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Abstract

The Curvature Scale Space (CSS) technique has been used in conjunction with Hermite curves for automatic fitting
of digitised contours at multiple scales.
CSS is a powerful contour shape descriptor which is expected to be in the MPEG-7 standard. A parametric
representation of the input contour is convolved with Gaussian functions in order to obtain multi-scale descriptions
of the contour. Curvature can be computed directly at each point of the smoothed contours. As a result, a set of
curvature zero-crossing points can be recovered from each smoothed contour.
Hermite curves were used since each Hermite curve is defined by two endpoints and the tangent vectors at those
points. No points external to the input contour are required for Hermite curves. Hermite endpoints are defined
as consecutive curvature zero-crossing points extracted at multiple scales using the CSS method. Hermite tangent
vectors can also be determined using the CSS technique. The only data stored are the endpoints and the tangent
vectors needed by the Hermite curves in order to arrive at an approximate reconstruction of the original contour.
Approximation Error and Compression Ratio are computed at each scale. The graph of compression ratio as a
function of approximation error is smoothed to remove noise and small fluctuations. The bending point of that
function is then defined as the largest maximum of its second derivative. The bending point can be considered
as the boundary between the mostly vertical and the mostly horizontal segments of the graph. It can be used for
automatic selection of an optimal scale.

1. Introduction

The CSS image has been used for contour shape represen-
tation and feature extraction at multiple scales 13. It is a
powerful contour shape descriptor which is expected to be
in the MPEG-7 standard. It was shown that the CSS image
uniquely represents a 2-D contour modulo a rigid motion 8.
The CSS method has also been extended to space curves.
That generalisation is referred to as the torsion scale space
representation 9; 10.

Existing techniques for contour data reconstruction suffer
from a number of shortcomings. Polygons have been used to
approximate the shape of free-form contours by several re-
searchers 14; 1; 6. The vertices of the approximating polygons
are then stored for later reconstruction of the shape. This
approach works best when the corners of the input shapes
are detected and chosen as polygon vertices. Robust corner
detection is itself a challenging problem that needs to be

addressed first. Another problem with polygon approxima-
tion is that polygons are not suitable for description of free-
form contours, and would therefore require a large number
of sides for a good approximation. A spline approach would
yield a better approximation using less data. Fourier descrip-
tors 15; 16 are another class of methods which can be utilized
for contour data reconstruction. The first k Fourier coeffi-
cients can be computed and stored for later reconstruction
of the contour. Naturally, a larger k yields a better recon-
struction. A shortcoming of Fourier descriptors is that a large
number of them will be needed to obtain an accurate recon-
struction of the input contour. Furthermore, it is not suited to
CAD applications. An algorithm by Schneider 17 fits splines
to digital contours but the procedure used for control point
selection is quite ad hoc and will not, in general, yield the
best results.

Applications of this technique include efficient contour
data compression as well as Computer Aided Design. It is
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usually assumed in CAD work that the user will supply all
the control points required to generate the desired shapes. In
this case, the user will have to start the design work from
scratch. However, often the user may wish to start from a
known shape which exists in digital form and modify that to
obtain the final desired shape. The proposed technique will
enable the user to obtain a spline approximation to that start-
ing digital shape. The control points can then be adjusted by
the user to produce the desired shape.

This paper presents a new method based on the Curva-
ture Scale Space technique for automatic fitting of digitised
contours. This technique utilises the CSS method to recover
curvature zero-crossings and tangent vectors at those zero-
crossings which are then used for Hermite curve fitting.

Section 2 presents a brief review of spline fitting tech-
niques. Section 3 contains a short introduction to the CSS
method. Section 4 is on contour data reconstruction through
CSS and Hermite curves. Section 5 discusses the computa-
tion of the approximation error and the compression ratio at
multiple scales. Section 6 presents the results and discussion,
and section 7 contains the concluding remarks.

2. Spline Fitting Techniques

Spline fitting techniques 2; 3 have been used widely in com-
puter graphics, computer vision and image processing. They
are useful since they can model free-form shapes in a com-
pact way: A relatively small number of points and/or tangent
vectors are sufficient for accurate reconstruction of the orig-
inal shape.

A number of spline fitting techniques with different prop-
erties are available. The most common of these are the fam-
ily of parametric cubic curves. This family consists of three
major types of curves:

Hermite curves Defined by two endpoints and two end-
point tangent vectors.

Bézier curves Defined by two endpoints and two other
points (not on the contour) which control the endpoint tan-
gent vectors.

B-splines Defined by four control points (not on the con-
tour).

3. Curvature Scale Space

The curvature scale space technique is suitable for recov-
ering invariant geometric features (curvature zero-crossing
points and/or extrema) of a planar curve at multiple scales.
To compute it, the curve Γ is first parametrised by the arc
length parameter u. This yields two coordinate functions:

Γ(u) = (x(u);y(u)):

Parametrising a contour by the arc length parameter is equiv-
alent to travelling along that contour and sampling it at

equal-sized intervals. An evolved version Γσ of Γ can then
be computed 13:

Γσ = (X(u;σ);Y(u;σ))

where

X(u;σ) = x(u)
g(u;σ)

Y (u;σ) = y(u)
g(u;σ)

where 
 is the convolution operator and g(u;σ) denotes a
Gaussian of width σ. Convolution of a function with a Gaus-
sian filter produces, at each point of that function, a weighted
average of neighboring points with the weights decreasing as
one moves away from the centre of convolution. Note that σ
is also referred to as the scale parameter. The process of gen-
erating evolved versions of Γ as σ increases from 0 to 1 is
referred to as the evolution of Γ. This technique is suitable
for removing noise from and smoothing a planar curve as
well as gradual simplification of its shape 7; 12.

In order to find curvature zero-crossings or extrema from
evolved versions of the input curve, one needs to compute
curvature accurately and directly on an evolved version Γσ
of that curve. Curvature κ on Γσ is given by:

κ(u;σ) =
Xu(u;σ)Yuu(u;σ)�Xuu(u;σ)Yu(u;σ)

(Xu(u;σ)2 +Yu(u;σ)2)
1:5

where

Xu(u;σ) =
∂

∂u
(x(u)
g(u;σ)) = x(u)
gu(u;σ)

Xuu(u;σ) = ∂2

∂u2 (x(u)
g(u;σ)) = x(u)
guu(u;σ)

Yu(u;σ) = y(u)
gu(u;σ)

and

Yuu(u;σ) = y(u)
guu(u;σ):

Note that gu and guu denote the first and second derivatives
of g(u;σ) with respect to u. The function defined implicitly
by κ(u;σ) = 0 is the CSS image of Γ. Figure 1 shows the
coastline of Africa. Figures 2-4 show the evolution of Africa.
Figure 5 shows the CSS image of the contour shown in figure
1. In the CSS image, the horizontal axis corresponds to the
arc length parameter on the input contour, and the vertical
axis corresponds to the scale parameter which controls the
degree of smoothing applied to the input contour. Each of the
arches in the CSS image corresponds to a pair of curvature
zero-crossing points on the input contour. As the contour is
smoothed, that pair will gradually move closer and eventu-
ally merge and disappear. This event generates the peak of
the corresponding arch in the CSS image.
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Figure 1: Test contour: Africa
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Figure 2: Africa smoothed at σ = 4
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Figure 3: Africa smoothed at σ = 8
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Figure 4: Africa smoothed at σ = 16

Figure 5: Curvature Scale Space image of Africa

4. Contour Data Reconstruction through CSS and
Hermite Curves

This section explains how contour data reconstruction can
be achieved at multiple scales through a combination of Her-
mite curves and the CSS technique.

Hermite curves were chosen since they do not require any
points external to the input contour. Each Hermite curve seg-
ment requires two endpoints and the tangent vectors at those
endpoints as input. All of these can be supplied automati-
cally and robustly by the CSS method at multiple scales.

Suppose that P(xp;yp) and Q(xq;yq) are the endpoints of
a Hermite segment. Assume that u(xu;yu) and v(xv;yv) are
the tanget vectors at P and Q respectively. The Hermite seg-
ment is given by the following equations 3:
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x(w) = (2w3
�3w2 +1)xp +(�2w3 +3w2)xq

+ (w3
�2w2 +w)xu +(w3

�w2)xv

y(w) = (2w3
�3w2 +1)yp +(�2w3 +3w2)yq

+ (w3
�2w2 +w)yu +(w3

�w2)yv

where w 2 [0;1].

At a specific scale, the input contour is smoothed, and cur-
vature is computed at each point using the formula given
in section 3. This step is followed by the recovery of cur-
vature zero-crossing points. Each pair of adjacent curvature
zero-crossings are used as the endpoints of a Hermite curve.
The advantage of using curvature zero-crossing points is that
they are invariant to many transforms and therefore consti-
tute a natural set of feature points. Furthermore, tangent vec-
tor estimation is more robust at inflection points since the
contour is locally straight at those points. The directions of
the tangent vectors at those endpoints are given by:

(Xu;Yu)

where Xu and Yu are as defined in section 3. Note, however,
that in general the lengths of those tangent vectors have to be
adjusted in order to obtain the optimal shape for the Hermite
curve segment that best fits the input contour segment.

The tangent vector directions must be estimated from a
smoothed contour in order to remove the influence of noise
on the estimation process. However, their lengths are opti-
mised using the original input data since our intention is to
approximate the original contour as best as possible.

This optimization is carried out using an iterative pro-
cedure. The initial tangent vectors are multiplied by a real
number n. Hermite curve fitting then takes place. The av-
erage distance between the Hermite curve segment and the
input contour segment is then defined as following:

The distance from each point on the Hermite curve seg-
ment to the closest point on the input contour segment is
computed. All such distances are added up and divided by
the total number of points on the Hermite curve segment to
determine the average distance.

The value of n is increased by a step size and Hermite
curve fitting is repeated. The average distance is then re-
computed. This process continues as long as the average dis-
tance continues to decrease. When the process terminates,
the optimal length tangents and therefore the optimal Her-
mite curve has been found.

To enhance efficiency, it is possible to start with a rel-
atively large step size, and to reduce it as the process ap-
proaches the optimal value of n. In this approach, if a larger
step size causes the average distance to increase, the process
backtracks and attempts a smaller step size.

Our experiments indicate that this optimisation procedure
does converge to a global minimum. We believe the reason
is that we can initialise the procedure at a point sufficiently
close to the global minimum.

5. Approximation Error and Compression Ratio

When all Hermite curve segments have been fitted, the total
Approximation Error is defined as the mean of the average
distances for all the Hermite curve segments. Furthermore,
Compression Ratio is defined as the size of the data after
compression divided by the size of the original data.

Contour data compression can be carried out at multiple
scales. This allows the user to find an appropriate trade-off
between approximation error and compression ratio. Clearly,
reducing the approximation error would also result in less
compression and more accuracy whereas allowing the ap-
proximation error to rise would result in more compression
and less accuracy.

The graph of compression ratio as a function of ap-
proximation error can be smoothed to remove noise and
small fluctuations. The bending point of that function af-
ter smoothing can then be defined as the largest maximum
of its second derivative. The bending point can be consid-
ered as the boundary between the mostly vertical and the
mostly horizontal segments of the graph. It can be used for
automatic selection of an optimal scale for contour data re-
construction. As a result, the user will not have to set any
parameters in order to use this technique.

6. Results and Discussion

This section presents results on contour reconstruction
through the CSS image. The test data consisted of three con-
tours: Africa, Hokaido, and an abstract design. The Africa
contour can be seen in figure 1. The Hokaido and abstract
contour are shown in figures 6 and 7 respectively.

Reconstruction by spline fitting was implemented next.
Figures 8-11 show the contour reconstruction results for
Africa at multiple scales. As the scale increases, the number
of curvature zero-crossing points and therefore the number
of spline segments decreases, but this is accompanied by an
increase in approximation error. Figures 12-15 show the cor-
responding results for Hokaido and figures 16-19 show the
corresponding results for the abstract design.

Finally figures 20-22 show the graphs of compression ra-
tio as a function of approximation error for Africa, Hokaido,
and abstract design corresponding to spline reconstruction.
They demonstrate that as reconstruction accuracy decreases,
greater compression of the input data can be achieved. The
point marked with a + on the Africa graph indicates the
bending point of that graph which corresponds to the opti-
mal scale for reconstruction.

At a specific scale, the complexity of the fitting process is
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Figure 6: Test contour: Hokaido
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Figure 7: Test contour: abstract design
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Figure 8: Reconstruction of Africa at σ = 3
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Figure 9: Reconstruction of Africa at σ = 6
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Figure 10: Reconstruction of Africa at σ = 12
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Figure 11: Reconstruction of Africa at σ = 25
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Figure 12: Reconstruction of Hokaido at σ = 5
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Figure 13: Reconstruction of Hokaido at σ = 9
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Figure 14: Reconstruction of Hokaido at σ = 15
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Figure 15: Reconstruction of Hokaido at σ = 30
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Figure 16: Reconstruction of abstract design at σ = 1
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Figure 17: Reconstruction of abstract design at σ = 7
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Figure 18: Reconstruction of abstract design at σ = 15
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Figure 19: Reconstruction of abstract design at σ = 22

O(nk) where k is the size of the convolution filter and n is
the number of points on the input contour.

7. Conclusions

A novel technique was presented for automatic fitting of
digitised contours at multiple scales through the curvature
scale space technique used in conjunction with Hermite
curves.

Hermite curves were used since each Hermite curve is
defined by two endpoints and the tangent vectors at those
points. No points external to the input contour are required
for Hermite curves. Hermite endpoints were defined as con-
secutive curvature zero-crossing points recovered at multiple
scales using the CSS method. Hermite tangent vectors were
also determined using the CSS technique. Contour data com-
pression was achieved by storing only the endpoints and the
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Figure 20: Graph of compression-ratio as a function of
approximation-error for spline reconstruction of Africa
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Figure 21: Graph of compression-ratio as a function of
approximation-error for spline reconstruction of Hokaido

tangent vectors needed by the Hermite curves in order to ar-
rive at an approximate reconstruction of the original contour.

Approximation Error and Compression Ratio were also
computed at each scale. The graph of compression ratio as
a function of approximation error was smoothed to remove
noise and small fluctuations. The bending point of that func-
tion was then defined as the largest maximum of its second
derivative. The bending point was considered as the bound-
ary between the mostly vertical and the mostly horizontal
segments of the graph. It was used for automatic selection
of an optimal scale for contour data reconstruction. As a re-
sult, the user will not have to set any parameters to use this
technique.

Note that this approach can also be extended to the 3-D
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Figure 22: Graph of compression-ratio as a function of
approximation-error for spline reconstruction of abstract
design

case since the curvature scale space method has been gener-
alised to 3-D surfaces recently 11; 18; 4; 5.
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