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Figure 1: The teaching material convolves two signals (left/middle). Users can check the algorithm’s correctness 
visually by analyzing the samples. Continuous and discrete views can be compared by changing the sample rate. 

Abstract: This interactive teaching gem shows the convolution concept for continuous signals and discrete 
samples. Signals occurring frequently in computer graphics education are predefined; others can be drawn 
or integrated easily. We explain how the material can be used for in-class demonstration and for 
homework, and describe the experiences we made with two courses on image processing and 
introductionary computer graphics. Student reading is provided. 
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1   Introduction 
Convolution is an integral concept of computer graphics (CG) curricula to explain, for example, aliasing, 
spline modeling, or image filtering. We have developed an interactive Java applet for demonstrating the 
core subject in-class and for assigning it as programming homework and student-side exploration. The idea 
stems from experiences we made with publicly available, interactive material, mostly Java applets. One of 
our own applets (Klein et al. 1998) already let learners convolve two unit boxes by direct manipulation. 
There, time was kept to a minimum for associating the convolution action with the concept. But the 
material was limited and could not be reused when the concept recurred later in class, for instance when 
sampling with a Dirac series, when interpolating with a triangle, in Gaussian smoothing, and in signal 
reconstruction. So we required additional, free material. 

The Exploratories’ convolution applet (Spalter and Simpson 2000) transfers a mechanical teaching 
material, layering and sliding of overheads. Users can draw two signals and convolve them physically by 
moving a slider. But signals are not pre-defined, which slows down work. Multiple convolutions, required 
for example to demonstrate spline basis generation, can hardly be performed in-class, as the convolved 
result must be copied to the input signals manually. The Joy of Convolution (Crutchfield and Rugh 1997) 
provides self-drawn signals and the convolution action, too, and includes pre-defined signals. Because these 
target audio processing, the demonstration still requires live drawing. Instructors may choose between 
applets for discrete and continuous signals. Included formula, parameter labels, and time-based system did 
not match our student reading, but we could bypass these obstacles in an oral demonstration. 

However, we found the materials difficult to be applied for student-side exploration. The offered 
operations are simply not flexible enough to handle all the scenarios mentioned above. Consider 
reconstruction filtering with Blinn’s (1989) NICE filter, which is constructed by multiplying two truncated 
sinc signals – sin(x)/x –, one of them stretched 1/3 horizontally; in the Fourier domain their dual signals are 
convolved. With the materials at hand, students cannot reproduce this process or explore similar filtering. 
Further, the materials miss source code, so learners can neither study implementation details, nor can the 
material be used as starting point for programming.  



2   Educational Goals 
Our goals in developing this teaching gem were to provide instructors with an in-class demo for the 
convolution concept as it appears in the core CG curriculum, and to enable learners exploring the concept 
in-depth. The source code should be usable for programming homework. 

Learning objectives are as follows. First, learners should remember the convolution concept and use 
related vocabulary, which can be found, for example, in Glassner (1995). A novice should be able to write 
down the one-dimensional convolution f = g ⊗ h with signals g and h: f(x) = ∫ g(a) h(x-a) da. For self-
studies he should know that authors may prefer other symbols and labels; x denotes a spatial system, 
whereas t would denote time. Knowledge includes commutative law and linearity, time-shifting the input 
causes the same shift in the output. Learners should remember that 2D convolution works accordingly.  

Depending on the actual context, a CG student should understand convolution with examples from 
lecture or reading. Signals in CG represent images and functions; they are convolved with a kernel. Most 
kernels are symmetric with limited support; they filter the original signal and usually smooth it. Convolving 
with a box increases the signals’ continuity by one. Two boxes convolve to a triangle, repeated box 
convolution converges to a Gaussian; the respective support length can be explained. In Fourier theory, 
convolution is dual to multiplication: F=GH, large letters denote Fourier transformed signals. The learner 
should know that the proof centers on e-a = e-x e-(x-a). The Dirac impulse copies the signal. Having 
understood linearity, the learner can now imagine effects of mixing in a third signal, and of scaling inputs 
in time or intensity.  

Another objective is how convolution is applied in CG-related fields. In modeling, the B-spline is 
generated by convolving the control polygon, over and over again, with a box. Convolving a signal with a 
Dirac series produces copies, and their possible overlapping explains aliasing. A sample & hold display 
corresponds to convolving d-distant points with a d-sized box. A double-sized triangle would interpolate 
the points linearly. For reconstructing a signal, we would ideally convolve it with a sinc; in practice, with a 
NICE filter (see above).  

At last, computer science students should be able to implement the convolution, mainly the infinite 
integral. According to the signals’ internal representation and view resolution, the learner must decide on 
boundaries, sampling, and normalization. The learner should choose an appropriate signal and kernel, for 
example (0 1 1 0 0 1 1 0) and (1 1), convolve them programmatically, and verify the result (0 1 2 1 0 1 2 1) 
manually. An exemplary output with our material is given in Figure 1. 

 

3   Methodology 
The authors of Joy of Convolution show discrete-time applets in class and leave the continuous-time 
applets entirely to self-studies. The transition from discrete to continuous view is not explained. Our 
approach proceeds reversely: we introduce the continuous case, explain the transition in class, and let 
students construct the discrete algorithm. Students are given a ready programming skeleton and working 
examples with the above material. Learning occurs in small groups: for a few days, students discuss the 
concept, share ideas, and develop the algorithm. Forum and wiki support inter-group discussion. 

Our developed teaching gem supports the given learning objectives with the following unit tasks, 
operational building blocks with minimal interdependencies that keep the material from getting too 
application-specific: 

 
1. Set input k to a box 
2. Set input k to a sinc 
3. Set input k to an impulse series 
4. Set parts of input k to zero 
5. Draw parts of input k 
6. Set input k to the convolution g ⊗ h 
7. Set input k to the multiplication g • h  
8. Scale input k by α: k  αk 
9. Shift input k by s: k(t)  k(t-s) 
10. Stretch input k by α: k(t)  k(αt) 
11. Modify sampling rate 
12. Normalize output 



 
Out of these unit tasks, the instructor can compile his in-class demo. The first three tasks include 

common signals in CG. Task 4 enables users limiting the support, task 5 represents custom signals. Tasks 
6/7 repeat convolution and dual multiplication. Tasks 8-10 derive from linearity and time-shifting 
properties. Note that impulse, triangle, Gaussian, and NICE can be constructed. We specify the latter 
according to Blinn (1989) with the following task series (letters denote target input signals g and h): 

 
2g - 1h – 7g - 2h - 10h - 7g - 10g 
 
In other words, unit tasks enable us to formally define an interaction. For simplicity, we left out 

concrete function parameters or the scaling/shifting values α and s, but they could be added similarly to the 
signals’ letters. The above task series can be read as follows: “Multiply (7g) the ideal sinc filter (2g) with a 
truncation box (1h), then multiply it (7g) with a stretched sinc (Lanczos window, 2h-10h), and stretch it 
(10g)”.  

The dual task in the Fourier domain would use the dual operations: “Convolve (6g) the ideal box (1g) 
with a sinc stretching (2h), then convolve (average, 6g) it with a stretched box (1h-10h) and shrink the 
result (10g)” can be executed as task series: 

 
1g - 2h - 6g - 1h - 10h - 6g - 10g 
 
The application of this task series is shown in Figure 2. Demonstrating aliasing would comprise the task 

series 5g - 4g - 3h - 10h - 10h: “Draw signal g, limit its support, set kernel h to a Dirac series, and vary its 
stretching”. Other in-class demonstrations can be specified in the same way. 

Offering tasks like stretching supports exploration: stretching a box towards the constant (DC) blurs the 
output towards the average, shrinking it again towards the impulse resharpens the output. Stretching can 
also help in discovering that support lengths sum up. We have excluded some signals (triangle, Gaussian, 
NICE) from selection to force the user construct them by convolution. During scaling, the signal maximum 
snaps to multiples of 0.5 and to the value for which the kernel becomes normalized. 

 
 

 
Figure 2: Here, we explore Blinn’s (1989) NICE filter in frequency domain. We have convolved the ideal box 

with a sinc stretching and copied the result to the clipboard. Now we get rid of the ripples by averaging it with a 
one-cycle wide box. Signals can be drawn, scaled, and stretched by the rectangular handles. That way we 

magnified the input and normalized the box integral; alternatively, we could use the built-in normalization. 



Besides visualizing the integral’s calculation at a given location x, we sample both inputs gs and hs and 
visualize the convolved samples fs= gs ⊗ hs. With that, the user can verify results manually and explore the 
transition between continuous and discrete view by varying the sampling rate (task 12; see Figure 1). When 
N is near the screen resolution, we hide the samples and switch back to the continuous view. In our 
assessments, we have found that task 12 is the most difficult to comprehend. The following instructions 
have helped our students: The user should start with sampling at the grid resolution by dragging the “N” 
handle to the first grid point left to the center at x=-0.5. This corresponds to N=9 sampling points. 
Interaction is easier when the application window is maximized. It may further help to interpret the 
rectangular sample points as pixel values: each pixel spans exactly two grid cells, one left and the other one 
right of its rectangular sample point. To perform the discrete convolution (0 1 1 0 0 1 1 0) ⊗ (1 1) 
mentioned above, the user now draws the pixel blocks seen in Figure 1. Each 0 corresponds to two zero 
cells, each 1 to two unit cells. We have simplified drawing by snapping to partially linear signals. 

Users can operate all unit tasks by direct manipulation. Figure 3 overlays the graphical user interface 
with the actual mouse and keyboard interactions. A quick reference is included in the accompanied 
HTML/applet page. The application can also be executed as platform-independent, executable Java archive 
(JAR) or as Windows executable (EXE). Users are required to install Java 2. 

The included makefile enables users to compile the application. Our teaching gem includes full source 
code, except for the convolution algorithm that is assessed as programming exercise. The Java class 
applets.convolution.Signals, contained in the accompanied source package, presents a short, 50-line code 
module that demonstrates how two signals can be multiplied, packed in the body of the method 
multiply(double[] signal, double[] kernel, double[] result, int norm). Educators can assign students the 
second, empty method convolve(double[] signal, double[] kernel, double[] result, double delta, int norm). 
The implementation of the convolution algorithm is straightforward and students can compare their coding 
with the multiplication code, but complexities arise when they start thinking about convolving at the 
signals’ borders, or when they consider normalization. Students will recognize that, in the discrete case, this 
involves a delta weighting for each sample point. Note that after starting the makefile, the HTML/applet 
will contain all student modifications, while the JAR/EXE versions still contain the original compiled code; 
if the convolution code is left empty, the convolution result will be zero.  

 

 

 

Figure 3: Annotated user interface of the teaching gem. Numbers correspond to unit tasks described in the text. 

1-3: Change input signal 
Click on label or 

press [PAGE-UP/DOWN] 

4/5: Draw signal parts / Set to zero 
Drag mouse & press left/right button. Press [CTRL-Z/Y] 

for undo/redo, and [ESC] to reset signal. 

11: Normalize output 
Click on the “no norm” label to 

normalize output to height 1. 

9/10: Convolve or multiply signals 
Click on output signal’s label. 
You can copy the output to the 

clipboard [CTRL-C], and then paste 
it to an input signal [CTRL-P]. 

8: Stretch signal 
Drag rectangular function handle(s). 

6/7: Scale or shift signal 
Drag signal’s interior. 

Kernel size is shown, and signal 
will snap to kernel size 1. 

12: Modify sampling rate 
Drag handle “N”. Or, when selected, 

press [(SHIFT) LEFT/RIGHT].



We have based our programming architecture on a Java graphics engine with views and controllers in 
which we render a list of graphics items (package ilo.awt). The controllers perform the model-to-view 
transformation, selection and dragging; they further encapsulate undo and clipboard functionality, as well 
as shape recognition for partially linear signals. Signals are represented as floating point arrays and they are 
connected to a text parser for custom input and draggable function handles (package ilo.math). The applet 
package contains the class applets.convolution.CustomFunction, which showcases how users can integrate 
custom functions with a few lines of code – together with the rectangular interaction handles. 

The applet itself holds a view/controller pair for varying the sampling and selecting pre-defined 
functions (package applets.convolution). Objects are available to the scripting interface, so users can 
customize the applet, for example to enter other signals like a high pass or a ramp. The engine queries CSS 
information before rendering its graphics items; most visual parameters can be styled textually. Examples 
would be to hide the samples or to highlight the copying effect of the Dirac series instead of the integral’s 
calculation. A default color scheme for primary and secondary foreground, background, filling, and 
emphasis is defined in the class ilo.awt.GraphicsStyle. 

 

4   Assessment 
We have collected the stated learning objectives for convolution in 2005 with two core courses on Image 
Processing and Introductionary Computer Graphics, where students had to explain and reduce aliasing 
effects in texturing respectively Moiré effects in images. Both courses used the same material and inquiry 
for the convolution concept. Individual data was collected from 60 of the 63 students; three were excluded 
from the study as they missed the final deadline. Their field of study was either Computer Science (43) or 
Bioinformatics (17), gender ratio was 82% male to 18% female. The average age was 23 years. A pre-test 
assured that student previous knowledge did not differ significantly.  

Students worked in triads. They had to implement the sampling algorithm with different filtering 
strategies. In an oral exam, they had to demonstrate their application, to explain the effects of their code, 
and to reproduce Fourier and sampling theory, including the convolution concept. They had 12 days to 
finish their programming and to prepare for the oral exam. With respect to the convolution concept, the 
analysis of our oral examinations showed these major lacks in understanding and application: 

 
• Commutative law and linearity could be stated but not applied 
• Signals and convolution could be drawn but often with a false frequency 
• Scaling for concrete applications was generally not understood 
• Normalization was generally confused 

 
The results let to the new material at hand, which was assessed in 2006 in the same courses with the 

same assignments. The interactivity was given to the students before the exercise was handed out. After the 
oral examination, we inquired 12 individual students and let them demonstrate the convolution concept 
directly with the teaching gem. All of them stated they had used it to gain an understanding of the concept. 
We tested commutative law and linearity by letting them add, scale, and shift signals (tasks 5, 8, 9, 10) and 
letting them guess how the convolved result would look like. Because our student reading shows mere box 
convolution with two unit boxes that results in an already normalized triangle with unit area and unit 
height, we questioned how two double-sized boxes would convolve. Then we entered discussion on 
possible approaches to normalization (by height, by area) and applications in image processing. Depending 
on the individual outcome, we explained other, more advanced applications.  

All students could handle and explain the various signals and their convolutions intuitively – 
commutative law and linearity could generally be demonstrated with the applet. Four students stated they 
had explored normalization, – and only two of them could explain scaling correctly, not only for double-
sized boxes but for arbitrary signals. The fact that signals are not normalized by default (task 12) makes us 
think the remaining users have not investigated convolution with non-uniform boxes. However, we have no 
objective data on that. Based on this feedback, we see it crucial to instruct students that their reading might 
differ in scaling and normalization; some authors are not too explicit on that, and even Blinn’s clear 
statement in his introduction to the NICE filter (1989) could be overlooked.  

Furthermore, we confronted students with an additional, false normalization that violates commutative 
law, as we were curious about their analysis skills. None of them discovered this “bug”. Teaching material 



might be considered true by students, so we rather suggest training analysis skills explicitly, for example 
with multiple-choice tests or similar setups (Hanisch et al. 2005).  

 

5   Conclusions 
This teaching gem has enabled us to effectively demonstrate the convolution concept in CG classes and to 
assign it for student exploration. The provided unit tasks cover learning objectives from comprehension to 
application to programming. While we have given formal task series for teaching filter design (Blinn’s 
NICE filter) and aliasing, many others are possible, and we suggest CG educators develop and contribute 
further task series, for example by adding their task series to the CGEMS repository.  
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