
Bitvectors for Robust Hierarchical Template

Matching

David Tweed

Institute for Perception, Action and Behaviour, Edinburgh University

Abstract

Many target detection problems involve objects where the primary variability in appearance is due to
changes amongst characteristic configurations (as opposed to the systematic variability of object rota-
tion or illumination changes). It is then important to utilise as much of the correlation between features
as possible. Detecting pedestrians is such a problem and was tackled by Gavrila [Gav98] using a large
set of exemplar templates combined with hierarchical matching via Distance Transforms. We describe
a variant using a robust distance function and explicit allowance for occlusions. Our innovation is
using bitwise logical operators to test against multiple exemplars in parallel.

Categories and Subject Descriptors: I.4.8 [Image Processing and computer vision]: Object recognition,

1. Introduction

We consider detecting objects of a given type in im-
ages where some key assumptions can be made. These
are applicable to a wide range of problems, but aren’t
universally met. We will refer to the objects of the
kind we are searching for as targets, and we assume
that the targets have a continuous but constrained
range of configurations. (For example, a tennis player
may be in a forehand position, in a backhand position,
or transitioning between the two; they aren’t, say, per-
forming handstands even though this is physically pos-
sible). We assume some simple process – such as an
edgel or interest point detector [SonHlaBoy99] – can
reduce the image to a relatively sparse set of feature
detection locations. These give a corresponding set of
feature configurations {X} distributed according to
an a priori unknown distribution p(X)

.
=p(X|target).

We also assume targets have a characteristic size in
the image. A range of object appearances for a typi-
cal problem, sign-language hand-spelling decoding, is
shown in Fig 1. This satisfies our assumptions as the
hands would be a standard distance from the camera
and the alphabet hand shapes provide the constrained
set of object appearances.

1.1. Previous work

The standard target detection approach is to boil
down the training data into some form of parame-
terised mathematical model of the appearance of the
targets and declare the target detected when param-
eters can be found which cause the model to repro-
duce the image features. The constrained range of the
target appearances ought to translate into explicitly
described constraints on the model, but it is often dif-
ficult to carry over to the model, and indeed even
to understand, the various subtle constraints on ob-
ject appearance. For example, consider a kinematic-
chain model for detecting tennis players: the natu-
ral 3-D joint angle constraints are difficult to ex-
tract purely from the 2-D images, and where ex-
actly does the boundary between the allowed forehand
and disallowed handstand configurations lie? A differ-
ent approach is to develop a very minimal model for
matching feature sets to the data in the training set,
since the training set implicitly obeys the appearance
constraints. This approach was taken by Gavrila for
recognising pedestrians for an in-car warning system
[Gav98, Gav99]. This is based upon making a separate
exemplar from edge detection results for each target in
the training set. A detection occurs when the chamfer
distance between the detected outline and an exem-

Vision, Video and Graphics (2005)
E. Trucco, M. Chantler (Editors)

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

David Tweed / Bitvectors for Robust Hierarchical Template Matching

plar image is within a threshold. This elegantly avoids
needing a mathematical model for pedestrian appear-
ance, and using a clever hierarchical search it is com-
putationally feasible to use thousands of exemplars
for an accurate pedestrian appearance model. This
image-exemplar approach has been developed further
researchers (eg, [ToyBla01] adapts probabilistic mod-
elling to the metric space due to the exemplars) and
applied, eg, for face recognition [KruZho02] and video
analysis [GatSun02].

There are two minor complications when using
Gavrila’s framework. Firstly, every detected edgel con-
tributes to the chamfer distance used to match con-
tours, whereas occlusion, missed detections and devia-
tions from the training set argue for a robust-statistics
type matching measure. In particular, the matching
process often fits a distinctive region of the exemplar
– such as angled legs – very well whilst a human would
argue that other regions of the exemplar don’t mean-
ingfully match at all. The chamfer distance is affected
by the precise details of these non-matching regions,
whereas it would be desirable to have all correspon-
dences outside a relatively small degree of closeness
making the same contribution to the match score.
Secondly, the hierarchical match procedure works by
making a narrow, deep decision tree which enables a
match to be made whilst inspecting a small proportion
of the tree, and hence set of exemplars. However, this
narrowness makes the matching process sensitive to
wrong decisions when the training set is not relatively
homogeneous; it would be desirable to perform hierar-
chical matching via a wide, shallow tree. This paper
describes a variation on the exemplar algorithm at-
tempting to address these two issues which may be
useful for some problems.

There are two similar approaches to pattern detec-
tion. The first [Bre92, Bre03] is based upon requir-
ing the error metrics used to be robust, in the sense
that beyond a certain threshold the badness of the
match should not affect the error value. Breuel refers
to this problem as bounded error matching, and the
distance metric used in Sec. 2 is a very simple ex-
ample of such a metric. Because such error metrics
are non-smooth traditional gradient based fitting does
not work reliably with them. However, with some rea-
soning about the detailed form of the distance func-
tion efficient algorithms for the fitting process are
found using hierarchical subdivision and branch-and-
bound [Bre92, Bre03]. Our work does not use such so-
phisticated techniques, but also focuses on the differ-
ent problem of matching against many possible tem-
plates. The second approach is Olson & Huttenlocher’s
[OlsHut97] formulation of matching in terms of the
Hausdorff distance between oriented edge maps of ob-
ject models and observed edges, where again a thresh-

old is placed upon the maximum error of solutions of
interest. When attempting to match against a group
of objects a hierarchical decomposition is build where
common structures of oriented edge pixels are shared,
so that they only have to be evaluated against once.

1.2. Interaction between algorithms and

hardware

The above motivates the general exemplar approach
from an image analysis viewpoint. However, the al-
gorithm in this paper is also an example of the
interaction between mathematically motivated algo-
rithm design and hardware motivated design. Unfortu-
nately, in computer vision development is often guided
only by ‘high-level’ considerations. High-level analy-
sis does generally yield the greatest improvements,
eg, a mediocre implementation of the frequency do-
main correlation algorithm will be better than even
the most highly-tuned code for direct image domain
correlation [SonHlaBoy99]. However, it’s also true that
whilst modern CPUs have very low instruction cycle
times their performance characteristics are starting to
differ significantly (and in surprising ways) from the
classical model that guides developers.

As an example, consider a module for colour seg-
menting images within a robotic system. In many ap-
plications various classes of object can easily be ar-
ranged to have characteristic colours. Colour segmen-
tation is a well-studied problem in computer vision,
with new algorithms for performing good segmenta-
tions on ever more challenging scenes being developed
each year; however real-time performance constraints
often force robotics researchers to develop specialised
segmentation algorithms rather than use ‘off-the-shelf’
vision algorithms. In [BruBalVel02] – the paper that
inspired this work – an image must be segmented
into regions belonging to colours defined by cuboidal
subsets of YUV space. It is noted that complex, un-
predictable control flow (eg if–then–else) can perform
poorly on modern architectures; because of this test-
ing for cuboid membership in the obvious way is far
too slow. However, they construct an equivalent tech-
nique using bitwise logical operators which on modern
architectures performs in real time. (Bitwise opera-
tors are also used widely in the genetic programming
community, e.g., [CagAdoMor02].) Their development
is not purely low-level optimisation but involves both
high- and low-level considerations.

We suggest that the development of principled vari-
ants of high-level vision algorithms with better real-
world performance is a small but worthwhile niche to
explore.

We next describe an algorithm for performing the

c© The Eurographics Association 2005.

182

David Tweed / Bitvectors for Robust Hierarchical Template Matching

Figure 1: Some examples of hand shapes for letters
in American Sign Language

matching problem described above using a framework
designed to make maximal use of hardware resources,
and then present some preliminary experimental re-
sults.

2. Detection using exemplars

To take advantage of these restricted range of char-
acteristic appearances we need to produce an approx-
imation p̂(X) to p(X) by analysing a set of training
examples S. Standard probabilistic reasoning shows
that p(target|z)∝

∑
x
p(z|x)p̂(x), where z is a vector

of observed features and x is the feature detections
corresponding to a particular configuration of the tar-
get. We’re only interested in relating target presence
to observations so we push all the ‘model complexity’
into the p̂(x) term and virtually take p(z|x)=δx(z)
(see next section). However, it is important to note
that approximating p̂(X) uses both a set of parame-
ters and a computational process taking the param-
eters and observed data to a probability. Most com-
mon techniques – e.g., neural networks, Gaussian mix-
tures or graphical models [Bis95] – move most of the
‘modelling complexity’ into the computational process
to reduce the number of parameters. In contrast we
choose to approximate p(X) directly from the train-
ing set S={(wi, si)}, where wi is the relative frequency
(scaled to sum to 1) and si is a sparse set of features
detected. This allows S to encode priors on configu-
rations whilst keeping |S| proportional to the number
of unique configurations. The basic idea is to compare
the observed features to the features detected in each
of the exemplars in S individually, using a robust dis-
tance function to deal with the essentially tiny varia-
tions caused by imprecise feature detectors, tiny pose
changes, etc. In some approaches (EGA, [ToyBla01]),
some of the degrees of variation are handled by intro-
ducing an additional geometric transformation: A set
of features from a new image is compared against an
exemplar by first finding a transformation which min-
imises an appropriate distance between the feature set
and the transformed exemplar. Whilst this increases
the expressiveness of the model, recall we are using
the exemplar approach precisely because we don’t un-
derstand the detailed constraints which apply to the
feature sets generated by the target. As it is almost
impossible to come up with any neatly parametrised

in in

inin

in in in

in

in

ininin

in

in

out

out

Figure 2: distance transform: (a) feature pixels; (b)
within τ of features; (c) inlier/outlier

transformations other than shifts, rotations and scal-
ings which generate only physically realisable trans-
formed exemplars, it is debatable whether increasing
expressiveness via transformations is the best course.
In this work, we take the opposite approach of just
adding more exemplars to training set S. Thus, we
keep the simple computational process but increase
the number of parameters (ie, exemplars). With only
small variations to deal with we can use simple feature-
feature distance function

d(a,b) = if |a− b| < τ then inlier else outlier (1)

i.e., an image feature a matches an exemplar feature at
b if it lies within a distance τ . (This particularly stark
distance function is partly motivated by Section 3.)

2.1. A probabilistic formulation

We now cast ‘matching’ in terms of a generative
model. Given a noise threshold τ we can construct the
set Σ of offsets of magnitude less than τ and define the
configurations generated by exemplar s as

s⊗ Σ = {s + σ|σ ∈ Σ|s|} (2)

Using this a set of features is generated from S by
simply selecting an exemplar si (with chance propor-
tional to wi) and then choosing uniformly an element
of si ⊗ Σ. This gives

p̂(target|z) ∝
∑

(wi,si)∈S

wiχsi⊗Σ(z), (3)

where characteristic function χA(v) is 1 iff v∈A and z

is the vector of feature detections.

The key to efficiently evaluating χsi⊗Σ is to form
an ‘image’ Di for each exemplar si. This has all pix-
els within τ of a point in si to inlier and all others
to outlier (as shown in Fig 2). We then form variables
describing the matches of the individual image fea-
tures vj

.
=Di[zj], essentially using Di as a lookup table.

Then z∈si⊗Σ exactly when all the vjs have the value
inlier, and as Di depends only on si ⊗Σ it can be pre-
computed. This approach is the Distance Transform
[RosPfa68] for our unusual d.

In practice other objects can occlude targets, so that

c© The Eurographics Association 2005.

183

David Tweed / Bitvectors for Robust Hierarchical Template Matching

in a new image containing the target some features due
to the target will not appear whilst some new features
due to the occluder will appear. Since we ‘detect’ by
requiring all observed features match with the features
in the exemplar (and not all the exemplar’s features
to match with observed features), features blocked out
by the occluder are not a problem. However, extra
features introduced by the occluder are unmatched in
the exemplar and so the strict matching above won’t
work. Thus we need a refined version of p(z|x). We
use a simple solution: if at least α of the observed
feature points are present in a pattern s′ from si⊗Σ
then p(z|s′) is 1, otherwise it is 0; this translates to
‘robustifying’ χsi⊗Σ in Eq 3.

3. Matching with a feature-set using boolean

operations

As our robust distance measure takes only two values
inlier and outlier we can represent them as the response
to ‘is the point an inlier?’, i.e., inlier 7→1 and outlier 7→0.
Thus detecting exemplar i if at least αN of the N

image feature lookups v1:Nare inliers in exemplar i is
equivalent to count(v1:N) – the number of 1s in v1:N –
being at least αN (using v1:N to stand for v1, . . . , vN).
We could compute count with standard addition in-
structions by simply incrementing a count each time
a non-zero vi is encountered, but the bitvectors used
in the next section motivates using only boolean op-
erators.

The key to efficient calculation of count(v1:N) is re-
lation

count(v1:N) = count(v1:N/2) + count(vN/2+1:N) (4)

i.e., the number of 1s in v1:N is the sum of the 1s
in the two subsets; moreover when count(v1:N/2) and
count(vN/2+1:N) are k-bit numbers then count(v1:N)
has at most k+1 bits. Our algorithm is to maintain an
explicit binary representation of count and perform
the additions at the level of program code; this gives
us the freedom to compute additions using only the
number of bits required. We can bound the operation
count using the case N=2n: Computer architecture
shows that two k-bit binary numbers can be added in
5k logical operations [HenPat90] (an example is shown
in Fig. 3a). Thus evaluation forms a tree (shown in
Fig 3b) with the length increasing by at most 1 for
each level, so that the number of operations is given
by

#ops(count(v1:N)) =

n∑

k=0

5k·2n−k = 5(2n+1−n−2) < 10N

(5)
in comparison to the N2 operations without using the
length constraint. It is plausible an application might

carry←0
for i in 1, . . . , k:
t1←y[i]xor carry
t2←y[i] and carry
x[i]←t1 xor z[i]
t3←t1 and z[i]
carry←t2 or t3

x[k+1]←carry

2-bitT(v) T(v)

v v v v1 2 3 4

1:2 3:4

T(v)1:4

1-bit

3-bit

Figure 3: (a) x←y+z using logic operations; (b) tree-
wise computation of count(v1:4)

work on high-resolution images where an object gives
rise to 1–2 thousand feature detections (e.g., edgels
when detecting human beings from their silhouettes).
Although memory access costs will largely determine
the algorithm’s performance, the tree formulation re-
quires 10–20 thousand operations per matching op-
eration versus 1–4 million operations for the direct
approach, enough to justify the extra ‘complication’.

3.1. Parallel evaluation with bitvectors

So far this merely reformulates the detection prob-
lem without computational benefit. However we now
utilise the bitwise logical operator instructions of ac-
tual processors. For example the bitwise operator &

takes two bit vectors and produces a new bit vector,
each of whose positions is filled by anding the bits in
the corresponding position of the two inputs, perform-
ing the computation in parallel. A given processor has
a small range of bit vector lengths: 32 is a common
denominator but, e.g., the Pentium III/IV have 128-
bit vectors via SIMD registers. We use these to check
a set of features against 128 exemplars in parallel.

As bitwise operators process each bit independently
all equations involving boolean operators have coun-
terparts using the bitwise operators. (This correspon-
dence was used in the segmentation algorithm of
[BruBalVel02].) Imagine ‘stacking’ the images D0 to
D127 and taking a vertical ‘core sample’, as shown
in Fig 4. This is equivalent to taking the vis now as
bitvectors whose jth entry is 1 exactly when exemplar
j has inlier at position xi. The ‘binary operations only’
algorithm shown in Fig 3 can then be used to compute
count for each Di in the stack in parallel. This gives
us a bitvector table D(0:127) where the bitvectors at
position D(0:127)[ξ], corresponding to the core sample
from D0, . . . , D127 at ξ can be precomputed as they
depend only on the Di images, can be precomputed.

This is approach initially seems a little peculiar:
conventionally we would use built-in addition on in-
tegers to compute count for each individual pattern

c© The Eurographics Association 2005.

184

David Tweed / Bitvectors for Robust Hierarchical Template Matching

Figure 4: a ‘core sample’ through the bitmap stack
becomes a bitvector

sequentially, rather than matching patterns in paral-
lel but then requiring addition to be performed at the
program level. Better efficiency results as built-in ad-
dition always operates on fixed-length integers regard-
less of the actual contents. The aim is to allow using
a robust distance function and ‘wide’ trees with effi-
ciency similar to that of [Gav99]. The implementation
was motivated by the platform used for development,
but long bitvectors are widely available and the al-
gorithm is extremely likely to remain competitive on
future architectures.

4. A hierarchical search strategy

The previous section allows at most 128 exemplars and
requires evaluation at each image point, even those
‘obviously dissimilar’ from all exemplars. We tackle
both issues using the same idea as the hierarchical
search in [Gav98].

4.1. Prototype exemplars

Suppose we have a set of exemplars Si=s0:N and we
want to perform some pre-screening to avoid perform-
ing a match against the the individual exemplars in
the set if ‘it’s clear they aren’t going to match’. One
way to do this would be to composite prototype exem-
plar p(Si), which is a synthetic but otherwise normal
exemplar which we can try to match against. It needs
to have two simple properties:

1. if observation z would match any element of Si

then z must match p(Si).
2. in most cases observations zs which don’t match

anything in Si don’t match p(Si) either.

In essence these conditions say the prototype provides
a single exemplar which rejects a large proportion of
non-matches whilst never rejecting a true match: Con-
dition 1 is required for correctness, whilst the degree to

Figure 5: combining bitmaps into a prototype

which 2 holds determines the efficiency of the match-
ing process.

A simple way to produce such a prototype is sim-
ply to superimpose the exemplars making Si. This
certainly achieves criterion (i). However to reject as
many non-matches as possible it is desirable to align
the exemplars so that common structures amongst the
elements of Si are overlaid. This is illustrated in Fig 5,
where three cross-type structures are combined into a
prototype where the common horizontal bar is over-
laid: clearly any cross matching any of the 3 low-level
crosses will match with the prototype. However, the
fewer structures are overlaid the easier it is for a fea-
ture set to get a false match with p(Si) by ‘taking half
the feature matches from one exemplar and half from
another exemplar’: in Fig 5 the prototype will match
against an hourglass shape, even though this is not
present in any of the underlying patterns.

To do this, we want to find a set of spatial dis-
placements δ0:N to apply to the elements s0:N such
that the overlaying of all the exemplars in exemplars
Si has as few distinct feature positions as possible. A
similar problem occurs in the hierarchical exemplar
matching of [Gav98] where the alignment minimis-
ing the match distance between the overlaid exem-
plars is used. This match is approximated effectively
using simulated annealing. Unfortunately our binary
distance function is very non-smooth so simulated an-
nealing performs poorly; instead we are forced to use
brute force search. Even with some highly sophisti-
cated branch-and-bound techniques this search pro-
cess takes a very long time. Luckily this is an offline
preprocessing step which only needs to be performed
once.

4.2. Exemplar match trees

To use prototypes for hierarchical matching, suppose
we have a large set S of N exemplars s0:N , where N

c© The Eurographics Association 2005.

185

David Tweed / Bitvectors for Robust Hierarchical Template Matching

find the locations z1:N of the features in W
initialise work←[(root node, 0)] and results←{}
while work is non-empty:

(n,∆)←work.pop front()
for ξ in test node offsets R(n)×R(n):

∆′←∆+ξ
for zi in z1:N : set vi←D(n)[zi+∆′]
match vec←map over bitvector(count(v1:N) > αN)
if match vec 6=0:

if n is a leaf node then insert match vec into results
otherwise work.add end((best child node(n,match vec)),∆′))

Figure 6: algorithm for hierarchical matching within a window W

is much larger than 128. We can divide this into 128
subsets S0, . . . ,S127, where each subset contains pri-
marily similar exemplars. From these we can build
both a bitvector table D(Si) and a prototype p(Si)

for each subset. As prototypes are sets of feature re-
sponses just like standard exemplars, we can stack
them just like we did for the individual exemplars
in each subset.Thus we compute a bitvector table
D(S0:S127) which summarises the information in the
prototypes. Hierarchical matching then proceeds in
the obvious way: we first test our observation z against
the bitvector table for the prototypes D(S0:S127). Any
prototypes which match we then test against the cor-
responding bitvector table D(Si) for the exemplars
that the prototype summarises. These final results cor-
respond to the matched exemplars in the original set
S.

This can be seen as searching in a two level tree. The
tree has a wide fan-out and because we only proceed
down branches corresponding to a matched prototype,
only a small fraction of the leaf nodes are examined
when a match operation is performed. Whilst in prin-
ciple the tree could have full 128-way fan-out, in prac-
tice it is more robust to have only 16–32 fan-out, with
a several prototype exemplars leading to the same sec-
ondary set of exemplars. This two-level construction
can be extended in the obvious way to multiple lev-
els, where higher levels contain prototypes produced
from sets of prototypes rather than individual exem-
plars. However, since the tree capacity grows exponen-
tially with the number of levels, there is unlikely to be
enough training data for more than a few levels.

4.3. Multiresolution hierarchical search

This description of hierarchical matching assumes that
we have an exact position for the feature set we are
testing against the exemplars. In practice we want to
test all locations in the image against the exemplar
set; clearly performing a full match centred on every

pixel will be very inefficient. We can use a the same
idea of generating new exemplars which always match
if there’s a true match in a local neighbourhood but
which suffer from some false positives. Observe if we
progressively increase the noise threshold τ in Eq 1 we
obtain a sequence of distance images D(τ1), . . . ,D(τk)

obtained using thresholds τ1=τ, . . . , τk. These will
match against an observation sets which more mis-
aligned as τi increases, at the cost of also matching
with more observation sets which don’t truly corre-
spond to the underlying pattern. These two facts par-
allel the two conditions which we used in section 4.1
to define what the prototype should do. Thus, we can
regard a distance image with an increased threshold as
a ”misalignment prototype” which can be used to pre-
screen matches on a coarse search before trying pixel
resolution matching.

In detail: if we have an exemplar which would match
at a position ξ then we’ll get a match at position
ξ+δ with D(k) providing that |δ|+τ≤τk. So testing
can then be performed first on a coarsely spaced grid
using D(τk) giving a small number of ‘test match here
at finer resolution’ locations. We lay down a finer grid
around these locations and then test against the more
discerning distance image D(τk−1). This process is con-
tinued until we reach the original transform image
D(1)=D at 1-pixel search granularity.

These ideas are combined into the complete algo-
rithm shown in Fig 6, with some details we clarify
here. The double ended queue work is equivalent to
breadth-first search and leads to elements on level
l being evaluated consecutively, increasing the likeli-
hood that the model bitvectors are in the processor
cache. map over bitvector(count(v1:N)>αN) has the
ith bit set iff the integer represented by the ith bits
of count(v1:N) exceeds αN . results is a weighted set
of matches and requires post-processing, eg, for sim-
ple detection performing non-maximum suppression

c© The Eurographics Association 2005.

186

David Tweed / Bitvectors for Robust Hierarchical Template Matching

as there are less-supported matches around the true
match.

5. Experiments

Exemplars require daunting volumes of marked up
data, both for training and testing. We present some
preliminary experiments using data sets which were
only just big enough.

5.1. Written characters

Handwritten glyphs are a basic shape with varia-
tion due to pen slippage, muscle imprecision, neither
of which is systematically geometric. A large num-
ber of examples of αβγδεφκλνωπψρστχ were writ-
ten on paper and scanned to obtain a binary image
where a glyph was 48×48 pixels. Edgels obtained us-
ing a binary-image edge detector were used as fea-
tures. Each letter became a class and a 2-level 16-
way tree was built using 128 examples of each letter.
A prototype for each letter shown in Fig 7a (where
whiter means more exemplars have a feature at that
position). Fig 7b shows detection results on randomly
drawn unseen examples: the first row is the number of
correct detections whilst the second is the number of
examples from that class.

5.2. Hand shapes

We obtained a 2500 frame video of a pair of hands
running through the hand shapes corresponding to the
letters a–z in ASL, with the region corresponding to
the hands being around 140×140 pixels. Due to the
very small differences between some shapes and the
signer’s poor competence we grouped the set of letter
hand-shapes into just 8 classes with broadly similar
characteristics. The video was divided into segments
in the same category. Unfortunately a significant num-
ber of frames at points corresponding to ‘in-transition’
frames didn’t fit any category well; in order to look
at performance with ‘rough-cut’ data we didn’t ex-
clude any images judged to be transitioning. Edgels
obtained using a standard edge detector were used as
features. Random subsets of 256 (ie 2×128) frames
from each class were used to build a 2-level, 16-way
tree was built. Prototype exemplars for each branch
shown in Fig 7c (so each prototype image combines
data from one half of the images in the class). As in
Fig 7b the left table in Fig 7d shows detection on a
randomly drawn set of unseen frames from each class;
there are no results for classes 0 & 12 as there were no
unseen frames in the data set. The right table shows
the confusion between true classes (rows) & detected
classes (columns) as a fraction of the images tested;
the deficit is from ‘no detection’.

The results here are equivocal; we believe that due
to issues with the datasets, and in particular the small
sizes of exemplars in the images, these may not be
representative.

6. Conclusions & future work

We described a variant upon the template matching
of [Gav98] for detecting targets specified by a train-
ing set S by searching for matches between observed
features and exemplars. We explicitly aim to make as
few generalisations from the S as possible; to aid this a
robust distance function is used combined with a pro-
portion of features matched global criterion to ignore
outliers and occlusions. Practical usage requires very
many exemplars and we used bitvectors to compute
multiple match scores simultaneously. Adding hierar-
chical search gives wide exemplar trees enabling ro-
bust, efficient computation. It is useful when the char-
acteristic set of configurations is not easily encoded in
a parameterised model. In future work we intend to
produce larger annotated training sets so we can per-
form larger scale tests of the algorithm, both in as an
isolated detection mechanism and when incorporated
in the multiple object tracker of [TweCal02].

Acknowledgements

Andrew Calway and especially Mark Everingham for
stimulating discussions on object recognition strate-
gies.

References

[Bis95] C M Bishop. Neural Networks for Pattern
Recognition. OUP, 1995.

[Bre92] T M Breuel. Fast recognition using adap-
tive subdivisions of transformation space. In Pro-
ceedings. 1992 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat.
No.92CH3168-2), 445–51, 1992.

[Bre03] T M Breuel. Implementation techniques
for geometric branch-and-bound matching methods.
Computer Vision and Image Understanding, 2003.

[BruBalVel02] J Bruce, T Balch, and

M Veloso. Fast and inexpensive colour im-
age segmentation for interactive robots. In IROS,
2000.

[CagAdoMor02] S Cagnoni G Adorni and

M Mordonini. Efficient low-level vision program
design using sub-machine-code genetic program-
ming. In Conf. Assoc. Italiana per l’Intelligenza
Artificiale, Oct 2002.

c© The Eurographics Association 2005.

187

David Tweed / Bitvectors for Robust Hierarchical Template Matching

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

detected 4 3 10 2 2 4 11 5 4 1 10 1 7 8 9 4
tested 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

(b)

(c)

0 2 4 6 8 10 12 14

na 138 89 75 18 3 na 37
0 300 300 134 54 12 0 300

0 2 4 6 8 10 12 14

2 0.42 0.43 0.00 0.02 0.0
4 0.40 0.30 0.29 0.00 0.00 0.01 0.00
6 0.11 0.06 0.04 0.56 0.00 0.00
8 0.04 0.43 0.0 0.34
10 0.25 0.08 0.08 0.25
14 0.19 0.06 0.04 0.01 0.03 0.12

(d)

Figure 7: prototypes & detection statistics: (a-b) greek; (c-d) hands

[GatSun02] D. Gatica-Perez and M.T. Sun.

Linking objects in videos by importance sampling.
In IEEE Conf on Multimedia & Expo, 2002.

[Gav98] D M Gavrila. Multi-feature hierarchical
template matching using distance transforms. In
ICPR, 439–444, 1998.

[Gav99] D M Gavrila and V Philomin. Real-time
object detection for “smart” vehicles. In ICCV, 87–
93, 1999.

[HenPat90] JL Hennessy and DA Patterson.

Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 1990.

[TweCal02] D Tweed and A Calway. Tracking
Many Objects Using Subordinated CONDENSA-
TION. In Proc. of BMVC, page 283–292, 2002.

[KruZho02] V Krueger and S Zhou. Exemplar-
based face recognition from video. In ECCV, 28–31,
2002.

[OlsHut97] C F Olson and D P Huttenlocher.

Automatic target recognition by matching oriented
edge pixels. IEEE Trans Image Proc., 6(1):103–113,
Jan 1997.

[RosPfa68] A Rosenfeld and J Pfaltz. Distance
functions in digital pictures. Pattern Recognition,
1:33–61, 1968.

[SonHlaBoy99] M Sonka, V Hlavac, and

R Boyle. Image Processing, Analysis, and Ma-
chine Vision. PWS Publishing, 1999.

[ToyBla01] K Toyama and A Blake. Probabilistic
tracking in a metric space. In ICCV,2,50-59,2001.

c© The Eurographics Association 2005.

188

