Volume 0 (1981), Number 0 pp. 1-9

Labs and Framework for 2D Content Manipulation

E. PaquetteT, C. Barré—Briseboisi, J.F. Barrasi, F. S. Boisi, and M. El Ghaouat’

Abstract

Creating and manipulating 2D content is important for computer scientists and requires knowledge in 2D
Computer Graphics and Image Processing. A framework and five labs are proposed to help undergraduate
students in Computer Science curricula to master the theory, algorithms, and data structures involved in 2D
Computer Graphics and Image Processing. The labs provide a good coverage of topics, allow many alternatives,
and can be easily reordered and selected to suit many types of courses. The framework has a working user
interface to view and manipulate 2D content as well as adjust the parameters of the algorithms to implement.
The framework also provides an architecture that hides most of the difficulties of the user interface and simplifies
the implementation of the 2D content manipulation algorithms. Finally, code examples are provided to help the
students in understanding how to use the framework to implement the labs.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-
tion, 1.3.5 [Computer Graphics]: Hierarchy and geometric transformations, 1.3.6 [Computer Graphics]: Graphics

data structures and data types, 1.4.3 [Image Processing and Computer Vision]: Filtering

1. Introduction

The 2D aspects of Computer Graphics (CG) such as vec-
tor primitives, 2D curves, color models, and 2D transforma-
tions are important in creating 2D content. Acquisition and
reproduction of 2D content also requires knowledge of the
Image Processing (IP) discipline. These aspects are of ma-
jor importance since most of the content created, acquired,
reproduced, and visualized is 2D. This is reflected in 2D
tools being integrated directly in popular software such as
Word®) and PowerPoint®). Other popular software such as
Photoshop® and CoreIDRAW(®) are dedicated to the ma-
nipulation of such 2D content.

The knowledge of 2D content manipulation is required in
many contexts: user interfaces, visualization, Web, reports,
presentations, promotional material, CG content, games,
special effects, etc. Typical computer scientists are quite
likely to be involved in creating or manipulating 2D con-
tent in such contexts. This paper thus presents five labs

T LESIA, Software and IT engineering dept., Ecole de technologie
supérieure, Montreal, Canada
! Software and IT engineering dept., Ecole de technologie
supérieure, Montreal, Canada

(© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

that focus on 2D content manipulation. They were devel-
oped for an undergraduate Computer Science audience, re-
quiring some background in mathematics and programming.
There are many ways to teach CG inside Computer Science
curricula [BBCO88, GBK*95, LPBL*94, Wol99]. The pre-
sented labs could be used in various types CG courses, even
though they were first developed for a course on 2D CG and
IP [Paq04]. How the labs could be used in various types of
CG courses is discussed in Section 2.

There are two distinct contributions in this paper: (1) five
labs on 2D CG and IP topics and (2) a 2D CG framework
in which the labs are developed. The labs cover many topics
of 2D CG and IP and allow the students to become famil-
iar with the related theory, algorithms, and data structures.
The framework presents a single system in which both 2D
CG and IP algorithms can be implemented. It has a working
user interface that allows interactive adjustment of the algo-
rithms parameters and that allows the students to focus on
implementing the algorithms.

2. Learning Objectives

The students should be able to create and manipulate 2D
content in an effective manner. The labs thus focus on get-
ting the students to understand the theory, algorithms, and

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

data structures of 2D CG and IP. To achieve this, the five
labs should cover as many topics of 2D CG and IP as pos-
sible. In Section 4.1, we will see that the labs have a quite
good coverage of both CG and IP, as well as raster and vector
graphics.

The objectives of understanding the theory, algorithms,
and data structures of 2D CG and IP have their place in
many different types of CG courses. As it was mentioned,
the labs are completely applicable to courses that deal with
2D CG and IP, yet many of the labs can also be used in
other types of courses. In the traditional course on 3D CG,
many algorithms are first presented in 2D and then gener-
alized in 3D, such as geometric transformations and para-
metric curves. For courses that mix 3D CG and human com-
puter interface, 2D content is largely applicable to the user
interface and topics such as curves and transformations here
again can serve as a basis that is later generalized in 3D. And
finally, courses on IP could directly use the labs on IP topics
(see Section 4.1).

3. Learning Outcomes

While the students work on the labs described in Section 4.1,
they get to understand various 2D CG and IP topics:

e color: models, sampled representation, conversion, inter-
polation

o seed fill: pixels, boundary fill, flood fill

e image filtering: spatial domain filters

e 2D parametric curves: Bezier, Hermite, B-Spline, con-
vex hull

e 2D affine transformations: translation, rotation, scaling,
shearing, composition

While realizing the implementation of the labs, they get to
understand data structures at the basis of 2D CG and IP:

e 2D points and vectors

e 3D vectors (colors)

e matrices

e color representations with 8 bits samples per channel

Finally, the labs are composed of an implementation and a
report where they get to understand many parameters that
control the algorithms and to understand how these algo-
rithms could be used in a broader context.

4. Explanations

A framework [J2D03] that allows 2D CG and IP to be coded
in a single application was developed. The framework does
not present a working system, such as an image editing pack-
age, but gives a context in which algorithms are implemented
with reduced programming effort and can be controlled with
a readily working user interface that allows interactive ma-
nipulation as can be seen in Figure 1. The framework design
focuses on reduced complexity, ease of understanding, and

-ioix]
Add Help
Threshold Fill type Color type

1
0 60 120 180 |) Boundaryfil

Threshold H
Fill color

Threshold S 2
0 85 170 255

' ® Flood fill Boundary color
Threshold v 3
0 85 170 255
Select
~ cglms*
Filter o

Curves

n

Scale

S . EG | oK | Cancel

Rotate

Figure 1: The user interface of the j2dcg framework.

ease of modification to implement the labs. It does not focus
on goals of efficiency, long-term maintenance, or rigorous
object-oriented design. When object-oriented design can be-
come a difficulty, example concrete classes are included in
the system to facilitate the implementation of the classes rel-
evant to the labs.

The graphical documentation of the framework em-
ploys the widely used Unified Modeling Language
(UML) [BJR98]. The overall architecture of the framework
is presented in Figure 2. The framework follows the Model-
View-Controller (MVC) architecture and some other well
known design patterns [GHJV95] that allow a good decou-
pling between the user interface, the data, and the algorithms
that manipulate the data. This results in well isolated loca-
tions where the students add their code and it hides most of
the complexity of the user interface.

The MVC architecture is based on putting the user inter-
face in a View module. The user interface forwards user in-
teractions to the Controller module and the Controller modi-
fies the Model. In the framework, the Window class forwards
mouse and keyboard input to the controller, while the various
parameter panels forward the parameters of the algorithms
to the controller. In the framework, the Dispatcher class re-
ceives most of the user interactions and forwards them to
the active AbstractTransformer class which executes the ac-
tions requested by the user (e.g., rotating a shape, creating a
curve, filtering an image, efc.). The AbstractTransformer or
the Command finally modify the 2D content (Shape objects)
contained in the Model module.

One aspect of the MVC architecture was not strictly fol-
lowed in the framework. In the MVC architecture, after the
model is modified it notifies the views that then redisplay
the model. In the framework, it is the model that redisplays
itself. This approach was selected since it keeps the draw

(© The Eurographics Association and Blackwell Publishing 2006.

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

—
model
Shape
Rectangle Disc ... other
Shape
types
Al N
/ \
/I | \\
/) controller\
AbstractTransformer Command
Curves RotateCommand
Rotation CreateDiscCommand
... other ... other Command
AbstractTransformer types types

Dispatcher
AN XX
i Sy
1 \ —
Y View
1 \ ~
. ' CurvePanel
Window N
\
/I\ ‘--4 FilterKernelPanel
Application
... other parameters
panels

Figure 2: Architecture of the j2dcg framework.

methods close to the data they need, thus avoiding one level
of indirection between the view and the model.

4.1. Labs

Labs are presented in Table 1. As can be seen, they exhibit a

Topic CG/TP Vector/Raster
Color models both both

Filling CG and some IP raster
Filtering 1P raster
Curves CG vector

Transformations CG and some IP vector and some raster

Table 1: Labs and how they relate to 2D CG and IP as well
as vector and raster graphics.

good balance between 2D CG and IP, as well as vector and

(© The Eurographics Association and Blackwell Publishing 2006.

raster graphics, thus providing a good coverage of the overall
2D content topics.

In the next sections, each lab is presented and discussed.
Various details are presented in Tables 2 to 6 and assume
that the five labs take place over 11 weeks and count for 29
points. As will be discussed in more details in Section 4.1.6,
the instructor can change the sequence in which the labs are
assigned to the students to various orders different from the
one in which they are presented in this paper. To let the stu-
dents adapt to the framework, we suggest that an additional
week be allocated for the first lab and also an additional point
(for a total of 12 weeks and 30 points). As a reference, the
30 points for these five labs counted for 30 percent of the
final mark in the GTI410 course (see Section 4.4). It is also
assumed that the students work in teams of two. The lab de-
scriptions to give to the students can be found in the module
files (and are referred to in Tables 2 to 6). These lab descrip-
tions detail the work to be done, give snapshots of the user
interface, include UML diagrams detailing where to imple-
ment the various parts of each lab, detail how to mark the
labs, and present what is required in terms of coding as well
as points to address in the report. The reader is referred to
these descriptions since the paper focusses on additional is-
sues and does not repeat the information found in the de-
scriptions.

4.1.1. Color Models

The first lab is on color models. This topic was selected be-
cause color models are used in pixel representations and in
the selection of colors, thus they are quite important to un-
derstand. This lab gets the students to look at three color
models (RGB, CMYK, and HSV) as well as interpolation of
colors in these three color spaces. They also use 8 bits per
color channel representation which is widely used. Details
of this lab are presented in Table 2. Expected results for this

Location in module labs/lab1/

Proposed number of weeks 3

Proposed number of points 7

Proposed report length 1 page of text plus
images

Expected number of hours of work 12
Expected number of lines of code 900

Table 2: Details for the color models lab.

lab are presented in Figures 3 and 4.

Variations of this lab could use different color models
such as HLS, CIE XYZ or YIQ, or use a different user inter-
face that would show different color interpolations such as
the color disk mentioned in the lab description or simultane-
ous interpolation of two channels mapped to the two sides of
a rectangle.

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

Ed
[RGB | CMYK | HSL |
OK Cancel

Figure 3: Color selection dialog of lab 1 for the CMYK color
model.

RGE | CMYK | HSV
- [
S: i

| OK | Cancel |

Figure 4: Color selection dialog of lab 1 for the HSV color
model.

4.1.2. Seed Filling

The second lab is on seed filling. This topic was selected
because it introduces the students to the pixel, navigation
inside pixels of an image, definition of regions of pixels,
4-connected and 8-connected regions, and thresholds on
color values. In this lab, the students look at two filling al-
gorithms: flood fill (region defined by the color of the seed
pixel) and boundary fill (region defined by the color of its
boundary). Details of this lab are presented in Table 3. This
second lab reuses some of the code of the lab on color mod-
els. It also introduces the subtleties of identifying pixels as
visited or not by the filling algorithms. Efficiency issues
are particularly noticeable because the framework is imple-
mented in Java, and the focus is on simplicity of implemen-
tation, not efficiency. While pixels to be visited are stacked
before they are actually visited, a considerable amount of
memory is consumed, sometimes resulting in out of mem-
ory problems on large regions filled on computers with a

Location in module labs/lab2/

Proposed number of weeks 2

Proposed number of points 6

Proposed report length 1 page of text plus
images

Expected number of hours of work 8

Expected number of lines of code 300

Table 3: Details for the seed filling lab.

reduced amount of memory. Expected results for this lab are
presented in Figures 5 and 6.

£ j2dcg =lolx|

File Add Help
Threshold Fill type Color type

Threshold H 1
0 60 120 180 ® Boundaryfill Fill color

Threshold § 2
0 85 170 255

g—
3

Threshold
0 85 170 255

Boundary color

Select
Fill

Filter
= 4168
Translate

Scale

Shear
Rotate

Figure 5: Results of a boundary fill inside the “4” and the
“0”. The initial background is white.

=lolx|
File Add Help
Threshold Fill ype Color type

Threshold H 1
0 60 120 180 O Boundary fill Fill color

Threshold § 2
0 85 170 255

e & Fgodml
3

Threshold
0 85 170 255

Figure 6: Results of a boundary fill from the contour of the
image. The initial background is white.

Boundary color

One variation of this lab could be to combine it with some
of the objectives of the lab on color models (development
of the HSV color model). This would result in a single and
more elaborate lab focusing on pixels and color representa-
tion. Other variations of the lab could include selection of
regions of pixels. Instead of filling the pixels with the spec-
ified color, the algorithm marks the pixels as selected. This
provides an interesting user interface improvement when op-
erations (e.g., filtering, brightness, contrast) need to be selec-
tively applied to specific parts of an image.

(© The Eurographics Association and Blackwell Publishing 2006.

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

4.1.3. Image Filtering

The third lab is on image filtering. This topic was selected
because images occupy a very important place in 2D content
and most manipulation of images involve filtering the pixel
values (e.g., blur, sharpness, resampling). Filtering is also
a good basis to introduce the topic of antialiasing. Details
of this lab are presented in Table 4. When dealing with the

Location in module labs/lab3/
Proposed number of weeks 2
Proposed number of points 6

Proposed report length 1 to 2 pages of
text plus images
Expected number of hours of work 10

Expected number of lines of code 400

Table 4: Details for the image filtering lab.

2 by 2 Roberts filter, the students must think of where the
center of the mask will lie and what values to assign to the
remaining entries in the 3 by 3 filter of the framework. The
solution is very simple, but the students have to understand
how filters work and the implication of filters that are of even
size. Expected results for this lab are presented in Figures 7
to 9. Different types and sizes of filters (larger than 3 by 3)

File Add Help

Handling Border Copy hd

Range Clamp 0...255 -

Filter Type Custom hd

Select
Fill
Filter
Curves
Translate
Scale
Shear
Rotate

Figure 7: Different types of range mapping operations
where values outside of 0..255 must be mapped back to
0..255 for display. Images left to right and top to bottom:
original image, Laplacian filter with values clamped to 0
and 255, Laplacian filter with values transformed by com-
puting their absolute value before mapping them to 0..255
(i.e. mapping the smallest value to 0 and the highest value
to 255), Laplacian filter with values mapped to 0..255 (i.e.
mapping the smallest value to 0 and the highest value to 255,
without computing the absolute value).

(© The Eurographics Association and Blackwell Publishing 2006.

File Add Help

Handling Border Copy -

Range Clamp 0...255 -

Filter Type Custom -

Select
Fill
Filter
Curves
Translate
Scale
Shear
Rotate

Figure 8: Two types of border handling using padding by
copying pixels and by neglecting the borders pixels. Images
left to right and top to bottom: original image, filter com-
puted on the image padded by copying border pixels, filter
computed on the image while ignoring pixels out of the im-
age (equivalent to image padded with pixels of value zero).

could be good extensions or alternatives of this lab.

4.1.4. Parametric Curves

The fourth lab is on parametric curves. This topic was se-
lected because curved primitives are required in many 2D
content applications such as audio-visual presentations, re-
ports, and computer aided design. They also serve as a good
basis for 3D courses where the subject could later be ex-
tended to 3D curves and surfaces. While doing this lab, the
students learn what are parametric functions, how to add and
manipulate control points, how matrices are used to evalu-
ate the curves, how to draw parametric curves, and the con-
cept of the convex hull. Details of this lab are presented in
Table 5. Expected results for this lab are presented in Fig-

Location in module labs/lab4/
Proposed number of weeks 2
Proposed number of points 5

Proposed report length 1 to 2 pages of
text plus images
Expected number of hours of work 8

Expected number of lines of code 300

Table S: Details for the parametric curves lab.

ures 10 and 11.

Many variations of this lab could be easily created by con-
sidering other types of curves such as Bezier curves of dif-

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

=10ix|

=T il
dd add add
Curve type: [Bezier v Sections: @‘ Aligned H symetric | curve type: [Hermite = sections: @‘ Aligned H symetric | Curve type: | BSpline ~ | sections: 0]
Coordinates Clear Coordinates Clear Coordinates Clear
Select Select Select ==
- < S,
it ~ [
Fil Fil A Fill i
1 E I
h N |
\ ~ . u
5 o . = . 2%
Filter I Filter Filter ‘e\‘
Curves Curves Curves
Figure 10: Different types of curves, from left to right: Bezier, Hermite, and B-Spline.
L5l = RIS
Add add Add
Curve type: [Bezier | sections: [30] | atigned || symetric | | curve type: [Bezier = | sections: [31] | afigned || symetric Curve type: | Bezier = | sections: [a1] | afigned || Symetric
7 ra
Select £ Select £ Select £
1 n n
%\ v%‘ T ’*q% v%‘ o
Fill T Fill P 1 Fill P
. . . i . .
AN 5 N
Filter % Fitter b= Filter Y
§ i 4
I uﬁ uﬂ
Curves Curves Curves

Figure 11: Curve composed of two cubic Bezier curves that share a common control point (the selected control point highlighted
by black and white squares around it). From left to right: the curve prior to adjustment of the continuity at the shared control
point, control points moved to have G1 (geometric) continuity at the shared control point, and control points moved to have C1

(first derivative) continuity at the shared control point.

ferent degrees, Catmull-Rom splines, and Cardinal splines.
The lab could also include the display of the tangent vectors
of the Hermite curve or the display of lines joining the (P1,
P2) and (P3, P4) control points of Bezier curves.

4.1.5. Affine Transformations

The fifth and last lab is on affine transformations. Creat-
ing 2D content requires lying out the various objects (vec-
tor primitives or images) through transformations. When
scanning documents or taking photographs, objects are of-
ten misaligned or of the wrong size, thus requiring trans-
formations on the pixels. In this lab, the students learn how
to use the translation, scaling, shearing, and rotation trans-
formations, as well as the composition of transformations.
Details of this lab are presented in Table 6. All of the trans-
formations are constrained to be relative to an anchor point.
Scaling, shearing, and rotations have to be composed with

Location in module labs/lab5/

Proposed number of weeks 2

Proposed number of points 5

Proposed report length 1 page of text plus
images

Expected number of hours of work 6

Expected number of lines of code 50

Table 6: Details for the affine transformations lab.

other transformations in order to get the appropriate results
which forces the students to understand how to combine
many transformations together. Expected results for this lab
are presented in Figures 12 and 13.

(© The Eurographics Association and Blackwell Publishing 2006.

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

o 1= 1=
Add Add Add
® |30 | ¥[-30 || npply Angle (degrees} [45 Relative to ‘Cemer - Angle (degrees} [45 Relative to ‘Eﬂttnm [
Apply Apply

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

Figure 12: Transformations are computed relative to a specific position: the anchor point. From left to right: original object,
object after a rotation of 45 degrees clockwise relative to its center, and object after a rotation of 45 degrees clockwise relative

to its lower left corner.

=lolx| =10/ =10l
Add Add Add
X [-30 ¥ 20 || appry LA ¥ |20 | Relative to Angle (degrees) |50 Relative to | Center -

[center = nonty |

@ Shear X (' ShearY | Apphy

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

{

jEu
T |

Select

z o
Fill W ES
s &

Filter

Curves

Translate

Scale

Shear

Rotate

Figure 13: Affine transformations on the same object as in Figure 12. These transformations are applied relative to the center
of the object (anchor point at the center of the object). From left to right: translation of (—30,—30), scale of (—1,2), and shear

in X of 60 degrees.

4.1.6. Labs Ordering

The proposed labs give the teacher the flexibility to adapt
them to different course objectives. The five labs have very
few dependencies upon each other. The color model, para-
metric curves, and affine transformations labs do not depend
on any other lab. The image filtering lab depends on the
color model lab because, in the proposed form, the filtering
is computed on color images. This constraint is weak since
it could be removed by using gray scale images. The single
strong dependency is the seed filling lab that depends on the
color models lab. Since the seed filling lab uses colors and
the HSV color model, the students reuse the code of the color
model lab. If the students are not assigned the color model

(© The Eurographics Association and Blackwell Publishing 2006.

lab, they must code the HSV color model in the seed filling
lab or the teacher must provide them with some HSV color
model code.

That said, the labs give lots of flexibility. The teacher
could select only few or even a single lab out of color mod-
els, image filtering, parametric curves, and affine transfor-
mations. Also, the color models, image filtering, parametric
curves, and affine transformations labs can be reordered to
suit different ways to introduce the topics in the class room.
In fact, as long as the seed filling lab is not given before the
color models lab, the labs can be reordered as needed, and
fewer than five labs can be selected.

Wether the labs are presented in the proposed order or not,

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

=10l |

File Add Help

Handling Border Copy -
Range Clamp 0...255 -

Filter Type Custom b d

Select

Fill

Filter

Curves

Translate

Scale

Shear

Rotate

Figure 9: Various types of filters applied on the same image.
Images left to right and top to bottom: original image, mean
(box) filter, Gaussian filter, 4-neighbour Laplacian filter, §-
neighbour Laplacian filter, vertical edges detection Prewitt
filter, horizontal edges detection Prewitt filter, vertical edges
detection Sobel filter, horizontal edges detection Sobel filter,
-45 degrees edges detection Roberts filter, and 45 degrees
edges detection Roberts filter.

one week (and an expected one to four hours of work) could
be added to the number of weeks proposed in Tables 2 to
6. This allows for the students to learn the design and the
architecture of the framework. With respect to marking, one
point could be added to the number of points of the selected
first lab.

4.2. Alternatives

Aside from the alternatives for the labs, already presented in
Sections 4.1.1 to 4.1.5, the framework allows for even more
possibilities. Many labs could easily be added in the frame-
work. For example:

e Color transformations such as gamma correction, his-
togram equalization, brightness, and contrast could be
added by deriving from the Filter class.

e Non-linear filters such as median, min, max, and range fil-
ters could also be added by deriving from the Filter class.

e Image filtering could also serve as a basis for resizing im-
ages

With a little more effort, other 2D CG and IP lab topics could
be implemented in the framework. Scan conversion, warp-
ing, and halftoning are only few examples of labs that could

be implemented in the framework after the addition of few
classes to follow the philosophy of the framework and keep
things simple for the students.

Another area where the labs give the teacher some flexi-
bility is the amount of required design and coding. As men-
tioned, parts of the framework are not efficient and others are
designed to be simple at the expense of having a worse de-
sign with respect to traditional goals such as long-term main-
tenance and cohesion. In curricula where the coding abilities
of the students are important to develop in CG courses, the
labs could require more design and coding effort.

4.3. Requirements

It is assumed that the labs are given in conjunction with a
course that explains the theoretical aspects that are put in
practice in these labs. Before being assigned the presented
labs, the students must be comfortable with:

e Basic linear algebra concepts (adding vectors, multiplying
matrices and vectors).
e Programming in a procedural language.

Knowledge of an object-oriented language and of Java will
be helpful for students, even though they should be able to
implement the labs with a little bit of guidance from the
teacher if they have no object-oriented programming experi-
ence.

The system requirements are that of Java. To ease the
compilation and execution of the framework, the Ant build
tool as well as an integrated development environment can
be used. See the “readme.txt” file of the module for more
details.

4.4. Practical Experience

The presented labs are improved versions of the labs given
in the GTI410 course of the Information Technology engi-
neering curriculum at the ETS (http://www.etsmtl.ca/) En-
gineering School. The framework proved to be an effective
tool to develop labs and students were quite pleased to do
all the labs in the same framework which, at the end of the
semester, gives them a little system that has some function-
alities of advanced image and vector graphics software.

5. Conclusion

The j2dcg framework provides an effective architecture in
which students can focus on implementing the algorithms
while enjoying a practival user interface and some example
code to help them understand how to use the framework to
implement the labs. The presented five labs provide a good
coverage of topics important for both 2D CG and IP, provide
many alternatives, and can be easily reordered and selected
to suite many types of courses.

An area where the framework could be improved is in

(© The Eurographics Association and Blackwell Publishing 2006.

E. Paquette, C. Barré-Brisebois, J. F. Barras, F. S. Bois & M. El Ghaouat / Labs and Framework for 2D Content Manipulation

generalizing it to handle 3D algorithms. At the moment, this
would be quite difficult, since the framework was built with
2D CG and IP in mind. The main challenge would be to
add support for 3D without sacrificing the simplicity of the
framework.

6. Acknowledgments

We would like to acknowledge funding from NSERC Dis-
covery Grant and ETS PSIRE-Enseignement. We also wish
to thank the students of the winter 2004 GTI410 course for
their help in improving the j2dcg framework and labs. Spe-
cial thanks to Benjamin Duval for reviewing the paper and
modules and to Pierre Thibault for some help with the user
interface of the framework. Word and PowerPoint are trade-
marks of Microsoft Corporation, PhotoShop is a trademark
of Adobe Systems Incorporated, and Core]lDRAW is a trade-
mark of Corel Corporation.

References

[BBCO88] BROWN J., BURTON R., CUNNINGHAM S.,
OHLSON M.: Varieties of computer graphics
courses in computer science. In Proceedings of
the nineteenth SIGCSE technical symposium on
Computer science education (1988), p. 313.

[BIR98] BoOCH G., JACOBSON I., RUMBAUGH J.:
The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

[GBK*95] GRISSOM S., BRESENHAM J., KUBITZ B.,
OWEN G. S., SCHWEITZER D.: Approaches
to teaching computer graphics. In Proceed-
ings of the twenty-sixth SIGCSE technical sym-
posium on Computer science education (1995),
pp. 382-383.

[GHIV95] GAMMA E., HELM R., JOHNSON R., VLIS-
SIDES J.: Design Patterns. Addison-Wesley,
1995.

[J2D03] J2DCG: Java 2D computer graphics and imag-
ing framework. http://j2dcg.sourceforge.net/,
2003.

[LPBL*94] LARRONDO-PETRIE M. M., BRESENHAM J.,
LAXER C., LANSDOWN J., OWEN G. S.:
Approaches to teaching introductory computer
graphics. In Proceedings of the 21st annual
conference on Computer graphics and interac-
tive techniques (1994), ACM Press, pp. 479—
480.

[Paq04] PAQUETTE E.: CoGIP: a course on 2D com-
puter graphics and image processing. In ACM
SIGGRAPH 2004 Educators Program (2004).

[Wol99] WOLEFE R.: A syllabus survey: Examining the

(© The Eurographics Association and Blackwell Publishing 2006.

state of current practice in introductory com-
puter graphics courses. Computer Graphics 33,
1 (1999), 32-33.

