
Signal Convolution

Frank Hanisch
WSI/GRIS University of Tübingen, Germany

fhanisch@gris.uni-tuebingen.de

Figure 1: The teaching material convolves two signals (left/middle). Users can check the algorithm’s correctness
visually by analyzing the samples. Continuous and discrete views can be compared by changing the sample rate.

Abstract: This interactive teaching gem shows the convolution concept for continuous signals and discrete
samples. Signals occurring frequently in computer graphics education are predefined; others can be drawn
or integrated easily. We explain how the material can be used for in-class demonstration and for
homework, and describe the experiences we made with two courses on image processing and
introductionary computer graphics. Student reading is provided.

Keywords: Signal Processing, Filtering, Sampling, In-class Demonstration, Programming Homework

1 Introduction
Convolution is an integral concept of computer graphics (CG) curricula to explain, for example, aliasing,
spline modeling, or image filtering. We have developed an interactive Java applet for demonstrating the
core subject in-class and for assigning it as programming homework and student-side exploration. The idea
stems from experiences we made with publicly available, interactive material, mostly Java applets. One of
our own applets (Klein et al. 1998) already let learners convolve two unit boxes by direct manipulation.
There, time was kept to a minimum for associating the convolution action with the concept. But the
material was limited and could not be reused when the concept recurred later in class, for instance when
sampling with a Dirac series, when interpolating with a triangle, in Gaussian smoothing, and in signal
reconstruction. So we required additional, free material.

The Exploratories’ convolution applet (Spalter and Simpson 2000) transfers a mechanical teaching
material, layering and sliding of overheads. Users can draw two signals and convolve them physically by
moving a slider. But signals are not pre-defined, which slows down work. Multiple convolutions, required
for example to demonstrate spline basis generation, can hardly be performed in-class, as the convolved
result must be copied to the input signals manually. The Joy of Convolution (Crutchfield and Rugh 1997)
provides self-drawn signals and the convolution action, too, and includes pre-defined signals. Because these
target audio processing, the demonstration still requires live drawing. Instructors may choose between
applets for discrete and continuous signals. Included formula, parameter labels, and time-based system did
not match our student reading, but we could bypass these obstacles in an oral demonstration.

However, we found the materials difficult to be applied for student-side exploration. The offered
operations are simply not flexible enough to handle all the scenarios mentioned above. Consider
reconstruction filtering with Blinn’s (1989) NICE filter, which is constructed by multiplying two truncated
sinc signals – sin(x)/x –, one of them stretched 1/3 horizontally; in the Fourier domain their dual signals are
convolved. With the materials at hand, students cannot reproduce this process or explore similar filtering.
Further, the materials miss source code, so learners can neither study implementation details, nor can the
material be used as starting point for programming.

2 Educational Goals
Our goals in developing this teaching gem were to provide instructors with an in-class demo for the
convolution concept as it appears in the core CG curriculum, and to enable learners exploring the concept
in-depth. The source code should be usable for programming homework.

Learning objectives are as follows. First, learners should remember the convolution concept and use
related vocabulary, which can be found, for example, in Glassner (1995). A novice should be able to write
down the one-dimensional convolution f = g ⊗ h with signals g and h: f(x) = ∫ g(a) h(x-a) da. For self-
studies he should know that authors may prefer other symbols and labels; x denotes a spatial system,
whereas t would denote time. Knowledge includes commutative law and linearity, time-shifting the input
causes the same shift in the output. Learners should remember that 2D convolution works accordingly.

Depending on the actual context, a CG student should understand convolution with examples from
lecture or reading. Signals in CG represent images and functions; they are convolved with a kernel. Most
kernels are symmetric with limited support; they filter the original signal and usually smooth it. Convolving
with a box increases the signals’ continuity by one. Two boxes convolve to a triangle, repeated box
convolution converges to a Gaussian; the respective support length can be explained. In Fourier theory,
convolution is dual to multiplication: F=GH, large letters denote Fourier transformed signals. The learner
should know that the proof centers on e-a = e-x e-(x-a). The Dirac impulse copies the signal. Having
understood linearity, the learner can now imagine effects of mixing in a third signal, and of scaling inputs
in time or intensity.

Another objective is how convolution is applied in CG-related fields. In modeling, the B-spline is
generated by convolving the control polygon, over and over again, with a box. Convolving a signal with a
Dirac series produces copies, and their possible overlapping explains aliasing. A sample & hold display
corresponds to convolving d-distant points with a d-sized box. A double-sized triangle would interpolate
the points linearly. For reconstructing a signal, we would ideally convolve it with a sinc; in practice, with a
NICE filter (see above).

At last, computer science students should be able to implement the convolution, mainly the infinite
integral. According to the signals’ internal representation and view resolution, the learner must decide on
boundaries, sampling, and normalization. The learner should choose an appropriate signal and kernel, for
example (0 1 1 0 0 1 1 0) and (1 1), convolve them programmatically, and verify the result (0 1 2 1 0 1 2 1)
manually. An exemplary output with our material is given in Figure 1.

3 Methodology
The authors of Joy of Convolution show discrete-time applets in class and leave the continuous-time
applets entirely to self-studies. The transition from discrete to continuous view is not explained. Our
approach proceeds reversely: we introduce the continuous case, explain the transition in class, and let
students construct the discrete algorithm. Students are given a ready programming skeleton and working
examples with the above material. Learning occurs in small groups: for a few days, students discuss the
concept, share ideas, and develop the algorithm. Forum and wiki support inter-group discussion.

Our developed teaching gem supports the given learning objectives with the following unit tasks,
operational building blocks with minimal interdependencies that keep the material from getting too
application-specific:

1. Set input k to a box
2. Set input k to a sinc
3. Set input k to an impulse series
4. Set parts of input k to zero
5. Draw parts of input k
6. Set input k to the convolution g ⊗ h
7. Set input k to the multiplication g • h
8. Scale input k by α: k αk
9. Shift input k by s: k(t) k(t-s)
10. Stretch input k by α: k(t) k(αt)
11. Modify sampling rate
12. Normalize output

Out of these unit tasks, the instructor can compile his in-class demo. The first three tasks include

common signals in CG. Task 4 enables users limiting the support, task 5 represents custom signals. Tasks
6/7 repeat convolution and dual multiplication. Tasks 8-10 derive from linearity and time-shifting
properties. Note that impulse, triangle, Gaussian, and NICE can be constructed. We specify the latter
according to Blinn (1989) with the following task series (letters denote target input signals g and h):

2g - 1h – 7g - 2h - 10h - 7g - 10g

In other words, unit tasks enable us to formally define an interaction. For simplicity, we left out

concrete function parameters or the scaling/shifting values α and s, but they could be added similarly to the
signals’ letters. The above task series can be read as follows: “Multiply (7g) the ideal sinc filter (2g) with a
truncation box (1h), then multiply it (7g) with a stretched sinc (Lanczos window, 2h-10h), and stretch it
(10g)”.

The dual task in the Fourier domain would use the dual operations: “Convolve (6g) the ideal box (1g)
with a sinc stretching (2h), then convolve (average, 6g) it with a stretched box (1h-10h) and shrink the
result (10g)” can be executed as task series:

1g - 2h - 6g - 1h - 10h - 6g - 10g

The application of this task series is shown in Figure 2. Demonstrating aliasing would comprise the task

series 5g - 4g - 3h - 10h - 10h: “Draw signal g, limit its support, set kernel h to a Dirac series, and vary its
stretching”. Other in-class demonstrations can be specified in the same way.

Offering tasks like stretching supports exploration: stretching a box towards the constant (DC) blurs the
output towards the average, shrinking it again towards the impulse resharpens the output. Stretching can
also help in discovering that support lengths sum up. We have excluded some signals (triangle, Gaussian,
NICE) from selection to force the user construct them by convolution. During scaling, the signal maximum
snaps to multiples of 0.5 and to the value for which the kernel becomes normalized.

Figure 2: Here, we explore Blinn’s (1989) NICE filter in frequency domain. We have convolved the ideal box

with a sinc stretching and copied the result to the clipboard. Now we get rid of the ripples by averaging it with a
one-cycle wide box. Signals can be drawn, scaled, and stretched by the rectangular handles. That way we

magnified the input and normalized the box integral; alternatively, we could use the built-in normalization.

Besides visualizing the integral’s calculation at a given location x, we sample both inputs gs and hs and
visualize the convolved samples fs= gs ⊗ hs. With that, the user can verify results manually and explore the
transition between continuous and discrete view by varying the sampling rate (task 12; see Figure 1). When
N is near the screen resolution, we hide the samples and switch back to the continuous view. In our
assessments, we have found that task 12 is the most difficult to comprehend. The following instructions
have helped our students: The user should start with sampling at the grid resolution by dragging the “N”
handle to the first grid point left to the center at x=-0.5. This corresponds to N=9 sampling points.
Interaction is easier when the application window is maximized. It may further help to interpret the
rectangular sample points as pixel values: each pixel spans exactly two grid cells, one left and the other one
right of its rectangular sample point. To perform the discrete convolution (0 1 1 0 0 1 1 0) ⊗ (1 1)
mentioned above, the user now draws the pixel blocks seen in Figure 1. Each 0 corresponds to two zero
cells, each 1 to two unit cells. We have simplified drawing by snapping to partially linear signals.

Users can operate all unit tasks by direct manipulation. Figure 3 overlays the graphical user interface
with the actual mouse and keyboard interactions. A quick reference is included in the accompanied
HTML/applet page. The application can also be executed as platform-independent, executable Java archive
(JAR) or as Windows executable (EXE). Users are required to install Java 2.

The included makefile enables users to compile the application. Our teaching gem includes full source
code, except for the convolution algorithm that is assessed as programming exercise. The Java class
applets.convolution.Signals, contained in the accompanied source package, presents a short, 50-line code
module that demonstrates how two signals can be multiplied, packed in the body of the method
multiply(double[] signal, double[] kernel, double[] result, int norm). Educators can assign students the
second, empty method convolve(double[] signal, double[] kernel, double[] result, double delta, int norm).
The implementation of the convolution algorithm is straightforward and students can compare their coding
with the multiplication code, but complexities arise when they start thinking about convolving at the
signals’ borders, or when they consider normalization. Students will recognize that, in the discrete case, this
involves a delta weighting for each sample point. Note that after starting the makefile, the HTML/applet
will contain all student modifications, while the JAR/EXE versions still contain the original compiled code;
if the convolution code is left empty, the convolution result will be zero.

Figure 3: Annotated user interface of the teaching gem. Numbers correspond to unit tasks described in the text.

1-3: Change input signal
Click on label or

press [PAGE-UP/DOWN]

4/5: Draw signal parts / Set to zero
Drag mouse & press left/right button. Press [CTRL-Z/Y]

for undo/redo, and [ESC] to reset signal.

11: Normalize output
Click on the “no norm” label to

normalize output to height 1.

9/10: Convolve or multiply signals
Click on output signal’s label.
You can copy the output to the

clipboard [CTRL-C], and then paste
it to an input signal [CTRL-P].

8: Stretch signal
Drag rectangular function handle(s).

6/7: Scale or shift signal
Drag signal’s interior.

Kernel size is shown, and signal
will snap to kernel size 1.

12: Modify sampling rate
Drag handle “N”. Or, when selected,

press [(SHIFT) LEFT/RIGHT].

We have based our programming architecture on a Java graphics engine with views and controllers in
which we render a list of graphics items (package ilo.awt). The controllers perform the model-to-view
transformation, selection and dragging; they further encapsulate undo and clipboard functionality, as well
as shape recognition for partially linear signals. Signals are represented as floating point arrays and they are
connected to a text parser for custom input and draggable function handles (package ilo.math). The applet
package contains the class applets.convolution.CustomFunction, which showcases how users can integrate
custom functions with a few lines of code – together with the rectangular interaction handles.

The applet itself holds a view/controller pair for varying the sampling and selecting pre-defined
functions (package applets.convolution). Objects are available to the scripting interface, so users can
customize the applet, for example to enter other signals like a high pass or a ramp. The engine queries CSS
information before rendering its graphics items; most visual parameters can be styled textually. Examples
would be to hide the samples or to highlight the copying effect of the Dirac series instead of the integral’s
calculation. A default color scheme for primary and secondary foreground, background, filling, and
emphasis is defined in the class ilo.awt.GraphicsStyle.

4 Assessment
We have collected the stated learning objectives for convolution in 2005 with two core courses on Image
Processing and Introductionary Computer Graphics, where students had to explain and reduce aliasing
effects in texturing respectively Moiré effects in images. Both courses used the same material and inquiry
for the convolution concept. Individual data was collected from 60 of the 63 students; three were excluded
from the study as they missed the final deadline. Their field of study was either Computer Science (43) or
Bioinformatics (17), gender ratio was 82% male to 18% female. The average age was 23 years. A pre-test
assured that student previous knowledge did not differ significantly.

Students worked in triads. They had to implement the sampling algorithm with different filtering
strategies. In an oral exam, they had to demonstrate their application, to explain the effects of their code,
and to reproduce Fourier and sampling theory, including the convolution concept. They had 12 days to
finish their programming and to prepare for the oral exam. With respect to the convolution concept, the
analysis of our oral examinations showed these major lacks in understanding and application:

• Commutative law and linearity could be stated but not applied
• Signals and convolution could be drawn but often with a false frequency
• Scaling for concrete applications was generally not understood
• Normalization was generally confused

The results let to the new material at hand, which was assessed in 2006 in the same courses with the

same assignments. The interactivity was given to the students before the exercise was handed out. After the
oral examination, we inquired 12 individual students and let them demonstrate the convolution concept
directly with the teaching gem. All of them stated they had used it to gain an understanding of the concept.
We tested commutative law and linearity by letting them add, scale, and shift signals (tasks 5, 8, 9, 10) and
letting them guess how the convolved result would look like. Because our student reading shows mere box
convolution with two unit boxes that results in an already normalized triangle with unit area and unit
height, we questioned how two double-sized boxes would convolve. Then we entered discussion on
possible approaches to normalization (by height, by area) and applications in image processing. Depending
on the individual outcome, we explained other, more advanced applications.

All students could handle and explain the various signals and their convolutions intuitively –
commutative law and linearity could generally be demonstrated with the applet. Four students stated they
had explored normalization, – and only two of them could explain scaling correctly, not only for double-
sized boxes but for arbitrary signals. The fact that signals are not normalized by default (task 12) makes us
think the remaining users have not investigated convolution with non-uniform boxes. However, we have no
objective data on that. Based on this feedback, we see it crucial to instruct students that their reading might
differ in scaling and normalization; some authors are not too explicit on that, and even Blinn’s clear
statement in his introduction to the NICE filter (1989) could be overlooked.

Furthermore, we confronted students with an additional, false normalization that violates commutative
law, as we were curious about their analysis skills. None of them discovered this “bug”. Teaching material

might be considered true by students, so we rather suggest training analysis skills explicitly, for example
with multiple-choice tests or similar setups (Hanisch et al. 2005).

5 Conclusions
This teaching gem has enabled us to effectively demonstrate the convolution concept in CG classes and to
assign it for student exploration. The provided unit tasks cover learning objectives from comprehension to
application to programming. While we have given formal task series for teaching filter design (Blinn’s
NICE filter) and aliasing, many others are possible, and we suggest CG educators develop and contribute
further task series, for example by adding their task series to the CGEMS repository.

References
Blinn, J. 1989. Return of the Jaggy. In IEEE Computer Graphics and Applications 9(2), pp. 82-89.

Crutchfield, S. G. and Rugh, W. J. 1998. Interactive Learning for Signals, Systems, and Control. IEEE Control Systems

Magazine 18(4), pp. 88-91. http://www.jhu.edu/signals

Foley, J. D., van Dam, A., Feiner, F., and Hughes, J. F. 1990. Computer Graphics, Principles and Practice, Second

Edition, Addison-Wesley, Reading, Massachusetts, ch. 14.10.3, pp. 629-633.

Glassner, A. S. 1995. Principles of Digital Image Synthesis 1, Morgan Kaufmann, San Francisco, ch. 4.5, pp. 155-164.

Hanisch, F., Görke, J., and Straßer, W., 2005. The educational use of live graphics gems: a walkthrough for aliasing, in:

Technical Report WSI-2005-9, WSI/GRIS University of Tübingen.

Klein, R., Hanisch, F., and Strasser, W. 1998. Web based Teaching of Computer Graphics: Concepts and Realization of

an Interactive Online Course. SIGGRAPH 98 Conference Proceedings, Addison Wesley. http://www.gris.uni-
tuebingen.de/projects/grdev

Spalter, A. M., and Simpson, R. M. 2000. Integrating Interactive Computer-Based Learning Experiences Into

Established Curricula. Proc. of ACM ITICSE 5, pp. 116-119. http://www.cs.brown.edu/exploratories

