
Developments in High Performance CGI Systems

R L. Grimsdale and P. F. Lister

Computer Graphics and VLSI Research Group
School of Engineering, University of Sussex, Brighton, UK.

INTRODUCTION

This contribution describes some work being undertaken in the design and
implementation of architectures for high performance Computer Image Generation
for a range of applications from workstations to flight simulator visual systems.

The work to be described uses a model based on a polygon representation and
uses a Geometry Processor sub-system, with a flexible architecture known as
MAGIC. This system performs the transformation of the polygon from the 3-D
representation to the 2-D perspective projection to the viewing screen
co-ordinates and also provides a clipping operation optional in 3-D or 2-D.
Two different types of scan conversion system are described, the first the Zone
Management Processor uses the coherence inherent in the polygon and the
second system based on a Line Processor uses coherence with spans.

MAGIC

An architecture for a Multiple Application Graphics Integrated Circuit (MAGIC)
has been developed. The aim is to produce a VLSI geometry processor for use
in a wide range of graphics applications, from personal computers through
workstations to real-time flight simulator visual systems. Major requirements
for this processor therefore are flexibility and performance.

Flexibility in MAGIC is achieved by means of a writeable microprogram store, so
the precise functionality of MAGIC may be defined by the user, rather than the
chip designer. For the purposes of flexibility, support of floating point
numbers is considered essential, ideally to a well-accepted standard such as an
IEEE format. However , VLSI implementations of fast floating point processors
require relatively large areas of silicon, whilst the speed of smaller serial ALUs
is a limitation for high performance applications. These problems have been
reconciled by designing MAGIC to be a controller for geometric operations, and
providing a fast floating point co-processor (AMD 1985, Analog Devices 1985) to
perform numerical computation.

Real-time applications are likely to require a higher performance from the
geometry system than that attainable with a single instance of MAGIC, even with
the fastest floating point co-processors currently available. Parallel processing
of geometric data is possible using a pipeline of processors, each computing one
step of the transformation and passing the data on, as Clark (1982) has
shown. However, the transformation sequence is then fixed in hardware, and
the number of processors is related to the number of separate operations into
which the transformation has been partitioned, irrespective of the performance
required. Geometry systems based on MAGIC use a different approach to
parallel processing. Each MAGIC processor handles a surface or object at a
time, and performs the entire transformation from world co-ordinates to screen
coordinates. Whilst a low end system may require only one MAGIC processor, a
flight simulator visual system might employ several instances of MAGIC
transforming different areas of the active database concurrently, passing their
results on to the display system. This strategy therefore allows greater
flexibility according to application requirements, and potentially a much higher
performance.

http://www.eg.org
http://diglib.eg.org

60

MAGIC Operations

Transformation of objects from the database to the view screen requires a
sequence of geometric operations which are essentially vector computations. All
of the computations may be achieved using cartesian (3-element) co-ordinates,
and this approach generally leads to a lower processing requirement than the
use of homogenous (4-element) vectors. Vertex points may have an associated
intensity value for Gouraud (1971) shading, which must be correctly interpolated
during clipping, and may be modified for distance face as a part of the
perspective projection.

The geometric operations used for transformation of polygonal surfaces onto the
screen are listed below:

- Back-facing surface removal; computation of a dot product plus a constant to
test the surface normal against the observer's position.

- Transformation to eye co-ordinates (or parallel projection); a matrix
transformation which may be implemented as three dot product plus constant
computations.

- Perspective projection into screen co-ordinates and 'proximity', described
below.

- Clipping in 2-D and/or 3-D; computation of a distance interpolant, and
interpolation along a polygon edge. The Sutherland-Hodgman (1974) clipping
algorithm is used to clip a polygon at a time to each clipping boundary.

Although only operations for the projection of planar polygons have been
mentioned, the versatility afforded by use of a writeable microprogram store
may allow MAGIC to be equally appropriate to other graphics systems, such as
those based on ray tracing.

Generation of proximity in the perspective projection

A point is transformed to eye co-ordinates (x, y, z) by a view .matrix which
has scaling factors for the view screen incorporated in it. The perspective
projection to screen co-ordinates (xs, y sl may then be achieved by the
following calculations:

p = 1/z where p denotes proximity

Xs = Xcen + (p * x)

Ys = Ycen + (p * y)

where (Xcen• Ycenl, are the co-ordinates of the centre of the screen. The
proximity p is the inverse of the distance of the point from the plane of the
eye, as shown in Fig. 1. It will be noted that although pixels are linearly
spaced across the screen, the corresponding visible points are non-linearly
spaced across the planar surface in a perspective projection. Depth values at
intermediate positions cannot therefore be linearly interpolated from endpoint
values of z; hence for the purposes of 2-D clipping and z-buffer comparisons,
some other technique must be used.

Fortunately, it can be shown that the proximities of visible points across a
perspective projection of a planar surface can be linearly interpolated. It is
much more convenient to implement a hidden surface algorithm based on
proximity comparisons in the display processor, since the proximities at each
pixel may be generated incrementally. Thus, for example, a proximity buffer

(p-buffer) algorithm may be used in place of a z-buffer; the surface with the
highest proximity is the visible surface at each point. When performing the

61

2-D clip to edges of the screen, proximity values may be interpolated in exactly
the same way as Xs and Ys (and Gouraud intensities). The proximity value
generated as a part of the perspective projection can therefore be of great use
in the display processor.

(x .. y, l

z, =..L
P,

'V" Eye plane
Eye posihon

Figure 1 The incremental property of proximity

MAGIC Architecture

The proposed architecture of MAGIC, with its associated memory and
floating-point co-processor, is shown in Fjg. 2. The principle components are
the writeable microprogram store, operand address counters (OACs), and pipeline
registers for optimal transfer of data between the memory and the ALU.

Memory Map

The data memory on which MAGIC operates is of the same width as the word
length used for floating-point representation - typically 32 bits. A real-time
geometry system for transformation of planar polygons has the memory
organised in 3 sections, shown below the MAGIC chip in Fig. 2. The first of

second is the screen and view parameter memory, also used as workspace

62

these is the active database or part thereof (i.e. untransformed polygons). The
second is the screen and view parameter memory, also used as workspace
during transformations, and the third holds the transformed data from which
the image is generated. In a typical transformation sequence, MAGIC tests each
surface for being forward-facing, and if so, performs the parallel projection on
the untransformed data, storing the results in workspace. All subsequent
transformations take place in this workspace area until the resulting polygon is
written into the transformed data memory.

Microprogram write strobe

MAGIC
Bus

Co-processor
control lines

OAC's

Muxl-lMux
1 t:l 2

Figure 2 MAGIC Architecture

MAGIC

By contrast, a non-real-time application might have all three data areas
implemented as one contiguous memory, so that only one address bus is needed,
but multiple memory accesses are required for each floating-point operation.

In each memory section, the data is arranged so that all vector quantities, such

63

as vertices and rows of the view matrix, occur on 4 word boundaries. This
allows a very simple technique of address generation to be employed, which will
be discussed below.

Operand Address Counters

Each operand address counter (OAC) comprises a vertex address counter (VAC)
and an element address counter (EAC) as shown in Fig. 3.

OAC EAC/VAC

INC

DEC Control logic

INC DEC INC DEC

(

VAC
....___

E A C

16 2

Figure 3 Operand Address Counter

In normal mode, the OAC is enabled as an 18-bit counter so that, on
incrementation or decrementation, an overflow from the EAC will cause the VAC
to increment or decrement. However, if this overflow is disabled, the EAC can
be incremented to allow the addition of 4. Decrementation modulo 4 and
subtraction of 4 follow similarly.

With vertices of 4 elements on 4 word boundaries, the VAC specifies which
vertex is currently being examined, and the EAC points to the required element
within that vertex block. This allows convenient and rapid generation of
operand addresses without the need for an address ALU. The OAC block is a
regular hardware structure, which with microprogram control supports a high
level of concurrency in address generation.

Pipeline Registers

Ideally, the workspace RAM used by MAGIC might be a 3-port structure, so that
two operands could be fetched while the result of the previous computation was
being written back. However, this is not necessary if three memory accesses
may be made within one floating-point ALU cycle, so the excessive
interconnection problems of a 3-port memory may be eliminated by use of a
high-speed RAM. The purpose of the pipeline registers is therefore to allow
the two operands for the next floating point comput&tion to be pre-fetched and
the previous result to be written back, all within the time of one ALU cycle.
In the real-time implementation with three separate memory blocks (Fig. 2), only
the small view parameter/workspace memory need satisfy this special speed
requirement, since each of the others are only required to be accessed once
during each floating-point operation.

64

Input/Output and Control Signals

The main functions of MAGIC are to supply the three operand addresses and
the control signals for the external multiplexer and floating-'point co-processor.
A data in port is required so that MAGIC may read either the number of
vertices or the last vertex address for the current polygon from the database;
this port is also used to load microprogram into the writeable store. The sign
of some floating-point results is required for conditional operations such as
back-facing surface removal and clipping, and a pin is therefore allocated for
this purpose.

Once MAGIC has completed its transformation sequence on all the data supplied,
the end of execution signal is given, indicating that the memory may be
accessed by other processors in the system. The interrupt must be polled at
the microprogram level so that execution may be aborted without generating
corrupt output data. This may be required, for example, when a geometric
signal indicates the start of a new frame,· so the transformation sequence is
re-commenced on the new data.

Other Features

Much of the microcode for geometric transformations may be eliminated if
subroutining is available, thus a stack is essential. Loop counters are similarly
required, since many of the operations are of a repetitive nature. Tri-state
units are used to isolate the OAC bus from the microcode lines and data in
port when immediate addresses or data are not being loaded. This permits
transfer of contents between OACs, and between OACs and loop counters, using
the internal bus.

When using the three-memory configuration as shown in Fig. 3, an external
multiplexer is necessary so that the two operand sources and the result
desination for each floating-point operation can be specified. Ideally, this
multiplexer should form a part of the co-processor used with MAGIC, together
with the pipeline registers and floating-point ALU. However, the multiplexer is
superfluous when using the single memory configuration, since the sources and
destination of data for each operation are then loaded.

THE ZONE MANAGEMENT PROCESSOR

Scan conversion is an important aspect of the production of raster scan
displays of perspective views from a viewpoint moving in real time. This is a
process in which each pixel of the raster display is painted to the appropriate
colour value.

As previously noted the model is constructed from a set of planar surfaces or
polygons defined with respect to a three-dimensional set of world co-ordinates.
In order to achieve the necessary picture update rate of up to 60 frames/sec
it is necessary to introduce some degree of parallel processing.

There are a number of different possible approaches. In Pixel Planes (Fuchs
1982) there is a notional allocation of one processor to each pixel. If indeed
there was an actual allocation of one processor to each pixel the whole frame
time would be available for processing each pixel. The system operates
effectively by sending every polygon to each processor simultaneously; the
polygons being specified in terms of their three-dimensional representation.
The polygons are presented in an order which takes no account of their
distance from the viewpoint. A number of processing operations are
performed. The first is the rejection of polygons facing away from the
viewer. Next, the distance of the polygon, at the particular pixel determined.

65

As successive polygons are processed, a nearer surface replaces a more distant
surface which had been previously recorded as the nearest at that pixel.

An alternative system, described below, employs up to one processor per scan
line. This requires that the perspective transformation of polygons into screen
coordinates has been performed. This is followed by the creation of an edge
table which defines the intersection or span of each polygon by the scan lines.

The third alternative, which is now described, is a technique in which there is
a notional allocation of a processor to each polygon. In the basic form of the
scheme, the polygons are transformed from their three-dimensional
representation to the perspective projection in screen coordinates. Backward
facing surfaces are rejected and visible surfaces are clipped and culled against
the viewing cone.

The set of polygon processors or Zone Management Processors (Grimsdale 1979),
or ZMPs, operate in parallel at pixel rate in synchronism with the raster scan
display.

For a given scan line, the processor computes the start and end points of each
span and the distance at each pixel from the viewpoint. There is a common
bus to which all processors are attached. Using a mechanism, which is
described below, a mutual resolution process is performed which determines the
nearest polygon at each pixel and arranges that information about this polygon
is sent for display (Price 1984). This resolution process operates at pixel rate,
but the operation is pipelined and therefore introduces a lag of a few pixel
times.

The special advantage of this technique is the exploitation of area coherence.
The polygon is defined by the position of the apexes and the gradient of the
edges. The computation of the start and end points of each span are computed
from one scan line to the next by the addition or subtraction of the gradient
increment. Similarly, incremental calculation can be used to determine the
inverse of the distance of the viewpoint to the surface, a quantity known as
the proximity.

Further properties of the polygon are computed on an incremental basis.
Smooth shading is also performed by interpolation from pixel to pixel. Surface
texturing can be performed using the proximity value as a parameter. The
availability of this proximity value at each pixel permits distance fade to be
computed accurately.

The problem of aliased edges can be minimised by computing the fractional
contribution of the surface to the edge pixel. This technique which effectively
increases the resolution of the system uses the information which is available
within the ZMP about the whole polygon.

The priority or hidden surface resolution has been demonstrated in a particular
implementation of the system, in which the distance values have been expressed
as 16-bit integer values. The problem is to select the largest (or smallest)
element of a set of integers in which the element values and number of
elements present vary at successive pixel positions. The technique which has
been employed is an iterative bit-wise comparison of all the priority values.
Those which fail to reach the common maximum priority value for a given bit
are removed from subsequent lower-order bit comparisons. The comparison is
pipelined so that results occur on every clock cycle in the form of an
acknowledge signal to the device with the highest priority value. The
algorithm may be explained by considering four 4-bit binary numbers and
assuming the larger the value the higher is the priority.

•

66

23 22 21 20

first number 1 1 0 1
second number 1 1 b 0
third number 1 0 1 1

fourth number 0 1 1 1

It will be observed that all the numbers except the fourth have the bit with
the value 2 3 set. The fourth number therefore fails to reach the maximum for
that value and is thus eliminated .

first number
second number
third number

23

1
1
1

22

1
1
0

21

0
0
1

20

1
0
1

The first, second and third numbers proceed to the comparison of the next
most significant bit where the third number is found to fail and is removed
from lower-order comparisons. The first and second numbers continue to the
next stage for the third comparison where they are both found to be of the
same priority. They both proceed, therefore to stage four where the first
number is found to be the winner.

The implementation of this algorithm is performed at the hardware level in
order to achieve pixel-rate comparison. On each ZMP there is a priority
resolving circuit. This takes the form of a one-dimensional systolic array
driving an open-collector bus. For a given ZMP each element of the systolic
array performs a comparison between the currently ascribed priority value of
that ZMP and the value asserted on the open-collector bus, for one particular
bit of the priority word on every pixel clock cycle.

The number of ZMPs can be reduced below the number polygons in the scene
by a careful allocation strategy. With the convention that the scan lines are
horizontal, the vertical extent of each polygon is determined. To permit a ZMP
to process more than one polygon per frame, an allocation strategy is adopted
in which ZMPs are assigned to polygons in the order distance of the uppermost
edge or apex from the top of the screen. Immediately a ZMP completes the
processing of a polygon it is allocated to a further polygon. The number of
ZMPs required therefore depends on the statistics of the number and
distribution of polygons within typical scenes.

THE LINE PROCESSOR

The Scan Conversion Process to be described here, which is an alternative to
the Zone Management Processor, creates an image in a frame store from a set
of polygons transformed from 3-D to the 2-D perspective projection by a
geometry processor. A large amount of processing is necessary to generate an
effective and realistic image. As well as determining the position of each
polygon on the display screen, processing is required to resolve occlusion of
more distant polygons by those which are nearer; translucent polygons must
be processed to allow partial visibility of more distant polygons; distance
fading may be included to simulate mist and fog; the image can be enhanced
by the inclusion of texture, not only to produce a realistic image but also to
provide distance and velocity clues in a flight simulator visual system; polygons
can be shaded to aid visualisation of curved surfaces and finally anti-aliasing
is necessary to overcome the effects of spatial quantisation.

The various applications of CGI impose different requirements on the display
device. A CAD workstation may not need the complication of a texture
generator and a video game may not require translucent surfaces whereas a
flight simulator would probably require most of the facilities. There is
therefore a requirement for a modular system whose po~er can be enhanced to
meet the more demanding applications whilst providing an economical solution
for simpler usage. The system is accordingly based on a number of functional
units, with the possibility of sharing each function between several processing
units.

67

The architecture thus takes the form of a pipeline of parallel processors. More
complex applications can be satisfied by increasing the number of processors in
the pipeline.

System Configuration

In the following description it is assumed that the display scan lines are
horizontal and scanning is from left to right and from top to bottom.

geometry
processor

Figure 4 System Configuration

• • •
edge tuble generotors

. .
processors

pixel processors

Coherence of the image in the polygon based display can be exploited to
achieve efficient processing. In practice only small differences exist between
adjacent areas of the display. The areas of consideration can be adjacent

68

pixels, spans of a polygon on successive scan lines, entire successive scan lines
and successive frames.

Frame coherence, is not generally used in contemporary display systems since a
large amount of information needs to be passed from one frame to the next.
Span coherence is used in the ZMP system. Line and pixel coherence are used
in the present system.

The system is divided into three main parts (Fig. 4), the edge table generator,
the line processor and the pixel processor. The edge table generator associates
polygons with scan lines. The line processor determines, for each scan line,
the polygon that is present at each pixel, resolving occlusion and managing
translucency where necessary. The pixel processor determines the actual colour
of the pixels and adds visual effects, such as smooth shading and texture.

Edge Table Generation

The edge table processor uses line coherence. The processor commences
operation when it has received information about all the polygons from the
geometry processor. Each polygon is defined by its bounding edges. At the
top of the polygon the positions of the intercepts of the edges on the scan
line are computed, and on subsequent scan lines the positions of edges are
computed incrementally using the positions on the previous line and the
gradients of the sides of the polygon.

The Line Processor

The edge table passes its information for each scan line to a line processor in
the form of spans. Each span is the intersection of a polygon with a scan line
and is delimited by the left and right hand edges of the polygon (Fig. 5).
The line processor uses this information to insert the span, a pixel at a time,
into a line buffer. This is a memory containing information for each pixel on
the scan line.

scan line

Figure 5 The Span

For each insertion at each pixel, comparisons are made to determine if the
newly added span is closer than any span already recorded at this pixel. The
distance comparison is based on the use of proximity, the inverse of the
distance of the object from the viewpoint. The proximity value is updated at
each new scan line by the addition of the gradient increment. Each span also
has a proximity gradient over its length which is calculated incrementally from
the values of proximity at the left and right edges of the span. The proximity
value is used to determine, at each pixel, the proximity ordering of all the
spans at that pixel using a simple insertion sort. By limiting the number of

69

spans at a particular pixel to four, the time for this process is not excessive.
The process is very much like Z buffering, but with the use of proximity which
can be computed by linear incrementation. After all the spans have been sent
by the edge table generator, and have been processed by the line processor,
there will be a list of data for each pixel on the line. Each list will contain
information about the closest polygon at that pixel and any occulted polygons.

Pixel Processor

The lists for each pixel are then sent to the pixel processor which calculates
the colour of the pixel, modified to incorporate any special effects.

Unlike the edge table generator and the line processor, this part of the system
will change in function as well as size, depending on the application. The
number of processors required would also depend on the application, normally
with at least one pixel processor per line processor (Fig. 4).

Distance fading can be performed using a lookup table, accessed by proximity
to yield giving a factor used to modify the intensity of the pixel.

Translucency can be calculated for the polygons present at a pixel since these
have previously been listed in order of decreasing proximity.

Anti-aliasing

Aliasing occurs as anomalies on the display, caused by the finite sampling of
the display image at pixel intervals. One method of overcoming aliasing is to
increase the resolution of the display. This is not always feasible or
economical, since every doubling in the display resolution quadruples the
display processing requirements.

A more economical technique employs sub-pixel masks, consisting of a
four by four binary array of sub-pixels. These are used to indicate the
amount that a polygon intersects with a particular pixel. A full mask would
indicate an interior value whereas a partial mask would represent the edge of a
polygon.

These masks are created by the line processor for each pixel of each span,
using the gradients of the left and right hand edges of the span (Fig. 6).

Figure 6 Pixel Masks

70

The pixel processor, in calculating the colour of a particular pixel, uses these
mask values to determine the contributions of each polygon at this pixel. The
contribution of the closest polygon will be determined by the number of bits in
its mask set out of sixteen. The contribution of the next closest polygon will
be the number of bits set after the operation of logically ANDing its mask with
the inverse of the previous mask, and so on.

Acknowledgements

The contribution of our colleagues M.Agate, H.Finch, A.Garel, and A.Simmonds is
acknowledged. The work has been supported by the UK Science and
Engineering Research Council.

References

AMD (1985) Am29300 Family, Advanced Micro Devices,
Sunnyvale, CA.

Analog Devices (1985) High-Speed 64-bit IEEE Floating Point
Multiplier and ALU ADSP-3210 and ADSP-3220 Analog Devices
DSP Division, Norwood, MA.

Clark JH (1982) The Geometry Engine: A VLSI Geometry System for
Graphics. Computer Graphics, Vol 16/3

Fuchs H, Poulton J, Paeth A, Bell A (1982) Developing Pixel Planes,
a smart memory-based raster graphic system. Proc MIT Conf on
Adv Res in VLSI, p 137

Gouraud H (1971) Continuous Shading of Curved Surfaces.
IEEE Transactions on Computers, Vol 20/6

Grimsdale RL, Hadjiaslanis AA, Willis PJ (1979) Zone Management Processor;
a module for generating surfaces in raster colour displays.
Computers and Digital Techniques, Vol 2/1

Price SM (1984) D.Phil. Thesis, University of Sussex
Sutherland IE, Hodgman GW (1974) Reentrant Polygon Clipping.

Comm ACM Vol 17/1, No. 1

