Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Efficient focus+context visual exploration of volume datasets

J. Campos L A. Puig !and D. Tost 2

1 Departament de Matematica Aplicada i Analisi, UB, Barcelona, SPAIN
2 Centre de Recerca en Enginyeria Biomedica (CREB), UPC, Barcelona, SPAIN

Abstract

We propose a hierarchical representation of volume data sets based on a user-given definition of features. The
model is general and it can be used for various types of feature definitions such as rendering queries, topological
skeletons and property-based classification. We use this model to interactively select features of the volume and to
render them providing focus+context information. In addition, our model provides a mechanism to index directly
the feature voxels, therefore it considerably speeds up rendering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image generation-
Display algorithms; 1.3.6 [Computer Graphics]: Methodology and techniques - Graphics data structures and data
types H.5.2 [Information interfaces and presentation]: User interfaces- Theory and methods

1. INTRODUCTION

The recent technological advances in acquisition devices as
well as in computing power have yield to an explosion in
data production. Today, human capacity of generating data,
either by simulation or by measurements, is largely bigger
than our ability to understand them. Data visualization is
an effective way to get insight in the data and extract use-
ful knowledge from them, because the human visual system
constitutes a fundamental part of our intelligence. Accord-
ing to the experts, more than 50% of human brain neurons
are devoted to visual processing!

Visualization started as a recognized research and de-
velopment field in 1987 [MDBS87] and since then, it has
been evolving in an impressive way, in hardware technol-
ogy as well as in software solutions. Many visualization
methods have been developed that can be used in standard
consumer PC’s, something almost unimaginable a decade
ago. However, in the last two years, leading researchers have
expressed their concerns about the future of visualization
[VWO05]. Data production is still growing faster than graph-
ics hardware development and visualization methods. There-
fore, on one hand, improving rendering efficiency to keep in-
teractivity is still a major goal. On the other hand, since clas-
sical visualizations may convey too much information to be
understandable, new visual idioms must be designed to help

(© The Eurographics Association 2006.

users to detect and focus on relevant features without loosing
a global perspective on the context. Finally, new interaction
metaphors must be investigated to help users manipulating
data.

These three goals have been addressed in the bibliography
from different perspective. On one hand numerous papers fo-
cus on accelerating rendering using software [MHB*00] and
hardware optimizations [NMOS5]. On the other hand, focus-
plus-context techniques have been proposed that show differ-
ent parts of the data at different resolutions according to their
degree of interest (DOI) [Fur86] [DGHO3]. Finally, several
works address user interaction in visualization, especially,
user specification of transfer functions [JKMO1] [KKHO1].

In this paper, we explore means of reaching these three
goals by using structural information of the data. Specifi-
cally, we propose to extract a hierarchical model of the inner
structure of the data. We use this model in the visualization
to provide contextual information and to interactively select
specific features to focus on. Moreover, our model provides
a mechanism to index directly the feature voxels, therefore

it considerably speeds up-rendering:
delivered by

www.eg.org

o @’m EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

80 J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets

2. PREVIOUS WORK

The idea of using structural information in volume render-
ing is not new. It has been used to ease the specification of
rendering parameters [MLKO03], [FPTO05], to help animation
and deformation [NSO1] [SSCO03] and to speed up render-
ing computations [HMBGO1] [LMKO3]. We next survey the
previous papers most related to ours. Paying attention to: the
type of structure they propose, how they construct them, if
they can attach voxels to the structure to visit them sepa-
rately from the rest of the volume, and which rendering al-
gorithm they support.

A simple idea to isolate features in rendering is to classify
the volume into boxes so that only the selected boxes are vis-
ited during rendering [PTNOO] [LMKO3]. The main advan-
tage of this strategy is that the spatial ordering of the voxels
inside the boxes is preserved. Puig et al. [PTNOO] compute
the discrete medial axis transform of the inner surface of
blood vessels from magnetic resonance angiographies, and
they extract from it a labeled skeletal model of the cerebral
vascular. They associate to each segment of the skeleton a
volume bounding box. The voxels in the box that do no be-
long to the segment have a zero value. The boxes overlap in
such a way that each voxel may belong to many boxes but
it has a non-zero value in only one of them. Any rendering
approach can be used to render each feature separately, but
rendering simultaneously various features requires a depth
sorting of the bounding boxes. Three-dimensional texture
slicing could be applied, but it would require a specific treat-
ment of the masks which is not addressed in the paper. Li
et al. [LMKO3] propose to keep features into disjoint boxes,
so their relative order can be preserved using an orthogonal
BSP tree. The preservation of separate boxes increases the
number of boxes. Therefore, one feature can correspond to
many boxes. In the paper, it is unclear how this correspon-
dence is managed and how the boxes are structured. Render-
ing is done by 3D texture slicing without problem since the
boxes do not overlap.

Gagvani and Silver [NSO1] extract a topological medial
surface skeleton of articulated bodies using the distance
transform. The skeleton is deformed by users using standard
animation tools. The deformed volume is then reconstructed
about the skeleton using the distance field. This method
is primarily aimed at deforming the volume. It cannot be
used to render separate features, but only the whole recon-
structed volume. This method was later enhanced by Singh
et al. [SSCO03] who designed the VolEdit system. In VolEdit,
skeletons are automatically extracted from the volume us-
ing a parameter-controlled volume thinning algorithm. The
skeleton associates to each skeletal segment a rectangular
bounding box enclosing the segment. The interface of the
application (VolEdit) allows animators to pick segments, and
rotate and scale them. Rendering is done by texture slicing
all the bounding boxes. The main advantage of this approach
is that it does not require the reconstruction of all the vol-

ume. However, at the overlapping between bounding boxes,
texture interpolations are unnecessarily repeated. Moreover,
some artifacts may appear at the redundant texels if alpha
blending is applied in the slices. In a recent paper [WJ06]
on non-linear deformation of volumetric datasets the recon-
struction stage is done during rendering. The authors use
1D-skeletal curves called wires to specify the deformation.
They associate to each voxel of the model an index to its
corresponding wire and the value of voxel’s parameter on
the wire. They render the volume using a GPU implementa-
tion of ray-casting. For each sample on the ray, they compute
a point on the wire indexed by the sample’s nearest voxel,
they deform this point and they use the property of the near-
est voxel to the deformed point to shade the ray sample. The
main drawback of this approach is its enormous storage re-
quirement (more than 5 bytes per voxel for only 128 wires).

Mueller et al. [MLKO3] describe a rendering system for
pre-segmented datasets. Instead of having binary tag vol-
umes, they migrate the density range of the features to pri-
vate ranges surrounded by a smooth boundary. This strategy
presents two advantages: first, it reduces the aliasing prob-
lems that may appear at the boundary between two features
[TSH98] [VHN™05], next, it makes easier the specification
of rendering parameters via transfer functions using the new
migrated feature ranges. The authors propose an interface
that shows the hierarchical structuring of the density ranges
(feature map) along with user-defined descriptive labels of
the features. The main drawback of this method is that it
may require more bits per property value than the original
voxel model if there are too much features in the model to
find non-overlapping ranges. The authors do not give details
on the rendering technique they use. However, their system
is conceived to render the volume as a whole, since it doesn’t
have an indexing scheme for the feature voxels. Therefore, in
principle, any algorithm can be used to render it. However, if
view-aligned-splatting [MMI*98] is used and the voxels are
organized in a per-value sorted-list as suggested by Ihm et
al. [IL95], the bucket construction stage is efficient, because
a binary search of the selected feature range can be applied.

Ferré et al.’s work [FPTOS] is inspired in the Informa-
tion Theory field [GS88]. They propose to construct a ren-
dering decision tree that represents the hierarchical process
of decision done by users at the specification stage of ren-
dering. They classify the data into categories and construct
three run-length encoding of the voxel model according to
these categories. The traversal of the rendering decision tree
for a specific query gives as output the list of selected cat-
egories. The run-length encoding is then traversed, all the
codes are checked and only those that correspond to selected
categories are processed. This strategy has the overhead cost
of the run-length traversal, but it considerably reduces the
number of visited voxels. It supports object-aligned splat-
ting and it can be used for the construction of 3D textures
and depth-sorted buckets for view-aligned plane splatting.

(© The Eurographics Association 2006.

J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets 81

Finally, the RTVR system [MHO1] uses an intermediate
array of slice-sorted RenderLists for each object that stores
the voxels of the slices that are relevant for rendering. The
structure must be updated if the selection is modified. It re-
quires the position of the non-empty samples to be stored,
via a de-referencing mechanism, so it sacrifices the bene-
fit, in terms of memory requirements, of the implicit spa-
tial arrangement of the voxel model. The RenderLists are
also used in the Two-level rendering proposed by Hauser et
al. [HMBGO1] [HBHO3] that combines object-order traver-
sal and image-order ray-casting. The RenderLists are essen-
tially designed for rendering. They are simple features lists
and not a true abstract model of the volume structure.

The existing approaches either do not provide a hierarchi-
cal structure of the data or they are restricted to a specific
type of structure (topological skeleton [SSCO03] or decision
query [FPTO5]). The feature map structure is more general,
but it does not provide a direct access to the feature voxels.
Feature isolation with bounding boxes [PTNO0O], [LMKO03],
[SSCO03] reduces the rendering computations but it still re-
quires visiting empty voxels in the boxes and it may give
problems if boxes overlap. Our approach is based on a gen-
eral purpose structuring of the volume and a voxel indexing
scheme that does not require bounding boxes.

3. THE SEMANTIC LABELS HIERARCHICAL
MODEL

3.1. Definition

Our approach is based on a hierarchical model of the in-
ner structure of the data. We define a feature as a rele-
vant structure of the dataset, this is a structure that users
may query for rendering at some time. Let f,; be a the
feature representing all the relevant structures of the vol-
ume. Let F = {f;,i = 1...n} be the set of n semantical fea-
tures identified in a voxel model V including f,; (such that
Ali: 1 <i<n: fi= fa). We define [as a labelling func-
tion that associates to any voxel v of V and any feature f;
of F a boolean value indicating if v belongs to the feature:
I(v, f;) = {v € f;}. We define the Set of Relevant Voxels of
V (SRV(V)) as set of voxels of V that belong to one or
more features of the model: Vv :v € SRV (V) : {3f;: fi €
F : (v, f;)}. The complementary set of non relevant voxels
SNRV (V) is defined as: SNRV (V) =V — SRV (V). Finally,
we define SOV (f;) as the Set Of Voxels belonging to a fea-
ture f;. Thus, Yv : v € SOV(fi) : [(v, fi). Observe that the
SOV s are not disjoint. Moreover, a SOV can be completely
included into another, indeed, the SOV of f,;; includes all the
other SOV s. This idea is the basis of our hierarchical repre-
sentation.

Let & be a binary relation between features such that
fi® f;iff SOV (f;) C SOV (f;). The set of features F and the
relation @ define a partially ordered set (poser) that can be
represented with a Hasse diagram [Ski90]. More precisely,

(© The Eurographics Association 2006.

since f,;; is a supremum of the set, the poset can be consid-
ered as a join-semilattice.

The data structure that we derive from these definitions
is an acyclic directed graph (digraph) G that represents
SRV (V), the set of relevant voxels of V. It is composed of
n nodes such that:

e Each node i of the digraph corresponds to a unique feature
fiof F;

e A directed arc a(i — j) exists between two nodes i and j
if f; @ f;, which is same as SOV (f;) C SOV (f;), and no
other node k exists such that f; & f; A f; © f.

e There is a unique node called root(G) to which no arc
arrives.

Therefore, the feature associated to root(G) is fu; in F
such that SOV (f,;;) = SRV (V). The SOV of a node of G is
included in the SOVs of all the nodes of G having an arc
directed to it and, recursively, in the SOV s of the nodes that
have directed arc to those. Nodes from which no arc exits
are called leaf nodes. Finally, the path between two nodes
is unique, because an arc between two nodes cannot exist if
there is an intermediate node between them.

Figure 1: The features digraph.

Each node of the digraph stores information on:

o the label of the corresponding feature f;
e the SOV (f;)
e focus+context information

Figure 1 illustrates the definition of the digraph.

We next describe the representation of the SOVs and of
the focus+context data.

82 J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets

3.2. Indexing mechanism of the SOVs

The representation of the SOV s associated to the nodes pro-
vides access to all its voxels. In order to avoid redundancies
we differentiate between leaf and intermediate nodes.

Let the set of voxels that belong to a certain set
of features be defined as: voxels(fi...fn) = {W:v €
SRV(V) : ANLLil(v,fi)}. And let the set of voxels that
uniquely belong to a certain set of features be defined as:
uniqueVxl(fi...fn) ={Vv:v Evoxels(fi...fu): {Vj:j#
L. #nly, fi)}}

Accordingly, the root(G) only stores uniqueVxI(fy;).

Moreover, the intermediate nodes store only the voxels
that belong to its associated feature (f,,4.) and also be-
long to the features of all ascendent nodes (fparent, - - far),
uniqueVxl(fuode, fparent, - - - » fair). Consequently, intermedi-
ate nodes store only the voxels of their SOV that do not be-
long to any descendent node, and provide access to all their
other voxels following the descendent nodes. Therefore, in
the particular case of features defined as a union of other
features, no voxels are stored at intermediate levels.

uniqueVxl(fp)

| uniqueVxI(fp,fq) || voxels(fp,fq,fr) || uniqueVxI(fp,fr) |

Figure 2: Implementation of SOV to avoid redundancies.

Finally, the leaf nodes store voxels in different ar-
rays: one for the voxels that belong only to that feature,
uniqueVxl(fieaf, fparent, - -, fan) and one for each set of
voxels shared with other leaf nodes. In particular, in Figure
2, node f; points to uniqueVxI(fy, fp) and voxels(fy, fp, fr)-
Thus, the SOV of a leaf node is implemented as an array
of pointers to these different arrays and therefore the vox-
els representation in the digraph is unique. Again, we have
designed this structure to avoid redundancies between non-
disjoint SOVs of leaf nodes.

Another issue related to the presented model is how the
SOVs are codified. The simplest approach is to store the
coordinates of each involved voxel. As it will be shown in
the Section 5, this encoding may require a great amount of

memory. However, since the SOV s can be stored in different
files, efficient out-of-core traversal strategies can be applied.
Moreover, some compression techniques such as run-length
encoding could be applied. This has not been addressed in
this work.

3.3. Focus+context data

The proposed model provides a general purpose structuring
of the volume. It can be used to emphasize more or less
given features during rendering. We define the selection of
features of F' that are considered relevant for rendering at a
given instant as Sel(F). Let the degree-of-interest of a fea-
ture doi(f;), f; € Sel(F) be a value in a discrete range R.
The range represents the number of level-of-details that can
be used to render the features of the model. We define the
set of rendering parameters used to render a feature for a
given degree-of-interest as: vis(fi, r), f; € Sel(F),r € R. Fi-
nally, for each rendering, users must specify: the selection,
the degrees-of-interests of all the features and the visual pa-
rameters. We define this specification as a query Q such that

0 ={Vf;: f; € Sel(F) : (doi(f;) x vis(f;,doi(f;)))}

The definition of a query allows us to apply focus-plus-
context techniques, because each feature is rendered at the
level-of-detail corresponding to its degree-of-interest. In the
particular case of a binary range of dois, features with the
highest range are the focus, rendered at full resolution. Fea-
tures with the lowest range are the context. These feature
may be rendered without even accessing to their voxels by
using graphical symbolical representations. In order to apply
these techniques, each node stores focus and context related
data (see Figure 1) such as transfer functions, polygons and
lines.

3.4. Construction

Given a set of features, the construction of the proposed
model involves three different tasks: (1) to define the la-
belling functions (2) to create the hierarchy and bind the
SOV to the corresponding nodes, and (3) to fill the fo-
cus/context data. The naive approach to create the digraph
consists of sequentially creating all the SOVs. For each
voxel, we check if it has already been inserted in the voxel
array of another SOV . If it is not the case, the voxel is directly
inserted in its SOV. Otherwise, the voxel is shared by two or
more SOVs. In this case, we get the list of SOV's to which
the voxel belongs and eventually we have to split some of
them and recompute the indexes to voxel arrays. Once all
the SOVs and voxel arrays are computed, the hierarchy is
created according to the definition of the digraph. A node
is created for every SOV and directed arcs are created be-
tween nodes such that the SOV of one node totally includes
the SOV of the other.

In practice, this brute force strategy may be simplified de-
pending on the set of features. In Section 5, we show two dif-

(© The Eurographics Association 2006.

J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets 83

ferent applications of our structure. In the first example, we
define the features as the segments of a simplified topolog-
ical skeleton. In this case, the labelling functions are based
on the distance map of each skeleton segment, the hierar-
chy is automatically extracted from the skeleton and the fo-
cus+context information contains a wire-frame representa-
tion of the skeleton automatically computed from it. In the
second example, we define the features as anatomical re-
gions of a human brain. The labelling functions are defined
after the voxel model has been classified, a fairly complex
process, assisted by a physician and that uses property val-
ues, voxel positions and an auxiliary atlas model. The out-
put of the classification is a labeled voxel model such that
each voxel belongs to a unique class, plus a tree that indi-
cates relationships of inclusion between classes. This tree is
used to define our hierarchy. Finally, the focus+context data
are wire-frame representations of edges between the features
bounding boxes.

4. RENDERING

The visualization stage implies three steps. First, the query is
defined through an interactive widget which shows the con-
text data stored in the digraph G (see Color Plate 1.b). Sec-
ond, the model is traversed in order to compute the selected
voxel set to be rendered, SOVy,; = {SOV (s),Vs € Sel(F)}.
Finally, all the SOVs of SOV, are rendered according to
their visual parameters and degree of interest.

It should be noted that voxels may be sent to the rendering
pipeline as many times as selected nodes to which they be-
long. The user-defined rendering preferences determine how
these shared voxels should be rendered: if one of the fea-
tures to which the voxels belong is preferred or if a fusion
of optical properties should be realized. Since shared voxels
are stored in separate arrays indexed by the SOV's, it is not
necessary to filter these special cases at each voxel. When
a SOV is traversed, the rendering preferences are set once,
at the beginning of each separate array indexed by the SOV
Moreover, when no fusion of optical properties is applied at
the shared voxels, once a shared array has been visited, it
can be marked as so, in order to avoid revisiting it through
another of its SOV's. In the particular case of a digraph con-
structed on the basis of a classification of the voxel values,
voxels at the boundary between two features are assigned
to the two corresponding SOV's, which allows us to apply
smoothing boundary strategies during rendering.

Figure 3 summarizes this procedure. A traversal through
the digraph G is performed to obtain all the nodes f; of the
selection Sel(F), by using an iterator. Depending on doi(f;)
of the node, SOV (f;) may be traversed or not. The traversal
is realized if vis(f;,doi(f;)) requires accessing to the voxels.
Otherwise the node is rendered according to the context data.
In the former case, for each voxel array of the SOV we check
if it is necessary or not to visit it. If so, we traverse all the
voxels to render them according to vis(f;, doi(f;)).

(© The Eurographics Association 2006.

It should be observed that our traversal does not preserve
the order of the original voxel model, so it cannot be used for
object-aligned splatting. Thus, a standard GL-based zbuffer
approach is followed to keep the correct depth order in the
visualization (see Figure 3). It must be noted that on the
traversal of the digraph G, the context data of all nodes can
be rendered, without increasing too much the computational
cost of the z-buffer process, since accessing to the context
data does not necessarily require traversing the voxels.

selNodes = digraph->getSelectedNodes (query);

foreach node in selNode

{
doi = query->getDoi (node->label);
vis = query->getVis (node->label, doi);

data = node->getFocusContextData (doi) ;

if (doi->visitVoxels())

{
foreach pArray in node->getSOV ()

{
if (not pArray->alreadyVisited())
{

foreach voxel in pArray->getVoxels ()

{

renderVoxel (voxel, doi, vis, data);

}
pArray->updateVisited();

}
} else {
renderNode (node, doi, vis, data);

Figure 3: Zbuffer traversal of the digraph G.

The main drawback of the z-buffer approach is that it re-
quires a depth pre-ordering in order to keep correctly the
translucently. Alternatively, an image-aligned sheet-buffered
splatting is applied, that eliminates this drawback by pro-
cessing the selected voxels with slabs, or sheet-buckets,
aligned parallel to the image plane. Then, at the rendering
stage, the digraph G is traversed to insert the voxels of the
SOVocus into the buckets. The traversal algorithm is very
similar to the one shown in Figure 3. Finally, after the traver-
sal the composition of all sheets in FTB order is performed.

5. RESULTS

We have implemented and tested the different algorithms in
our software platform Hipo with two datasets: Teddy bear
and MR-brain. In both cases, the ranges of the doi() are bi-
nary: [focus,context]. Moreover, the user queries always in-
clude all the available features, classified as focus or context.

84 J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets

The resulting image are obtained with two rendering algo-
rithms: z-buffer and view-aligned-splatting. In all the cases,
the focus is rendered using different transfer functions for
each feature, and the context is rendered as wireframes.

The first dataset is based on a simplified topological skele-
ton of a Teddy bear (see Color Plate 1). The original dataset
has been labeled with features corresponding to a simpli-
fied version of its topological skeleton. This correspondence
has been computed automatically from the proximity of each
voxel to the skeleton segments plus some user adjustments
to profile the joints. Afterwards, the digraph representing
the features has been extracted from the labeled model and
the SOV's of each feature have been computed. The skele-
ton joints are represented by nodes without SOV and they
are arcs with all the nodes representing connected skeleton
segments. The direction of the arcs is determined by the in-
verse kinematics (IK) structure. The focus and context data
stored at these nodes contain the coordinates of the joints.
The skeleton segments are nodes with SOV and they store
the transfer functions in the focus and context data. Finally,
all the model has been presented to the user as shown in
Color Plate 1.a. In Color Plate 1.b we show the DOI widget
offered to the user, where some of the segments are selected
as focus (in yellow). Color Plate 1.c shows the rendering of
all the features according to their doi().

The second dataset is based on pre-classified anatomical
structures of a MRI brain (see Color Plate 2). The original
dataset was already labeled with features corresponding to
35 regions. Thus, the digraph representing the features and
their hierarchy has been automatically extracted as indicated
in Section 3.4. Like the first dataset, the focus and context
data of each node contained the different transfer functions
to apply to each region. In addition, these data also contained
the coordinates of the center of each spatial region. Thus, it
was possible to graphically represent the digraph of features
related to anatomical regions. Finally, the steps shown in the
Color Plate 2 are the same as the ones realized with Teddy
bear dataset: Color Plate 2.a shows the full model using the
different transfer functions, Color Plate 2.b shows the DOI
widget and Color Plate 1.c shows the rending of all features
according to their doi().

Tables 1 and 2 show the times needed to perform different
renderings of the Teddy bear and the MRI brain datasets.
All tests were run on an AMD Athlon(tm) 64 Processor
3200+ with IMB of RAM and a NVidia GeForce 6600 PCI-
E 256MB, inside a window with a viewport of 775x720 pix-
els. The columns express the percentage of selected voxels,
the number of projected voxels (#voxels), the cost in time of
filling the splatting buckets (S.Buckets), the cost of splatting
the buckets’ voxels (S.Render) and the rendering cost us-
ing a z-buffer algorithm (ZBuffer). The times into brackets
in the rows indicate the time consumed to realize the same
rendering operation without using the digraph, this is veri-
fying for each voxel if is selected or not. In table 1, there

are two sections in the rows, one for a low resolution dataset
of the Teddy bear (1283), and the other for the full resolu-
tion dataset (512%). The MRI brain dataset has a geometry
of 190x220x178 voxels.

Bear | #voxels | S.Buckets | S.Render | ZBuffer
SMALL DATASET 1283
100% 357,633 0.15 0.13 0.26
[0.21] 0.36
80% 324,124 0.13 0.12 0.24
[0.21] 0.33
60% 288,900 0.12 0.11 0.21
[0.19] 0.32
40% 195,720 0.08 0.10 0.14
[0.16] 0.24
LARGE DATASET 512
100 % 24,842,270 10.2 133.94 18.27
[15.22] 23.57
80% | 20,899,916 8.82 103.93 15.19
[14.49] 21.93
60% 14,925,731 6.11 75.42 10.83
[13.54] 19.97
40% 9,916,539 4.05 52.2 7.23
[11.86] 15.58

Table 1: Times in seconds to render a simplified topologi-
cal skeleton dataset (Teddy bear): 100% means all the non-
empty voxels, 80% means non-empty voxels without the right
leg, 60% means non-empty voxels without both legs and 40%
means non-empty voxels without the body.

Brain #voxels S.Buckets | S.Render | ZBuffer
100% | 1,366,905 0.56 0.66 0.83
[0.97] 1.30

50% 700,395 0.29 0.62 0.52
[0.62] 0.89

10% 114,033 0.05 0.58 0.49
[0.61] 0.86

Table 2: Times in seconds to render a pre-classified anatom-
ical structures dataset (a MRI brain): 100% means all the
non-empty voxels of the brain, 50% means non-empty vox-
els of the right brain plus cerebellum, 10% means non-
empty voxels of the left cerebral exterior and right cerebel-
lum structures.

In summary the results show that the model allows better
rendering performance: (1) for large datasets, observe how
the ratio of S.Render using the digraph vs. not using it in-
creases in all cases from the small to the large Teddy bear
datasets; (2) for the small focus renderings, observe how the
same ratio also increases in each dataset as the percentage of
selected voxels decreases.

(© The Eurographics Association 2006.

J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets 85

6. CONCLUSIONS

We have designed and implemented an abstract hierarchical
model that provides a symbolical representation of various
aspects of the inner structure of the datasets such as topol-
ogy and functional distribution. Our model allows users to
interactively select focus features of the data for rendering
while preserving context information through the visualiza-
tion of the skeleton. Moreover, our voxel indexing scheme
provides means of efficiently access to the voxels of a se-
lected feature, reducing the computational cost of rendering.

This work continues in several directions. First, in our cur-
rent implementation, we have only tested two degrees of in-
terest. We plan to add more degrees and to investigate means
of smoothing the transition between different levels of detail
in a same rendering. In addition, we want to explore the use
of our model in volume animation applications, when the di-
graph represents the topological skeleton of the data. Given a
user-defined geometrical transformation to apply to a part of
the model, the corresponding SOV s and voxel arrays must be
recomputed and the digraph arcs updated. We are currently
analyzing how to perform this task efficiently. The other ap-
plication in which we plan to continue working is the inter-
active classification of the datasets. Users define the set of
materials that are inside the model; a first automatic classifi-
cation is performed; the digraph is computed and rendered.
Users can interactively refine this classification playing with
the focus+context parameters and specifically with the way
shared voxels are combined during rendering. Depending on
the combination preferred, a voxel can be removed from a
SOV and the digraph arcs updated. Our aim is to explore the
usability and effectiveness of this classification.

7. ACKNOWLEDGEMENTS

This work has been funded by the project MAT2005-07244-
C03-03 from the Ministerio de Educacién y Ciencia and the
spanish research network IM3:Imagen molecular y multi-
modalidad from the Instituto de Salud Carlos III.

References

[DGHO3] DOLEISCH H., GASSER M., HAUSER H.: In-
teractive feature specification for focus+context visualiza-
tion of complex simulation data. In Proceedings of the 5t
Joint IEEE TCVG - EUROGRAPHICS Symposium on Vi-
sualization (VisSym 2003) (2003), pp. 239-248.

[FPTO5] FERRE M., PUIG A., TOST D.: Decision trees
for accelerating unimodal, hybrid and multimodal render-
ing models. The Visual Computer (2005), 305-313.

[Fur86] FURNAS G. W.: Generalized fisheye views. In
CHI86: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems (New York, NY, USA,
1986), ACM Press, pp. 16-23.

(© The Eurographics Association 2006.

[GS88] GOODMAN R., SMYTH P.: Decision tree design
from a communication theory standpoint. /IEEE Trans. on
Information Theory 34,5 (1988), 979-994.

[HBHO3] HADWIGER M., BERGER C., HAUSER H.:
High-quality two-level volume rendering of segmented
data sets on consumer graphics Hardware. In IEEE Vi-
sualization "03 (2003), IEEE Computer Society Press,
pp. 40-45.

[HMBGO1] HAUSErR H., MRroz L., BiscHl G.,
GROLLER M.: Two-level volume rendering. [EEE
Trans. on Visualization and Computer Graphics 7, 3
(2001), 242-252.

[IL95] 1InMm I., LEE R.: On enhancing the speed of splat-
ting with indexing. In IEEE Visualization 95 (1995),
IEEE Computer Society Press, pp. 69-76.

[JKMO1] JANKUN-KELLY T., MA K.-L.: A study of
transfer functions generation for time-varying volume
data. In Proceedings of the Joint IEEE TCVG and Eu-
rographics Workshop on Volume Graphics 2001 (2001),
Mueller K., Kaufman A., (Eds.), IEEE TCVG and Euro-
graphics, Springer-Verlag, pp. 51-68.

[KKHO1] KNiss J., KINDLMANN G., HANSEN C.: Inter-
active volume rendering using multi-dimensional transfer
functions and direct manipulation widgets. In Proceed-
ings of the conference on Visualization 2001 (2001), IEEE
Press., pp. 255-262.

[LMKO3] L1 W., MUELLER K., KAUFMAN A.: Empty
space skipping and occlusion clipping for texture based
volume rendering. In IEEE Visualization 2003 (2003),
pp. 317-324.

[MDB87] McCoRrMICK B., DEFANTI T., BROWN M.:
Visualization in scientific computing. ACM Computer
Graphics 21, 6 (1987).

[MHO1] MRoz L., HAUSER H.: RTVR: a flexible java li-
brary for interactive volume rendering. In /EEE Visualiza-
tion’01 (2001), IEEE Computer Society Press, pp. 279—
286.

[MHB*00] MEISSNER M., HUANG J., BARTZ D.,
MUELLER K., CRAWFIS R.: A practical evaluation of
popular volume rendering algorithms. In /IEEE Visualiza-
tion’2000 (2000), pp. 81-91.

[MLKO3] MUELLER K., LAKARE S., KAUFMAN A.:
Volume exploration made easy using feature maps. In
Workshop on Scientific Visualization (2003).

[MMI*98] MUELLER K., MOLLER T., II J. E. S,
CRAWFIS R., SHAREEF N., YAGEL R.: Splatting errors
and antialiasing. IEEE Trans. on Visualization and Com-
puter Graphics 4,2 (1998), 178-191.

[NMO5] NEOPHYTOU N., MUELLER K.: GPU acceler-
ated image aligned splatting. In Volume Graphics (2005),
Fujishiro I., Groller E., (Eds.), pp. 197-205.

86 J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets

[NSO1] N.GAGVANI, SILVER D.: Animating volumetric
models. Graph. Models 63, 6 (2001), 443-458.

[PTNOO] PuIiG A., TosT D., NAVAZO M.: A hybrid
model for vascular tree structures. Springer Verlag Com-
puter Science, Eds. W. de Leeuv, R. Van Liere, 2000,
ch. Data Visualization, pp. 125-135.

[Ski90] SKIENA S.: Implementing Discrete Mathemat-
ics: Combinatorics and Graph Theory With Mathematica.
Addison-Wesley, 1990.

[SSC03] SINGH V., SILVER D., CORNEA N.: Real-
time volume manipulation. In Volume Graphics (2003),
pp- 45-52.

[TSH98] TIEDE U., SCHIEMANN T., HOHNE K.: High
quality rendering of attributed volume data. Proc. IEEE
Visualization (1998), 255-262.

[VHN*05] VEGA F., HASTREITER P., NARAGHI R.,
FAHLBUSCH R., GREINER G.: Smooth volume rendering
of labeled medical data on consumer graphics hardware.
In Proceedings of SPIE Medical Imaging 2005 (2005),
pp. 13-21.

[vWO05] VAN WK J.: The value of visualization. In /IEEE
Visualization’05 (2005), IEEE Press, pp. 76-86.

[WJ06] WALTON S., JONES M.: Volume wires: a frame-
work for empirical non-linear deformation of volumetric
datasets. The Journal of WSCG 14 (2006), 81-88.

(© The Eurographics Association 2006.

J. Campos & A. Puig & D. Tost / Efficient focus+context visual exploration of volume datasets 87

(b)

Color Plate 1: the simplified topological skeleton dataset (Teddy bear).

(d)

(© The Eurographics Association 2006.

Color Plate 2: the pre-classified anatomical structures dataset (a MRI brain).

