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Abstract

Exploratory data visualization, an idea proposed by Tukey in 1977, is meant to output various types of visualization in order
to make the data more understandable. While visualization researchers have generated many novel solutions to critical and
complex environmental problems, to everyday environmental consultants, some practical considerations have to be made in the
visualization analysis to help stakeholders generate and test hypotheses that would not be possible otherwise. We present two
environmental case studies of using visualization to communicate key findings: constructing stratigraphic units (layered) and
generating groundwater contaminant plumes (volumetric). These real-world cases show that many times visualization alone
may not give us correct answers; often what works is the combination of visualization, domain experts’ knowledge, and inter-
pretation of the visualization solutions. The lack of any of them may lead to faulty conclusions. The first case study illustrates
together how domain experts, visualization, and contamination conditions assisted in interpreting limited and ambiguous litho-
logic data. The second case study emphasizes conceptual and technical understanding and discusses some common factors
affecting 3D interpolation, which again suggests that we must incorporate domain experts’ knowledge as well as analytics into

visualization for defensible decision making.

1. Introduction

Three-dimensional (3D) interactive visualization tools have be-
come increasingly accessible to environmental practitioners, from
the application areas of air and water quality assessment to re-
cent climate changes and interdisciplinary biological sciences.
Fundamental innovative solutions range from multivariate het-
erogeneous data visualizations [JS14] to remote sensing stud-
ies [SDS*17] [CLX*17]. Visualizations have become indispens-
able in assisting environmental practitioners in interpreting and an-
alyzing complex subsurface problems [CRF05] [LC14].

One key concern for these visualization tools is that other than
showing the subject of study in a visually appealing and appropri-
ate form, they should assist in the interpretation and analysis of
spatial data. Tukey defined in 1977 [Tuk77] such visually aid anal-
ysis as exploratory data analysis (EDA), an approach to analyzing
datasets by summarizing data characteristics with visual method.
For example, it is always good to examine residues after an insight
is achieved from a linear model to see if there are systematic errors
due to the analytical process. A deeper visual analysis as such is as-
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sociated with the concept of validation, where visualizations help
scientists ensure the correctness of a conceptual or mathematical
model with the salient aspects of reality [BO04]. Here, environ-
mental practitioners use visualizations to understand model validity
and accuracy.

It is known that a domain expert with no knowledge of visual-
ization can discover a great deal of information in a body of data.
In our case, the domain expert is also a visualization expert, al-
lowing discoveries and errors to be revealed more quickly with
higher certainty, as the expert knows how and what to look for us-
ing the visual tools. This is particularly helpful in a situation in-
volving a large number of potential factors that might influence the
response measure individually or in certain combinations. Visual-
ization tools published in the visualization domain tend to support
general data analysts to search for data in an organized fashion.
How a domain expert searches for goal-driven solutions through
visualization analyses is described in this paper.

In the industry, it is common to pass the data and task to visu-
alization experts and let them handle the analysis. This may some-
times result in not being able to explore the data from the domain
expert’s perspective in the early design stage. Some investigators
may believe there is only one best way to look at the data. Such
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a belief could be due to limited imagination or over-reliance on
the traditional methods developed by others. We show that an it-
erative process of observing the data using visualization must be
introduced to lead to effective and efficient decision making.

In this paper we use two applications to demonstrate the practi-
cal aspects of what to consider when applying visualization anal-
ysis to common environmental problems. The first application is
about constructing stratigraphic units from limited boring lithol-
ogy data. The second application discusses generating conservative
groundwater contaminant plumes for prediction purposes. How to
interpret ambiguous data and balance the factors affecting 3D in-
terpolation are discussed.

2. Related Work

Environmental or geospatial data in general has focused on the mul-
tivariate data exploration paradigm of discovery where scientists
synthesize diverse data sources to find relationships and distribu-
tions [JS14].

Many environmental applications require 3D interpolation of
lithologic/structural data (layered) or concentration data (volumet-
ric). Interpolation is typically conducted with 3D kriging, which
depends on a geostatistical correlation model (i.e., semivariogram)
and is capable of providing some levels of uncertainty analysis
[1S89] [DJ92]. In the case when data are limited, pseudo control
points are often used to help supplement the data, confine and
smooth the spatial distribution, and/or facilitate uncertainty anal-
ysis. There are also cases where control points should be avoided.

The EDA paradigm for environment data analysis is based on
a desire to let the data speak for themselves without biases. The
emphasis is not on creative data display but the use of simple in-
dicators to elicit patterns and produce hypotheses in an inductive
manner, while avoiding potential misleading “atypical” observa-
tions [Tuk77]. As practitioners may differ in expertise, experience,
and objectives, it could be difficult for them to reach a consensus
on what data to use and how to interpret, and vastly erroneous esti-
mates may result from unforeseen conceptual and technical errors.
In many cases, it is not the perfection of an estimate or visualiza-
tion, but its practical utility that matters - essentially a validation
process. For example, for problems with inherent uncertainty, we
found that providing a reasonable range of possible outcomes could
be more defensible and acceptable for stakeholders.

Many researchers study semiotics approach (e.g., the study
of symbols [Ber83]) to encode data to communicate key ideas
or tell stories about data [KWO5]. The challenge is to tell a
“convincing” story of data. Recent novel and fascinating remote
sensing applications that enable capturing multivariate datasets
to study environmental changes [SDS*17] and characteriza-
tion [CDM10] [CLX*17] demand analytical solutions. Comple-
mentary to these novel exploratory paradigms, our work here fo-
cuses on the use of existing techniques to aid validation.

3. Case Studies

This section presents two applications where visualization was in-
tegrated in the analytical activities to assist environmental consul-
tants to revisit modeling results and correct errors. The first case

is constructing stratigraphic units. The whereabouts of the con-
stituents of concern had to be evaluated to judge whether the con-
structed stratigraphic unit supports such a condition. In the second
case of generating the methyl tertiary butyl ether (MTBE) plumes
for model predictions, it is important to capture the potential upper-
limit with a range of estimates that are reasonably but not erro-
neously large.

3.1. Stratigraphic Units - Interpreting Boring Lithology

Background. At a petroleum-hydrocarbons contaminated site his-
torically used for fuel operations along the west coast of USA,
a conceptual site model for the subsurface was developed based
on site-specific boring lithologies and regional geology. The bor-
ing lithologies for deep borings that penetrate several lithologic
units are illustrated in Figure 1. The unconsolidated stratigraphic
units from top (youngest) down include Artificial Fill (sand and
silt), Young Bay Mud (clay and silty clay), San Antonio Formation
(sand), and Old Bay Mud (clay). A clayey unit within the San An-
tonio Formation (SAaguirara, Figure 1) was observed present under
much of the site. This unit functions as an aquitard separating the
San Antonio Formation into an upper unit and a lower unit.
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Figure 1: Deep boring lithologies at the site.

Key analytical task. The question of concern was whether
this clayey unit is continuously present underneath the site. This
was important as a continuous aquitard would likely prevent con-
stituents of concern from entering the lower sandy unit.

Visual validation process to resolve mismatch between model
and source data. From the boring lithologies shown in Figure 1,
the answer is no as it was not identified at three boring locations A,
B, and C (i.e., no cyan segments within the blue intervals). During
validation, multiple testing methods were adopted by the domain
expert through interpolation methods.

The boring lithology data were translated into pinched-out or
zero-thickness zones in this clayey unit around the three boring
locations. These pinched-out zones were visualized by inserting
pseudo lithologic points at the three locations representing the top
and bottom of the clayey unit. The vertical locations of these points
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Figure 2: Pinched-out aquitard at boring locations A, B, and C.
Spacings of the horizontal and vertical axes are 250 feet and 10
feet, respectively
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Figure 3: Continuous aquitard interpreted from other borings.
Spacings of the horizontal and vertical axes are 250 feet and 10
feet, respectively

were to some extent a guess work that is more of art than science,
although considerations were given to follow the spatial trends of
the surrounding borings. The pseudo unit was made very thin (e.g.,
0.2 feet) at boring locations A, B, and C, and a slightly larger cut-
off thickness (e.g., 0.5 feet) was used to visualize the pinched-out
zones (Figure 2).

Groundwater monitoring data, however, seemed to contradict the
pinched-out version of the aquitard. Constituents of concern were
detected in some wells screened in the upper unit of the San An-
tonio Formation but were never detected in wells screened in the
lower unit of the formation. Although arguments could be made
as to why the constituents of concern had not been detected in the
lower unit albeit the pinched-out zones, a further investigation was
deemed necessary to try to reconcile this contradiction.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.

The domain expert’s knowledge plays a key role in the analysis
process. The domain expert provided an in-depth review of avail-
able information and indicated that the lithology data from borings
A, B, and C did not support interpreting a zero-thickness aquitard
within the San Antonio Formation at these locations. These bor-
ings were deep geotechnical borings drilled in the late 1970s, and
the original logs were generalized and hand-drafted. There was no
sample interval information on the original logs, and the limited
number of blow counts (the number of hammering on the rig while
drilling down a sampler) recorded suggested that the sampling was
sparse at depth. In particular, there were few blow counts recorded
near the aquitard depth.

Insights acquired. After coupling visual analysis with domain
knowledge, it was determined that the sampling in these logs was
too sparse to allow picks for the aquitard within the San Antonio
Formation. A new interpretation of this aquitard was conducted
by using only the lithologic picks from other borings, and the
aquitard thickness at boring locations A, B, and C was determined
by the interpolation/extrapolation (Figure 3). Although this rep-
resents only one possibility, decades of monitoring data have not
proven a pinched-out aquitard to be more plausible.

One of the most important things is the way simple visualiza-
tions can support science communication. Even the underlying
sampling data are complex, easy-to-understand visualization has
helped make complex issues more graspable and help the team ar-
rive consensus. The analysis process is iterative. Having a double-
expert who understands both visualization and the application do-
main helps make visualization reach the audience aiming at specific
problems. The work however does not necessarily follow percep-
tual principles. So visual literacy become more and more important
because good visualization could have supported more accurate and
faster understanding of data.

3.2. Groundwater Contamination - Distribution, Mass, and
Prediction

Background. A public well field in the western USA was im-
pacted by MTBE from operations of nearby petroleum products
service stations. The well field, consisting of several production
wells screened in deep aquifers, was shut off since the detection
of MTBE impact in the 1990s. Remedial activities involving ex-
traction of the impacted groundwater at the petroleum operation
facilities had drawn the MTBE plume away from the well field to-
wards the remedial systems. Pressing needs to supply more water
to the region required resuming operation of the well field. Restart
of the operation would draw the MTBE plume back into the well
field because its pumping rate would be much larger than that of the
remedial systems. The proposed solution was to build a treatment
plant to treat the groundwater from the well field before distribut-
ing. The quantity and concentrations of the pumped groundwater
were key factors affecting the scale and treatment capacity of the
proposed treatment plant. In particular, the maximum possible con-
centrations affected the selection of treatment technologies.

Analysis methods. To predict the MTBE concentrations from
the well field and answer what-if type of questions, a groundwater
flow and transport modeling study was conducted, and its success
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Figure 4: Monitoring data used for generation of the expected
case MTBE plume. MTBE concentrations are visualized as color
spheres at the mid-points of well screens. Spacings of the horizontal
and vertical axes are 500 feet and 50 feet, respectively

depended on a reasonable estimate of the distribution and mass of
the ‘initial condition” MTBE plume. The estimate started with se-
lecting a set of monitoring data that contained more data points at
relatively high concentrations. This conservatively selected dataset
used to estimate the initial condition are illustrated in Figure 4.

Visualization solution. The MTBE plume was estimated
through a visual analysis that couples 3-D kriging interpolation
and visualization techniques. The 3-D kriging interpolation tech-
nique was particularly useful as it not only provided a quantitative
estimate of the plume’s distribution and mass, but also enabled an
assessment of the estimate’ uncertainty. Through the assessment of
uncertainty, an acceptable level of confidence can be established
for the ensuing decision-making.

Main observations and insights introduced by visual anal-
ysis. During the visualization analysis, it was noticed that the
kriging-estimated distribution and mass were affected by a num-
ber of factors and could be vastly different [LJLO7]. The analyt-
ical methods used are most similar to the insight-based approach
of Saraiya, North and Duca [SNDO05] in that observations are made
when the domain experts used the tool.

The factors observed through visual analysis include nearly all
analytical stages from grid placements to modeling process.

e Bounding domain and grid spacing. A bounding domain of cer-
tain shape and size and the placement of control points are of-
ten used to artificially “delineate” the plume, as in practice a
plume is rarely 100% delineated in all directions. Grid spacing
was found to determine the resolution of the interpolation and
affects whether the interpolation is overdone or underdone.

e Vertical representation of well concentration. Concentrations
from a traditional monitoring well are usually considered verti-
cally mixed throughout the screen interval. Should the well con-
centration be assigned to the midpoint of the well screen or rep-
resented as a number of points along the well screen? This has

little impact on short-screened wells but may have a large impact
on long-screened wells.

e Nondetects (ND) cut-off level. Nondetects need to be quantified
before being used in kriging interpolation, and are important in
delineating the plume extent as different quantitations lead to
different kriging results.

e Data transformation. Logarithmic transformation is widely used
in the kriging analysis of organic chemical concentrations in
groundwater and soil. Linear or other transformation may result
in vastly erroneous estimates.

Three generated MTBE plumes that cover a plausible range of
the MTBE distribution and mass for input into the groundwater
model are presented in Figure 5. Plume A was the expected case
based on the quarterly monitoring data shown in Figure 4. Plume
B was the expected worst case generated by replacing some of the
data points shown in Figure 4 with historical highest concentra-
tions. Plume C was the upper 95% worst case representing the up-
per 95% confidence limits of Plume B. Figure 6 illustrates the dif-
ference in estimated concentrations through the same cross section
for Plume A and Plume C. The estimated MTBE mass ranged from
several hundreds of kilograms to over one thousand kilograms.
These resulted in a range of predictions for the maximum MTBE
concentrations and breakthrough curves in the to-be-reactivated
well field.

The municipality that owns and operates the well field also made
their own predictions on the maximum MTBE concentrations. Its
predictions were much higher than those presented above, and thus
no easy agreements could be reached between the municipality and
the group of potential responsible parties. The case was later settled
for hundreds of millions of dollars, and the municipality built the
treatment facility and reactivated the well field in late 2010. Pro-
duction rate for the reactivated well field was initially lower than
what was simulated in the model study, but was raised to the simu-
lated rate in less than three years.

A decade later, a retrospective review was conducted to com-
pare past model predictions with actual observations at the well
field. The combined MTBE concentrations from the well field were
compared to model predicted concentrations based on the above-
generated MTBE plumes. The results are presented in Figure 7
and it is clear that the actual concentrations are significantly less
than the predicted concentrations for the expected case plume and
the expected worst case plume (Plume A and Plume B in Fig-
ure 5, respectively). On the contrary, the municipality’s predictions
are unreasonably high. Note that none of the groundwater model
simulations considered biodegradation of the MTBE and thus they
overestimated the MTBE concentrations to be conservative. Also,
the smaller production rate at the beginning of the well field re-
activation would generate an elongated breakthrough curve at a
lower concentration. This check against actual data proved that
the above-described visualization analysis generated conservative
MTBE plumes and reasonably covered the plausible range of the
MTBE impact.

4. Conclusion and Discussion

The case studies presented above demonstrate the utility and value
of applying visualization analysis to environmental problems in-
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Figure 5: MTBE plumes at 5 microgram per liter generated for (A) expected case, (B) expected worst case - using historical highest
concentrations at certain points, and (C) upper 95% worst case. Spacings of the horizontal and vertical axes are 500 feet and 50 feet,

respectively
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Figure 6: Figure 6. Cross sections illustrating the difference in plume concentrations for (A) expected worst case and (B) upper 95% worst
case. The contour unit is microgram per liter and an order of magnitude difference is obvious. Spacings of the horizontal and vertical axes

are 500 feet and 50 feet, respectively
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tion analysis for a specific task, one often has to look beyond the
task and modeling process to obtain a higher level understanding
of the problem and its real-world implications.

The above analyses indicate the needs for visualization experts
and environmental practitioners to work together to develop pro-
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Figure 7: Model Projected versus Actual Concentrations.

volving layered and volumetric interpretations. Visualization anal-
ysis has supported the process of visualizing data, assessing initial
findings, re-interpreting data, adjusting the analysis, and generating
outcomes that meet practical needs. To conduct a good visualiza-
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cedures and build tools for validating against reality. In addition,
We have observed that environmental consultants tend to use col-
oring schemes that are simplistic (e.g., categorical colors varying in
luminance and the use of rainbow colors) and are unfamiliar with
the rules for accurate perception in visualization science. Learning
scientific coloring theories and applying them to their visualization
analyses can help increase their exploration capacity.
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