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Abstract
The normalised compression distance measures the mutual compressibility of two signals. We show that this dis-
tance can be used for classification on real images. Furthermore, the same compressor can also operate on derived
features with no further modification. We consider derived features consisting of trees indicating the containment
and relative area of connected sets within the image. It had been previously postulated that such trees might be
useful features, but they are too complicated for conventional classifiers. The new classifier operating on these
trees produces results that are very similar to those obtained on the raw images thus allowing, for the first time,
classification using the full trees.

Categories and Subject Descriptors(according to ACM CCS): I.4.8 [Scene Analysis]: Object recognition

1. Introduction

This section provides a very brief introduction to
Kolmogorov complexity and the proposed normalised com-
pression distance. We then describe the options for approx-
imating this distance and show how it may be combined
into a classification scheme. The remainder of the paper ap-
plies these ideas to several image classification problems and
shows how the same classifier can, via the normalised com-
pression distance, handle quite different objects.

If x is a binary string of finite lengthl(x) andU is a uni-
versal machine with outputU(p) due to programp then the
Kolmogorov complexity [CT91] may be defined as,

KU (x) = min
p:U(p)=x

l(p) (1)

Thus KU (x) is the shortest program that can reproducex
without error which is often written, without the subscript,
asK(x). We can also write the conditional Kolmogorov com-
plexity K(x|y) to mean the shortest program that can repro-
ducex when the program is augmented with the datay†.
In [LCL∗03] it is shown that the algorithmic information
distance

E1(x,y) = max{K(y|x),K(x|y)} (2)

† See Bennett et al. [BGL∗98], for example, for a detailed discus-
sion of terms.

is, up to an additive logarithmic term, the length of the
shortest program to computex from y and y from x. Fur-
thermore (2) is known to be a metric [LCL∗03]. A slight
modification is to normalise (2)

d(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
, (3)

to give the normalised information metric between two ob-
jects which has 0≤ d(x,y) ≤ 1. There are several practical
objections to (3). Firstly, a well-known consequence of the
halting problem is that the Kolmogorov complexity is non-
computable. Secondly, even if it were possible to compute
K(x) and K(y) then, although the terms on the numerator
are defined, it is not obvious how to compute them either.
The later problem is easily resolved since it is known that
K(y|x) ≈ K(xy)− K(x) whereK(xy) is the complexity of
the joint object. The first problem is fundamental so in the
paper of Cilibrasi et al. [CV04] there is an audacious step –
approximate the non-computable Kolmogorov complexity,
K(x), with something computable such as the length,C(x),
of the output from a practical lossless compressor. In this
case, the normalised compression distance is defined as:

d(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}
. (4)

In Cilibrasi et al. [CV04] it is shown how this distance met-
ric can be used to cluster highly diverse strings such as those
derived from music, phylogeny trees, human languages and
genetic sequences. The normalised compression distance,

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


Lan, Harvey / Image classification using compression distance

Figure 1: Some images in the first image set showing either a battery-case or a purse on a white background. Variation in the
scene was introduced by switching on or off some of the illuminating lamps, altering the location and rotation of the target
object, introducing noise objects (a blue napkin, screws and a nut) and varying the zoom and height of the camera above the
scene.

(4), does not specify a compressor, but it is known that, for
lossless compressors,C(x) = K(x)+κ, whereκ is unknown
and depends on the data and the compressor.

An alternative is described in Benedetto et al. [BL04]
where the distance is defined by

d̂(x,y) =
ĥ(x|y)− ĥ(y|y)

ĥ(y|y)
+

ĥ(y|x)− ĥ(x|x)

ĥ(x|y)
, (5)

in which ĥ(x|y) = (Ĉ(xy)− x̂)/‖y‖ and Ĉ(·) is an estim-
ate of the compressed file size obtained using an LZ77
compressor. In this paper we use (4), not for clustering
as in [CV04], but as the distance in ak-nearest neigh-
bor classifier (kNN) [Das91] and a support vector ma-
chine (SVM) [BGV92,CV95]. To form an effective distance
matrix for an SVM we require thatd(x,y) approximates
the scalar product of two kernels so, forming 1− d(x,y),
provides a similarity measure that is maximal whenx and
y are identical. Note thatkNN and SVM are both distance-
based which makes them the natural choice of classifier.

2. First results

Consider a simple two-class image recognition problem with
200 images from each class. The images are captured with
a Canon EOS-1D digital camera fitted with an autofocus
28-200mm zoom lens. The camera is set to 2470× 1650
pixel resolution recording in RAW mode. The camera is
mounted vertically above the scene which was illuminated
with up to four tungsten spotlights. All exposure and fo-
cus settings were determined automatically by the camera
and there was no subsequent intensity normalisation or post-
processing other than that performed by the camera. One
class of images always contained a battery-case and the other
a purse. Before processing, the images were converted into
greyscale and downsampled by a factor of ten using bicu-
bic interpolation. Some examples of the images are shown
in Figure1. Note that, many conventional techniques would
find this challenging because of the unknown, and varying,
scale of the scene.

For the clustering experiments [CVW04] and in the Com-
pLearn toolkit [Cil] the Bzip family of compressors are used.
Bzip is a block-based coder that first re-orders the data us-
ing the Burrows-Wheeler transform and then uses move-to-
front coding followed by Huffman coding. The compressor
has around 50 bytes overhead so for small files is rather inef-
ficient. However the major problem is that the compressor is
block-based with a default blocksize of 900kB so, for large
images, there is a good chance that the full string will not fit
within a data block which leads to discontinuities inC(xy),
C(x) andC(y) as x and y vary in length. A similar prob-
lem is noted in [BL04] in which the LZ77 compressor is
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Figure 2: The histogram of compression rate on single raw
image (top) and sieve string (bottom). The mean size of the
raw images is 40755 bytes, and the mean size of the sieve
strings is 18602 bytes.

c© The Eurographics Association 2005.

174



Lan, Harvey / Image classification using compression distance

used for text files. Their approach is to computeC(xy) as
the length of the file formed from zippingx adjoined toy.
The argument for this approach is that it is an effective es-
timate of the relative entropy: ifx is long enough then the
zipper will learnx effectively. Appending stringy therefore
gives a good estimate of the relative entropy, providedy is
not long enough to affect the learnt distributions within the
zipper. Again, this method is restricted by the window size
of LZ77 zipper. Furthermore, [BL04] presents no theoret-
ical preference for (5) over (4). So here we choose (4) with
C(x) being approximated by the prediction by partial match-
ing compression technique (PPM) [CW84], which, for text
files, is generally acknowledged to be the best lossless com-
pressor available. In our tests we have used implementations
known as PPMZ [Blo] and, for this paper, BICOM [Tim].
Both of which use unbounded PPM models (the PPM* al-
gorithm [CT97]) with local order estimation and secondary
escape estimation. Each image is stored as a string of un-
signed eight-bit integers. There are small differences in file
size that depend on how the image is rasterised so we take
care to rasterise all images in the same way (vertical scans
in this paper). There are also several possibilities for com-
bining files, here we concatenate files since this works best
with PPM* - alternatives include interleaving pixel by pixel
or in blocks. The top of Figure2 shows the distribution of
the fractional size of the compressed file compared to the
original size – the mode of the distribution is around 0.23
bits per bit.

Using leave-one-out testing and a nearest neighbor clas-
sifier (k = 1) the error rate is 0.105. Leave-one-out test-
ing was simulated using a model classifier that picked the
classes randomly (p = 1/2). Over 100,000 trials the mean
error was 0.500 with standard deviation 0.0251 and min-
imum/maximum error of 0.395/0.610 which implies that we
may confidently reject the hypothesis that this result arose by
chance.k = 1 provides the best performance which suggests
that a larger dataset is desirable. The support vector machine
we applied is a public domain toolbox [Caw00], in which
the SMO algorithm [Pla98] is used for optimisation, and the
regularisation parameterC, is selected by a grid search using
five-fold cross-validation. The error rate by SVM was 0.225
with all the data as support vectors.

3. Discussion of first results

Note that the method completely avoids any feature extrac-
tion and measures only the compressibility of pairs of im-
ages compared to the size of the images when compressed
individually. A natural alarm might be that the two classes
were actually distinguishable using some trivial features,
such as intensity. Figure3 shows a scattergram of the mean
intensity and its variance for the two classes and also the
combined intensity histograms. There is considerable over-
lap between the classes. Computing at-test for the difference
between the means of the means in Figure3 givest ≈ 3.5,
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Figure 3: Top: scattergram of the mean and standard-
deviation of the intensity in each image. Bottom: intens-
ity histograms of the two classes (50 bins). The upper two
curves show the mean histogram (± 1 standard error for
the two classes. The lower two curves are the median his-
togram. The bin width was chosen according to Scott’s rule
(b≈ 3.5σN−1/3) [Sco79] whereσ is the mean of the stand-
ard deviations computed from each image and N=400.

ν ≈ 351 which allows us to reject the null hypothesis. In
other words the classes are separable on mean intensity
alone. We can therefore construct a benchmark classifier
based on comparing intensity histograms. Computing aχ2

distance between the 50 bin histogram of a particular image
and the mean histogram for each class (we also computed the
L1 distance but found the results indistinguishable from ran-
dom guessing) allows the construction of a classifier with an
error rate of 0.34. It is gratifying that the compression-based
classifier out-performs an intensity-based classifier, even on
a dataset that is partly separable on intensity. As confirm-
ation, we have histogram-equalised all images to the mean
histogram, in which case theχ2-based classifier error rate
increases to 0.43 (which is indistinguishable from guessing)
whereas the error rate of the best performing compressed-
based classifier increases to 0.115 (kNN with k = 33) which
is still confidently better than chance. This illustrates an-
other desirable feature of the compression-based classifiers
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– they automatically select discriminating information from
the training data.

150 

150 

150 

90 

10 

1


5


3


4


2


Figure 4: Left: a simple image, showing the grey level in-
tensity of each component. Right: the corresponding sieve
tree with each node representing a granule.

An alternative intensity normalising transform is a set
of nested greyscale alternating sequential filters known as
a sieve [BHLA96, DL00]. The algorithm has its basis in
graph morphology in whichG = (V,E) is a graph with a
set of vertices,V which label the pixels and a set of edges,
E, which define the neighbourliness of pixels. The nota-
tion is flexible and handlesn-dimensional images with any
connectivity. The image intensities may be represented as
f (v),v ∈ V. For scales,s ≥ 1, let Cs(G) denote the set of
connected subsets ofG with s elements. Then, withx ∈ V,
Cs(G,x) = {ξ ∈ Cs(G) | x ∈ ξ}. denotes the set of connec-
ted sets ofs pixels that contain pixelx. This allows a com-
pact definition of anopening, ψs, andclosing, γs, of scales.
The morphological operators,ψs,γs,Ms,Ns : Z→ZV , may
be defined for each integer,s≥ 1, as

ψs f (x) = max
ξ∈Cs(G,x)

min
u∈ξ

f (u), (6)

γs f (x) = min
ξ∈Cs(G,x)

max
u∈ξ

f (u), (7)

and

Ms = γsψs, Ns = ψsγs. (8)

ThusMs is an opening followed by a closing, both of size
s and in any finite dimensional space. TheM- andN-sieves
of a function, f ∈ ZV are defined in [BHLA96] as sequences
( fs)∞s=1 with theM- andN-sieves being:

f1 = M1 f = f , and fs+1 = Ms+1 fs (9)

f1 = N1 f = f , and fs+1 = Ns+1 fs (10)

for integers,s≥ 1. Note that theseM- andN-sieves are al-
ternating sequential filters that do not use structuring ele-
ments but merge connected sets instead. The differences
between successive outputs

ds = fs− fs−1 (11)

are calledgranule functionsand non-zero connected re-
gions within ds are calledgranulesdenoted byds

j where
j = 1. . .NG(s) indexes the number of granules,NG(s), at
scales. As scales increases,NG(s) decreases, since the gran-
ules are larger. At the final scale there is only one granule

Figure 5: Sieve tree of the last image in Figure1(247×165
pixels), which consists of 11465 nodes in 191 levels.

that is the size of the image. The granules may be recom-
bined through addition. Thus the processor forms a lossless
transform.

A scale tree,T = (N,A) may be built using the output of
a sieve(ds)

S
s=1 and is also a graph with a set of vertices, or

nodes,N, and edges,A. If the image containsS pixels then
the root of the tree,R(T) maps todS

1 which is the whole
image. Ifa∈ A with a = (np,nc) thennc is a child ofnp and
dsc

nc ⊂ d
sp
np . Figure4 shows an example tree in which the root

of the tree represents the whole image, nodes are connected
sets and tree-edges indicate containment. In other words be-
cause the sieve is removing local extrema, granules at some
scalesc are always contained within granules at some greater
scale,sp, unlesssc = S in which case it is the root. Since the
system operates on maxima and minima only, the shape of
the connected sets and the order in which they are removed is
invariant under any intensity transformation which preserves
the relative ordering of the image greyscale.

For the purpose of object recognition, a similarity meas-
urement of two trees is desirable. However, in practice,
the trees can become very complex, as shown in Figure5,
which the conventional tree comparison methods, e.g. tree
isomorphism and tree-to-tree correction [CFSV04], would
struggle to handle. An alternative is to convert the tree hier-
archy to string, which is a common and simple format for
tree processing. Then our compression-based measurement
can be applied for pair of tree strings in terms of similar-
ity distance of these trees. A depth-first method is adopted
here which tacitly makes the relationship between parent and
child be more important than the relationship between broth-
ers. For Figure4, the traversal path will be [5 4 3 0 2 0 1],
where 0 indicates moving up a level. The string therefore is
a variable length data structure.

Currently we store only area with node. If the areas of
granules 1 to 5 are 60, 90, 294, 1318 and 90000 respect-
ively, a string representation could be [90000 1318 294 0
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Figure 6: Some images in the complex image set. The class objects are unchanged, a purse and a battery case, but there are now
many more noise objects, complicated backgrounds such as magazines and newspapers, and a greater variety of viewpoints and
lighting variations. In some cases the class objects are occluded.

90 0 60 ]. An alternative is to store the ratio of the area of
each node to its parent instead. In this case, the string would
be [90000 0.0146 0.2231 00.0683 0 0.0486]. It is this nota-
tion which we prefer since it removes the scale variation due
to zoom and location of the camera‡. The first element in
the string encodes the size of the root, which is the num-
ber of pixels in the image, this is ignored since it is usually
non-informational. As a final step, the ratios in the string
are quantised using a max-entropic quantisation scheme into
1000 bins (and 5000 bins for the complex image set in the
later experiment). The final result is written out as a string of
unsigned 16 bit integers.

4. New results

A more complicated image dataset (1492 images in total),
containing the simple images as a subset, is also used to test
our technique. Figure6 shows some of them. The scale vari-
ation remains but there are additional variations which make
the problem substantially more challenging.

The classifiers were tested using ten-fold cross-validation
which has the advantage over leave-out-one testing of allow-
ing the computation of standard error. Figure7 shows the
results from both the first image set and the more complex
case just described. A simple simulation of a classifier guess-
ing at random using the same cross-fold validation technique
gave, in 100,000 trials a mean error of 0.5000 with a standard
deviation of 0.0130, the smallest error was 0.4450 which im-
plies that we may confidently reject the hypothesis that any
of the results arose by chance. ThekNN for sieve strings now
indicates the characteristic shallow U-shape giving evidence
that the strings now have a neigbourhood of similarity.

‡ The ratio of areas of planar objects are invariant under affine
transformations which also makes their use invariant.

McNemar’s test [GC89, Die98] is used to determine if
the difference in the errors of a pair of classifiers is sig-
nificant. The test requires the construction of the joint per-
formance of classifiers, as shown in Table1, which indicates

B
Correct Incorrect

A Correct N00 N01
Incorrect N10 N11

Table 1: Joint performance of classifier A and B on two-
class problem

the agreement(N00, N11) and disagreement(N01, N10) of two
classifiers when parsing the same data set. Only the disagree-
ment is used in McNemar’s test for it contains the informa-
tion of the performance difference. Assuming that A and B
are not significantly different, if only one of them misclassi-
fies on a pattern, it is equally likely to be A or B. Therefore,
for the null hypothesisH0 (that A and B are not signific-
antly different),N01 andN10 obey the binomial distribution
B(k,q) in which k = N10 + N01, q = 1/2. The p value is
computed using the two-tailed test:

p =















2∑k
m=N10

(

k
m

)

(

1
2

)k
N10 > k/2

2∑N10
m=0

(

k
m

)

(

1
2

)k
N10 < k/2

(12)

H0 will be rejected if thep-value is smaller than a given sig-
nificance levelα. For repeated tests, there are arguments for
and against a Bonferroni adjustment ofα [Per98,Zal97] so
here we reportp-values. According to Figure8, for the clas-
sifiers on simple images, the only two classifiers which are
not significantly different are thekNNs, thep-values for all
the others approximate 0 (smaller than 5×10−5), showing
that similarity of these classifiers is unlikely. For classifiers
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Figure 7: Top: testing error on the simple image set, using
leave-one-out cross-validation. Bottom: testing error on the
complex image set using ten-fold cross validation. For the
simple set we also show the effect of intensitynormalisation
(denoted ‘norm’ in the key) via histogram equalisation. The
x-axis shows k for the kNN. Theraw image is a raster-
scanned version of the image.

on complex images, no pair of classifiers can reject the null
hyperthesis at a significance of 0.01 which means that, while
the results on bottom of Figure7 are promising, they would
benefit from more data.

Figure9 shows a further interesting interpretation of these
results showing the nearest neighbour match to a particu-
lar image string from the set of all the other 1491 images.
The images are numbered in the order in which they were
taken so the diagonal line indicates that the compression-
based nearest neighbour is usually the most visually similar
one. Exceptions are, for example, images from 500 to 742,
which are characterised by all having similar backgrounds.
Note that the sieve string appears to be much more robust
than the raw image string, as there are fewer points in the
off-diagnal squares.
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Figure 8: p-value for pairwise comparison of classifiers.
Top: classifiers for simple images. Bottom: classifiers for
complex images. In all cases k is that which gives the lowest
test error.

5. Ground truth data

In these experiments, the segmentation problem has been ig-
nored. Yet, as mentioned previously the background intro-
duced some bias which affects the performance of the clas-
sifier. This implies the potential of better performance by
introducing a segmentation. The foreground of a subset of
images (204 in total) taken from the complex images, was
hand-labelled to produce the ground truth. For each image
treeT with nodesA1...A|T|, the optimal nodeAi which best
covers the foreground segment,M, is the one that minimize
the normalizes XOR errorE⊕:

E⊕ =
|Ai ⊕M|

|Ai |+ |M|
, i = 1· · · |T| (13)

The subtree rooted atAi represents the foreground object
(as in Figure10), and the substring corresponding to it can
be chopped from the sieve string. Besides thekNN and the
SVM, histogram classifiers which compute theχ2 distance
between alphabet histogram of each pattern and the mean
histogram of each class are also constructed, with bin size
optimized following Scott’s rule [Sco79]). In Figure11, the
substring classifiers work better than those that use whole
string, indicating the positive effect of segmentation for
learning. Of course the segmentation problem remains but it
is now a one-dimensional problem because strings construc-
ted by depth-first parsings of sieve trees have the property
that connected sets in the image aways map to contiguous
sub-strings. Figure12 shows the nearest neighbours of 104
segmented sieve strings. Thex-axis is the index of the test
images which here have complex backgrounds. They-axis
is the nearest match from the set with simple background.
The indices were chosen so that 1 to 52 are class 1 and re-
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Figure 9: The nearest neigbour of each image from the
complex image, using sieve string distance (top) or raw im-
age string distance (bottom). The first 742 images are from
class 1 and the rest from class 2. The red dashed line which
sub-divides the space into four squares marks the separat-
ing point of two classes. Points that fall into first and third
squares are positive matches.

mainder are class 2. We infer from this result that there is
enough discriminating structure in the substring that repres-
ents the object to preserve the low error rate.

6. Conclusion

This paper has applied the normalised compression distance
in a classification framework using the prediction by partial
matching compressor. Although the method has its origins
in Kolmogorov complexity, the resulting classifier is simple
to implement and takes advantage of any developments in
compression – an area where there are considerable rewards
for improved algorithms. A great strength of the method is
that it does not require an explicit feature extraction step
which has been demonstrated by applying identical classi-
fiers to two types of data that differ greatly: the raw im-
age and the output of a sieve tree. Furthermore the method
covers variable-length features without any special engineer-

Le
ve

l

Figure 10: One image from the experiment. Top: the hand-
segmented foreground (the purse). Bottom: the sieve tree of
the image, in which y axis stands for the depth of node. High-
lighted nodes (shown green if printed in colour or light grey
in greyscale) make up the subtree that describes foreground
object.
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Figure 11: The performance of classifiers based on whole
sieve strings and sieve substrings, evaluated by leave-one-
out cross validation. ‘Hist’ stands for the histogram method.

ing. We find that, even though the sieve tree string is con-
siderably smaller than the original image, the classification
performance is, on the whole, better with sieve trees than
without. This confirms and extends the results of, for ex-
ample, [DL00] in which it was shown that matching these
trees might be viable technique for image retrieval.
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Figure 12: The nearest neighbour scatter graph. The 1nn
classifier is trained and tested with images of different back-
ground groups. The error rate is below1%
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