This, if unfil-
tered, results in an instationary Gaussian noise Gscr(0,σi j)
after projection, where i j are pixel positions. Non-uniform
weights λi j related to Gscr therefore allow us to achieve
high-speed previews by representing particles as spheres
with rob j = σ = const in object space.

z0

r
ρ

z(ρ)
 πr2

z2(ρ)=r2- ρ2

r

z=0

2πrρ

z=0 ½θ

½ h

r

robj

Figure 5: Quantities used in the estimation of the local filter
weights λi j . Left: Estimating Var[z]. Right: Estimating the
screen space radius r from rob j.

Assuming the viewing ray to hit the sphere at its front-
most point (Fig. 5 left), we estimate the expected value E[z]
and variance σ

2 = Var[z] of the depth buffer by integrating
over concentric rings:

E[z] = z0− 1
πr2

∫ r
0 2πρz(ρ) dρ = z0−

2
3

r, (4)

Var[z] = 1
2πr2

∫ r
0 2πρ(z(ρ)−E[z])2 dρ =

1
18

r2,

where r ∈ R+ is the sphere’s radius in screen space. For a
perspective projection with field-of-view θ and image height
h, r is then estimated using the theorem of parallel lines
(Fig. 5 right) as

r = rob j
h

2tan
(

θ

2

)
z

= const · z−1. (5)

Therefore, we estimate the screen space noise to
Gscr

(
0,σ0/zi j

)
.

By combining (v−u)2 =
∫

Ω
dxG2(0,σ) = |Ω|σ2 and v−

u= πλK = λdiv p (Eq. (3)), an optimal λ can be estimated for
a known σ using the method of alternating variables [Ber04]:

λ
(n+1) =

√
|Ω|σ∫

Ω
‖div p(n)‖2 dx

. (6)

In order to avoid the costly per-iteration log-reduce re-
quired to compute the norm of div p, we assume this norm to
be constant for coherent views and time steps. After combin-
ing all constants into a new global parameter λ0, we arrive
at the following update at pixel position i j:

λ
(0)
i j = λ0

(
zi j + ε

)−1

λ
(n+1)
i j = λ0

(
zi j−λ

(n)
i j div p(n)

i j + ε

)−1
. (7)

Boundary conditions. To apply our filter only to those
pixels for which the view ray intersected a sphere (fore-
ground), we keep track of a binary foreground mask. To en-
sure proper support and boundary conditions for our filter on
this oddly shaped domain Ω, we further extrude depth values
by one pixel using a 3×3 mask that interpolates from valid
pixels.

Implementation. The updates given by Eq. (2) and
Eq. (7) can be mapped to a straightforward GPU implemen-
tation using compute shaders with one thread per pixel of
the viewport. In addition to a linear depth buffer containing
z and the foreground mask—which we obtain from one of
our G-buffers—we store the two dual variables p as well as
div p and the local λ for each pixel in four floating-point
textures.

After fluid rendering in each frame, we initialize p and
div p to 0 and λ to λ

(0) given by Eq. (7) for each pixel. The
depth buffer is extruded by one pixel without modifying the
foreground mask. We then repeatedly perform two passes for
a user-defined number of iterations: First, both p are updated
according to Eq. (2), where the required derivatives are ap-
proximated using forward differences. Afterwards, div p is
updated from backward differences of p, and the new local
lambda is calculated following Eq. (7).

After these iterations, we obtain the final depth value for
foreground pixels by subtracting λ div p from the input depth
value according to Eq. (3). Invisible non-foreground pixels
are not updated. The final depth is stored in the depth buffer,
which is then used in deferred shading for normal and posi-
tion calculation.

3.5. Foam Classification and Accumulation

Once a requested brick has been converted and uploaded to
the GPU, further processing of the quantized particles can
be performed. Here, the binary voxel representation allows
highly efficient operations, such as neighbor searches, which
are very well suited to the GPU’s design for massively par-
allel workloads. In the following we describe how to use this
operation for classifying isolated particles. They can either
be removed to expose the surface or remove noise, or they
can be rendered as semi-transparent foam atop of the surface
to give the fluid a more realistic appearance.

We propose to classify particles as foam depending on
the number of neighboring particles in a certain surrounding.
Isolated particles having few neighbors are selected as foam,
whereas particle having more than a user-defined threshold
of neighbors are selected as surface particles. We found that
classifying particles as foam when less than 20% of the cells
inside the particle radius are occupied yields visually plau-
sible results in our test cases. Figure 6 shows the result of
the classification (and foam rendering) for one time step of
a FLIP fluid simulation.

When foam rendering is enabled, every visible brick is

c© The Eurographics Association 2014.

110

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

Figure 6: Isolated particles (left) may clutter the view on the actual fluid surface. These particles can be determined and either
removed (middle) or optionally rendered as volumetric foam (right).

processed on the GPU after uploading to classify foam par-
ticles. Batches of 256 bricks are processed in a single ker-
nel with one thread per sub-brick. Each thread gathers the
neighboring sub-bricks, counting, for each cell, the amount
of set bits inside the selected search radius. For each clas-
sified foam cell, a single bit is set in a separate foam brick
using the same storage format. Since a sub-brick is exclu-
sively processed by a single thread, no atomic operations are
required and the result can be written in a single texture ac-
cess once all cells have been classified.

Rendering of foam particles is performed via fixed-step
volume ray-casting, by extracting, at every sampling point,
the local particle density and accumulating these densi-
ties using a simple emission-absorption model. The process
works by dividing every sub-brick into two 43 blocks, and by
computing their density as the number of bits set (see Fig. 7).
Since sub-bricks are encoded as 4 32-bit integer values, we
can use a simple popcount on two integer values accessed
in one texture fetch operation. The density at the sampling
point is then determined by trilinear interpolation between
adjacent cells. When volumetric foam is rendered, early ray-
termination is performed when the fluid surface is reached
or the opacity along a ray has reached a value of 0.95.

0000

1011

0100

0000

0000

1011

100

0100

4
16

6
16

1

Figure 7: Foam density calculation: In 2D, two 42 bit-fields
of a (4×8) sub-brick are queried fetched, and the number of
set bits in either field is used as density value.

3.6. Transparencies

To further enhance the visual appearance of the fluid,
translucent materials can be approximated with a fast screen-
space approach [CLT07]. First, the shaded scene geometry
is rendered into a separate background buffer (see Fig. 3).
Then, when shading the fluid surface, we blend the contents
of this buffer with the fluid color. The texture coordinates

used in the background buffer lookup are given by the po-
sition of the currently shaded pixel. We distort these coor-
dinates by offsetting them depending on the fluid’s smooth
surface normal to approximate refractions.

In addition, absorption is calculated by tracing each ray
through the fluid body, using our proposed density calcula-
tion (see Fig. 7) until maximum absorption is reached. The
resulting absorption value determines the amount of back-
ground color blended with the fluid surface color. Fig. 8 il-
lustrates the effect.

It should be clear that, since we are using front to back
ray-casting and can reconstruct accurate fluid surface nor-
mals by evaluating the particles’ smoothing kernels, our ap-
proach can also simulate correct multi-bounce refractions
and reflections. However, due to efficiency reasons we have
not considered this option in the current work.

Figure 8: Transparency is determined by the absorption
along each ray and combined with screen-space refractions.

4. Design Decisions and Tradeoffs

We now consider some of the decisions made in the design
of our system to make it suitable for rendering very large
particle data, including a discussion and comparison of al-
ternative design choices. In particular, we want to emphasize
the possible tradeoffs that allow the user to choose between
high quality and speed.

4.1. Binary Voxel Representation

Our binary voxel representation consumes one bit per cell
of the adaptive spatial grid. Thus, if the fill rate of a brick

c© The Eurographics Association 2014.

111

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

is below 1/24, in terms of memory requirements it would
be more efficient to encode particle positions explicitly us-
ing 24 bits, that is, via three block-relative 8-bit coordinates.
Our statistics demonstrate, however, that in practice only a
small number of the non-empty bricks show this property,
and that even compared to a 24-bit position encoding we
achieve very good compression rates. Furthermore, in con-
trast to an explicit encoding, our approach enables efficient
particle processing and parallel rendering algorithms, and
provides coherent memory access operations due to the spe-
cific sub-brick encoding.

For our statistics we use four FLIP fluid simulations. They
are described in Table 1 and Fig. 11. The Dam dataset con-
tains particle positions and velocities. The velocity magni-
tude is mapped to colors during brick conversion and stored
as a particle attribute. Thus, we include one 16-bit pointer
to the color array for every sub-brick in the memory require-
ments for Dam. All other datasets contain only positions. The
compression ratio includes foam classification which is cal-
culated upon GPU upload and not cached on the CPU, which
effectively yields an additional compression factor of 1:2 for
timesteps residing in CPU main memory.

Table 1: Dataset statistics. ‘Frm’ and ‘Part’ give the num-
ber of simulation frames and maximum particles per frame.
‘Res’ is our selected grid resolution, ‘Mem’ gives the mem-
ory of the original sequence, ‘Ratio’ is the compression ratio
we achieve, and ‘Bpp’ gives the number of bits per particles
our binary voxel representation requires.

Name Frm Part Res Mem Ratio Bpp

Step 330 430M 40963 840 GB 1:18 5.85
Fall 366 180M 20483 700 GB 1:10 10.78
Dam 100 180M 10243 192 GB 1:20 4.55
City 223 500M 40963 588 GB 1:29 2.46

In particular, this shows that even the largest fluid simu-
lation we preview can be stored in CPU RAM entirely. For
browsing through the animation it is important that a huge
fraction of all time steps can be stored in GPU video mem-
ory at once.

4.2. Bricked Representation

The bricked data representation is necessary to restrict data
processing and rendering to those parts of the data which
are in the view frustum and not occluded by others. Larger
bricks cannot adapt so well to the areas where the fluid sur-
face or splashes occur, and therefore encode larger empty
areas. On the other hand, our performance analysis in Sec-
tion 5 indicates that larger bricks result in a better throughput
in cells per second. This is confirmed in Fig. 9, which shows
for the views in Fig. 11 decreasing rendering times, but in-
creasing memory requirements with increasing brick size.

According to these tests we have chosen a brick size of 643

as a good balance between rendering and processing times,
and memory consumption.

0

50

100

150

200

0

20

40

60

32 64 128

M
e
m

o
ry

 (
M

B
)

T
im

e
 (

m
s)

Brick Size

Fall

Step

Dam

City

Figure 9: Influence of the brick size on rendering time and
memory requirement.

An important extension is the use of an additional
mipmap-structure for every converted brick on the GPU. For
a particular brick, it stores at every coarse level cell a bit indi-
cating the empty sub-space in this brick. Mipmap generation
works similar to foam classification on the GPU. Especially
when large scale splashes are simulated, performance speed-
ups of up to a factor of 15 can be achieved by using mipmaps.
The reason for this extreme gain is the significantly reduced
number of neighbor search operations that have to be per-
formed along the view rays.

Note that our approach does not make use of a level-of-
detail particle representation to reduce the number or ren-
dered particles in every frame. This is possible in general,
for instance, by using particle merging strategies as proposed
in [FSW09], yet the particular strategies for fluid and foam
particles in combination with sphere rendering need some
further investigation.

4.3. Position Quantization

The conversion process quantizes particle positions to the
cell centers of a regular 3D grid. Even though we can avoid
the regular structure in the particle distribution by adding
a random jitter to the quantized positions, quantization al-
ways introduces some loss of positional accuracy. However,
this does not introduce any significant artifacts due to the
following reasons. Firstly, since the binary voxel representa-
tion is very compact, a high resolution discretization of the
domain can be chosen to make the quantization error very
small. Secondly, when rendering spheres and image-based
post-smoothing, only an approximation of the fluid surface
is displayed, rendering quantization errors negligible (see
Fig. 4).

4.4. Volume Ray-Casting

There are a number of reasons for using volume ray-casting
in our previewing system: Firstly, the ray-caster can render
from the compact binary voxel representation directly, with-
out having to convert the binary data into a renderable vertex
representation as required by rasterization. Secondly, com-
pared to rasterization-based particle rendering, much better
rendering rates can be achieved. When rasterizing particles

c© The Eurographics Association 2014.

112

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

(a) No smoothing (b) Curvature flow, 75 iterations, 18 ms

(c) Bilateral, 15 ms (d) Our method, 75 iterations, 13 ms

Figure 10: Screen-space smoothing comparison

on recent GPUs as screen-space aligned quads consisting
of two triangles, about 250M particles can be rendered in
roughly 250 ms, not including the time required to realize
the spheres’ perspectively correct depth footprints in a pixel
shader. Using the same particle size, the ray-caster renders
3D spheres about a factor of 10 faster. Thirdly, the ray-caster
can exploit occlusion culling at the pixel level, which is
problematic when using rasterization. Occlusion queries in
rasterization can only be effective at a rather coarse granu-
larity, i.e., if parts consisting of many polygons can be culled
at once. Finally, due to the front-to-back traversal order, the
ray-caster can render semi-transparent particles like foam
without any modifications. The rasterizer, in contrast, either
needs to sort the particles or the generated fragments per
frame to ensure correct front-to-back blending.

4.5. Image-based Smoothing

We compared our proposed smoothing filter to two popular
screen-space filters: bilateral filtering [PM90] and curvature
flow [vdLGS09]. Figure 10 shows the same data set and view
processed with the three different filters to demonstrate the
differences.

Our filter has the distinct advantage of having a fixed and
very compact stencil size. This stencil size is independent
of the desired amount of smoothing. Thus, the filter has very
light memory bandwidth requirements and outperforms even
simple (i.e., non-depth-adaptive) bilateral filtering. While
the bilateral filter can also be extended to locally adapt the
radius to a desired world-space filter size, this imposes se-
vere performance constraints as the filter is not serperable.
Furthermore, iterative application of smaller bilateral filters
as well as separable bilateral filters [PV05] are approxima-

tions that may give suboptimal and undesirable results, such
as overly flat surfaces and overly sharp depth discontinuities.

Compared to curvature flow, our filter is better at preserv-
ing sharp features and depth discontinuities, and the amount
of smoothing does not come from adding iterations, but from
altering the smoothing parameter λ0.

5. Performance

Here we evaluate the performance of all components of our
system and provide accumulated timings for the most time-
consuming operations. All timings were performed on a dual
quadcore Intel Xeon X5560 with 48 GB main memory, and
an NVIDIA GTX Titan with 6 GB video memory. Data was
accessed from a solid state drive delivering up to 500 MB/s
read peak-performance. We used a viewport resolution of
1280 × 720 pixels for all rendering passes. All times given
in this section are in milliseconds.

Table 2 gives average times for the operations performed
during previewing. The times for brick sizes 323, 643, and
1283 are compared. The particle radius was set to 2 cells.

Table 2: Per brick processing statistics for different brick
sizes. ‘Conv’, ‘Foam’, and ‘Mip’ are the times for CPU con-
version, foam classification, and mipmap generation, respec-
tively.

Size Conv Foam Mip

32 .06 ± .02 .02 ± .01 .01
64 .22 ± .06 .15 ± .08 .04

128 .91 ± .37 1.06 ± .41 .27

c© The Eurographics Association 2014.

113

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

(a) Fall, 180M particles (b) Step, 430M particles

(c) Dam, 180M particles (d) City, 500M particles

Figure 11: Test datasets.

Table 3: Memory and performance statistics for the views in Fig. 11. Listed are consumed GPU memory (‘Mem’) for surface
and foam, the times for sphere (‘Sphere’) and foam (‘Foam’) rendering, absorption estimation for transparencies (‘Trans’), and
post-smoothing (‘Smooth’).

Data Mem #Bricks #SurfParticles #FoamParticles Sphere Foam Trans Smooth

Fall 210 MB 3175 46.6M 4.9M 27 ms 34 ms 14 ms 13 ms
Step 157 MB 2366 254.2M 27.8M 20 ms 12 ms 12 ms 13 ms
Dam 83 MB 1162 95.1M 6.8M 23 ms 22 ms 13 ms 16 ms
City 127 MB 1919 213.3M 45.6M 24 ms 16 ms 12 ms 13 ms

The statistics were performed using the bricks in all datasets
and computing the times required for processing each of
them. We give the average times and the interval in which
the times vary. Only mipmap generation does not depend on
the brick’s fill rate and is constant for a fixed size. The times
of all other operations vary depending on a brick’s fill rate.

Another exemplary experience shows the impact of the
particle influence radius on the rendering and processing
times. Here we used bricks of size 643, and we analyzed
sphere rendering and foam classification as the representa-
tive operations. Figure 12 shows exponentially increasing
times due to the increasing number of neighbor particles to
be considered in both operations.

To analyze the concrete previewing times for our test
datasets, Table 3 summarizes statistics for average views
where the whole dataset is visible on screen. Experiments
were only performed once for the given viewport size, be-
cause all rendering times scale linearly in the number of pix-
els. We assume that all converted bricks, foam bricks and
brick mipmaps are residing in GPU cache. Density bricks
are resampled on the fly.

The first observation is that only a small fraction of all
bricks need to be accessed to generate the views. This is be-
cause occluded bricks do not have to be touched. Another
observation is that the rendering of volumetric foam has a
significant effect on rendering performance, as seen for the
turbulent datasets exhibiting violent splashes and foam. In

c© The Eurographics Association 2014.

114

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

0

50

100

150

200

1 2 3 4 5 6

T
im

e
 (

m
s)

Diameter (Cells)

Fall

Step

Dam

City

0

1000

2000

3000

1 2 3 4 5 6

T
im

e
 (

m
s)

Diameter (Cells)

Fall

Step

Dam

City

Figure 12: Influence of particle radius on rendering (top) and
foam classification (bottom) performance.

this case the view-rays have to be traversed through the vol-
ume for a much longer distance compared to the rendering
of an opaque surface. Post-smoothing using 75 iterations on
the GPU requires about half the time sphere rendering does.

System Behavior. The responsiveness of our system was
analyzed in a previewing session, where a single time step
is explored by the user interactively, performing a number
of view changes and zooms. For each frame we measured
the frame time until all required bricks are converted, pro-
cessed, and rendered. Furthermore, we counted the number
of requested bricks per frame. Disk I/O is not included in the
timings, and the system started from “cold caches“.

The performance graphs for the four data sets in Fig. 13
show the measured frame times, the required GPU memory,
and the number of requested bricks. A peak in the frame
time is observed at the beginning. This peak results from
the particular strategy we use on the GPU to request bricks
not yet residing in video memory. After each frame, the re-
quest buffer is read back to the CPU and requested bricks are
converted and uploaded to the GPU. Since a ray terminates
as soon as a brick not yet available on the GPU should be
rendered, this rendering can only be performed in the next
frame. Thus, at the beginning, when no bricks are cached
in GPU memory, our strategy results in a delay of several
frames. The number of frames is equal to the maximum
number of bricks that are requested by a ray. Nonetheless,
one can see that the first frame requires only roughly 700
ms. Note that this time also gives the rate by which one can
scrub through an entire fluid sequence, where in every frame
the GPU cache is clear and bricks are newly requested.

The graphs showing for each frame the number of re-
quested bricks and the memory requirements reveal the ad-
vantages of embedding the compact particle representation
into front-to-back ray-casting. Since only non-empty and
non-occluded bricks are rendered, a rather small sub-set of
all bricks needs to be uploaded and processed on the GPU.
Furthermore, because the ray-caster can render directly from
the binary particle representation, avoiding any data conver-
sion on the GPU, the memory consumption on the GPU is
kept very small.

0

200

400

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650

T
im

e
 (

m
s)

Frame

Fall

Step

Dam

City

0

50

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650M
e
m

o
ry

 (
M

B
)

Frame

Fall

Step

Dam

City

4147
2967
993
1427

0
10
20
30
40
50
60
70

0 50 100 150 200 250 300 350 400 450 500 550 600 650

B
ri
ck

s

Frame

Fall

Step

Dam

City

Figure 13: System behavior during data exploration of a sin-
gle time step with different views and zooms. Note that the
graph for uploaded bricks in the left column is capped at 50
for better visualization, with the number of bricks in the first
frame explicitly labeled.

6. Conclusion

We have presented a rendering system for very large particle-
based fluid simulations. Due to the compact particle repre-
sentation and the intertwining of particle processing and ren-
dering we could demonstrate interactive previews of entire
fluid sequences. Our approach is able to display a smooth
fluid surface, in particular due to the use of an improved im-
age post-smoothing method. We could demonstrate interac-
tive previews of simulation data comprising up to 500 mil-
lions of particles per time step.

In the future we plan to extend our system towards a high-
quality rendering system including advanced fluid and foam
illumination effects. This is possible in principle, because
our implemented neighbor search operations can be used to
evaluate particle kernels and compute accurate density vol-
umes and surfaces therein. To avoid performing huge num-
bers of operations in the fluid body, we will further inves-
tigate the construction of effective space-leaping techniques
on the fly during rendering.

References

[AIAT12] AKINCI G., IHMSEN M., AKINCI N., TESCHNER M.:
Parallel surface reconstruction for particle-based fluids. Comp.
Graph. Forum 31, 6 (2012), 1797–1809. 3

[ALD06] ADAMS B., LENAERTS T., DUTRE P.: Particle Splat-
ting: Interactive Rendering of Particle-Based Simulation Data.
Technical report cw453, Katholieke Universiteit Leuven, 2006. 3

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3
(2007), 48. 3

[Ber04] BERTSEKAS D. P.: Nonlinear Programming, 2nd ed.
Athena Scientific, 2004. 6

c© The Eurographics Association 2014.

115

F. Reichl & M. G. Chajdas & J. Schneider & R. Westermann / Interactive Rendering of Giga-Particle Fluid Simulations

[Bri03] BRIDSON R. E.: Computational Aspects of Dynamic Sur-
faces. PhD thesis, 2003. 3

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters, 2008. 2

[Cha04] CHAMBOLLE A.: An algorithm for total variation mini-
mization and applications. J. Math. Imaging Vis. 20, 1-2 (2004),
89–97. 5

[CLT07] CRANE K., LLAMAS I., TARIQ S.: GPU Gems, vol. 3.
Addison-Wesley Professional, 2007, ch. Real-Time Simulation
and Rendering of 3D Fluids, pp. 633–675. 7

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: ray-guided streaming for efficient and detailed
voxel rendering. In I3D ’09: Proceedings of the 2009 symposium
on Interactive 3D graphics and games (2009), pp. 15–22. 4

[CS09] CORDS H., STAADT O. G.: Interactive screen-space sur-
face rendering of dynamic particle clouds. J. Graphics, GPU,
&Game Tools 14, 3 (2009), 1–19. 3

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient high-quality volume rendering of sph data. IEEE Trans-
actions on Visualization and Computer Graphics 16, 6 (2010),
1533–1540. 3

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.:
Exploring the Millenium Run - scalable rendering of large-scale
cosmological datasets. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1251–1258. 8

[GEM∗13] GOSWAMI P., EROL F., MUKHI R., PAJAROLA R.,
GOBBETTI E.: An efficient multi-resolution framework for high
quality interactive rendering of massive point clouds using multi-
way kd-trees. The Visual Computer 29, 1 (2013), 69–83. 2

[GIK∗07] GRIBBLE C. P., IZE T., KENSLER A., WALD I.,
PARKER S. G.: A coherent grid traversal approach to visualizing
particle-based simulation data. IEEE Transactions on Visualiza-
tion and Computer Graphics 13, 4 (2007), 758–768. 3

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive sph simulation and rendering on the gpu.
In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (2010), pp. 55–64. 1, 3

[HNB∗06] HOUSTON B., NIELSEN M. B., BATTY C., NILSSON
O., MUSETH K.: Hierarchical RLE level set: A compact and ver-
satile deformable surface representation. ACM TOG 25, 1 (2006),
151–175. 3

[IAAT12] IHMSEN M., AKINCI N., AKINCI G., TESCHNER M.:
Unified spray, foam and air bubbles for particle-based fluids. The
Visual Computer 28, 6-8 (2012), 1–9. 3

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: Sph fluids in computer graphics. In
Eurographics 2014 State-of-the-Art Report (2014), Eurographics
Association, pp. 1–22. 2

[KSN08] KANAMORI Y., SZEGO Z., NISHITA T.: Gpu-based
fast ray casting for a large number of metaballs. Computer
Graphics Forum 27, 2 (2008), 351–360. 3

[KSW05] KRÜGER J., SCHNEIDER J., WESTERMANN R.:
Duodecim - a structure for point scan compression and render-
ing. In Proceedings of the Symposium on Point-Based Graphics
2005 (2005). 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 4 (1987), 163–169. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation (2003), SCA ’03, Eurographics Associa-
tion, pp. 154–159. 2, 3

[MLJ∗13] MUSETH K., LAIT J., JOHANSON J., BUDSBERG J.,
HENDERSON R., ALDEN M., CUCKA P., HILL D., PEARCE
A.: OpenVDB: an open-source data structure and toolkit for
high-resolution volumes. In ACM SIGGRAPH Courses (2013),
pp. 19:1–19:1. 3

[MSD07] MÜLLER M., SCHIRM S., DUTHALER S.: Screen
space meshes. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2007), pp. 9–15. 1, 3

[NM06] NIELSEN M. B., MUSETH K.: Dynamic tubular grid: An
efficient data structure and algorithms for high resolution level
sets. J. Sci. Comput. 26, 3 (2006), 261–299. 3

[NNSM07] NIELSEN M. B., NILSSON O., SÖDERSTRÖM A.,
MUSETH K.: Out-of-core and compressed level set methods.
ACM Trans. Graph. 26, 4 (2007). 3

[PM90] PERONA P., MALIK J.: Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 12 (1990), 629–639. 3, 9

[PV05] PHAM T. Q., VLIET L. J. V.: Separable bilateral filtering
for fast video preprocessing. In IEEE Intl. Conf. on Multimedia
and Expo (ICME) (2005), pp. 4pp.–. 9

[RB08] ROSENBERG I. D., BIRDWELL K.: Real-time particle
isosurface extraction. In Proceedings of the 2008 symposium on
interactive 3D graphics and games (2008), pp. 35–43. 3

[ROF92] RUDIN L. I., OSHER S., FATEMI E.: Nonlinear to-
tal variation based noise removal algorithms. Phys. D 60, 1-4
(1992), 259–268. 2, 3

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A uni-
fied particle model for fluid-solid interactions: Research articles.
Comput. Animat. Virtual Worlds 18, 1 (2007), 69–82. 3

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In Proc. Intl. Conf. on Computer Vision (1998),
IEEE, pp. 839–846. 3

[vdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.: Screen
space fluid rendering with curvature flow. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games (2009), pp. 91–98. 1, 3, 9

[YHK09] YASUDA R., HARADA T., KAWAGUCHI Y.: Fast Ren-
dering of Particle-Based Fluid by Utilizing Simulation Data. In
Proceedings of Eurographics 2009 - Short Papers (2009), Alliez
P., Magnor M., (Eds.), Eurographics Association, pp. 61–64. 3

[YT13] YU J., TURK G.: Reconstructing surfaces of particle-
based fluids using anisotropic kernels. ACM Trans. Graph. 32, 1
(2013), 5:1–5:12. 3

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (2005), pp. 965–
972. 2, 3

[ZOC10] ZAFAR F., OLANO M., CURTIS A.: Gpu random num-
bers via the tiny encryption algorithm. In Proceedings of the Con-
ference on High Performance Graphics (Aire-la-Ville, Switzer-
land, Switzerland, 2010), HPG ’10, Eurographics Association,
pp. 133–141. 5

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the gpu. In Symposium
on Point-Based Graphics (2008), pp. 137–146. 3

c© The Eurographics Association 2014.

116

