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Abstract

In this paper we discuss how Interval Analysis can be used to solve some problems in Computer Vision, namely
autocalibration and triangulation. The crucial property of Interval Analysis is its ability to rigorously bound the
range of a function over a given domain. This allows to propagate input errors with guaranteed results (used in

multi-views triangulation) and to search for solution

in non-linear minimisation problems with provably correct

branch-and-bound algorithms (used in autocalibration). Experiments with real calibrated images illustrate the

interval approach.

Categories and Subject Descriptors (according to ACM
CCS): 1.4.8 [Image Processing and Computer Vision]: Scene
Analysis 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling G.4 [Mathematical Software]: Re-
liability and robustness

1. Introduction

Interval analysis (IA) [Moo66] is an approach to the solu-
tion of numerical problems by performing computations on
sets of reals rather than on floating point approximations to
reals. IA defines methods for computing an interval that en-
closes the range of various elementary mathematical func-
tions. Interval evaluations return a superset of the mathemat-
ically correct result, hence the interval approach is said to be
rigorous.

There are two principal advantages of IA over classical
numerical analysis. The first is that the input errors and the
roundoff errors are automatically incorporated into the result
interval. Thus, interval evaluation can be viewed as automat-
ically performing both a calculation and an error analysis.
The second is that IA allows one to compute provably cor-
rect upper and lower bounds on the range of a function over
an interval, and this proves useful in solving global optimi-
sation problems. Another important application of IA is the
construction of verifiable constraint solvers, which return in-
tervals that are guaranteed to contain all the real solutions.

In this paper we report our experience in applying 1A
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tools to Computer Vision problems. IA is not a panacea,
of course, but has been strangely overlooked by the Com-
puter Vision community. To the best of our knowledge, only
[Bro83, OF87, MKP96] in the past approached IA, but they
did not push this research forward. More attention has been
given to IA in the Computer Graphics community, where it
has been applied to problems such as ray tracing, approxi-
mating implicit curves [Sny92], and others.

On the basis of our preliminary results, however, we
maintain that this is a very interesting and promis-
ing paradigm, which might challenge the probabilistic
maximum-likelihood one in problems involving real data
and provide guarantee of global convergence to non-linear
optimisation algorithms.

We applied IA techniques to the problem of autocal-
ibration [FBFB04b], whose solution comes from a non-
linear minimisation, and to the problem of triangulation
[FBFBO4a], which requires that error in the localisation of
image points is suitably taken into account. In this paper we
will give an overview of IA and outline its application to
these two problems.

The classical approach to autocalibration (or self-
calibration), in the case of a single moving camera with
constant but unknown intrinsic parameters, is based on the
Kruppa equations [MF92], which have been found to be very
sensitive to noise [LF97]. Other formulations (see [Fus00]
for a review) avoid this instability, but all are based on
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a non-linear minimisation and none of the existing meth-
ods is provably convergent. On the contrary, IA algorithms
[Han92] solve the optimisation problem with automatic re-
sult verification, i.e. with the guarantee that the global min-
imisers have been found.

In the absence of errors, friangulation is a trivial prob-
lem, involving only finding the intersection of rays in the
space corresponding to back-projections of the image points.
If data are perturbed, however, the rays do not intersect in a
common point, and obtaining the best estimate of the 3-D
point is not a trivial task. In literature, the custom procedure
is to find the “best” 3-D point in some sense [HS97, Zha98].
Thanks to IA, instead of selecting one best solution, one can
enclose the set of all the possible solutions, given a bounded
error affecting the image points.

Adbhering to the IA paradigm, we do not model a proba-
bility distribution inside the intervals, therefore there is no
preferred solution in the solution set.

2. Interval Analysis

Interval Analysis [M0o066] is an arithmetic defined on inter-
vals, rather than on real numbers. It was firstly introduced
for bounding the measurement errors of physical quantities
for which no statistical distribution was known. In the se-
quel of this section we shall follow the notation used in
[KNN*], where intervals are denoted by boldface. Under-
scores and overscores will represent respectively lower and
upper bounds of intervals. The midpoint of an interval X is
denoted by mid(x). IR and IR" stand respectively for the set
of real intervals and the set of real interval vectors of dimen-
sion n. If f(x) is a function defined over an interval x then
range(f,x) denotes the range of f(x) over x.

Ifx = [x,X] and y = Q,y], a binary operation between x
and y is defined in interval arithmetic as:

xoy={xoy|xexAyey},Voe {+,—,x,+}.

Operationally, interval operations are defined by the min-
max formula:

Xoy = [min{go%goﬁfox,foy} ,
max {goz,)_coy,XoX,Xoy}] (H

Here, interval division x/y is undefined when 0 € y. How-
ever, under certain circumstances it make sense to define
such quotients in a extended arithmetic [Kea96], where the
division by zero is included, resulting the interval [—oo, o]
in the worst case.

It is to note that the ranges of the four elementary interval
operations are exactly the ranges of the corresponding real
operations, and the above definitions imply the ability to per-
form them with arbitrary precision. When implemented on a
digital computer, however, truncation errors occur, and they
may cause the resulting interval not to contain the true result.

In order to preserve the guarantee that the true value always
lies within the interval, end-points must be rounded outward,
i.e., the lower endpoint of the interval must be rounded down
and the upper endpoint must be rounded up.

2.1. Inclusion functions

In general, for arbitrary functions, interval computation can-
not produce the exact range, but only approximate it.

Definition 1 (Interval extension) [Kea96] A function f :
TR — IR is said to be an interval extension of f: R — R
provided

range(f,x) C £(x)
for all intervals x C IR within the domain of f.

Such a function is also called an inclusion function. So, given
a function f and a domain X, the inclusion function yields a
rigorous bound (or enclosure) on the exact range range(f, x).
This property is particularly suited for error propagation: If
x bounds the input error on the variable x, f(x) bounds the
output error. Therefore, if the exact value is contained in in-
terval data, the exact value will be contained in the interval
result. This approach is different from the established tech-
niques for error propagation [Fau93, Har96, Kan93], mainly
based on statistical analysis: a statistical distribution of the
error need not to be assumed, and the result is mathemati-
cally guaranteed to contain the exact value.

Definition 2 (Natural interval extension) Let us consider
a function f computable as an arithmetic expression f, com-
posed of a finite sequence of operations applied to constants,
argument variables or intermediate results. A natural inter-
val extension of such a function, denoted by f(x), is obtained
by replacing variables with intervals and executing all arith-
metic operations according to the rules above.

Similar definitions apply for interval vectors (or boxes) in
IR". Some points are worth noting:

e Different expressions for the same function yield different
natural interval extensions. For instance, f(x) = X —x,
and f5(x) = x(x — 1) are both natural interval extensions
of the same function.

e Variable dependency: Evaluating the expression f(x) =
x—x with the interval [1,2], the result is f([1,2]) = [1,2] —
[1,2] = [-1,1], not 0, as expected, because the piece of
information that the two intervals represent the same vari-
able is lost.

e Overestimation: Although the ranges of interval arith-
metic operations are exact, this is not so if operations are
composed. For example, if x = [0,1] we have f3(x) =
[0,1]([0,1] — 1) = [0,1][—1,0] = [—1,0], which strictly
includes range(f, [0,1]) = [—1/4,0]. This effect arises as
a consequence of the previous two.

e Wrapping effect: This is a phenomenon intrinsic to inter-
val computation in R", namely the fact that the image of
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abox x under a map F : R" — R" is not a box, in general.
Interval computation can yield, at best, the interval hull
of range(F, x), i.e. the smallest box containing range(F, X)
(see Fig. 1).

Figure 1: The wrapping effect.

The notion of order of an inclusion function characterises
how sharply interval extensions enclose the range of a func-
tion: a higher order of inclusion means that the inclusion
function gives sharper bounds. It can be shown [Kea96] that
the natural interval extension is first order. Higher-order in-
clusion functions have been defined, for example the Taylor
models (see [Neu02]):

Definition 3 (Taylor Model) Let f : x C R” — R be a func-
tion that is (m + 1) times continuously partially differen-
tiable. Let xo be a point in x and P, y the m-th order Taylor
polynomial of f around x¢. Let I, s be an interval such that

f(x) €Ppslx—x0)+Lys Vxex. 2)

We call the pair (P, r, L, ¢) an m-th order Taylor model of f
[MBO03] .

Py + 1, r encloses range( f,X) between two hypersurfaces,
as in Fig. 2.

Figure 2: Example of bounding a 7th order polynomial with
a 3rd order Taylor model

The sharpness of the bounds depends on the method used
to obtain the inclusion function for P, ¢. A Taylor-Bernstein
form is a Taylor model where the polynomial is expressed
in the Bernstein basis rather than in the canonical power
basis. The advantage is that the Taylor-Bernstein form al-
lows to compute the exact range of the polynomial part (see
[NKO2]). It can be shown that a Taylor-Bernstein form of
degree m has order of inclusion m + 1.

2.2. IA-based Optimisation

The ability of Interval Analysis to compute bounds to the
range of functions has been most successful in global op-
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timisation. The overall structure of the Moore-Skelboe or
Hansen [Han92] branch-and-bound algorithm is:

1. store in a list £ the initial interval xy € IR" containing
the sought minima;

2. pick an interval x from £;

3. if x is guaranteed not to contain a global minimiser,
then discard it, otherwise subdivide x and store the sub-
intervals in £;

4. repeat from step 2 until the width of the intervals in £ are
below the desired accuracy.

The criteria used to delete intervals are based on rigorous
bounds, therefore the interval containing the global min-
imiser is never deleted.

A problem of global optimisation algorithms based on
this scheme is the so called cluster effect [KD94]: sub-
intervals containing no solutions cannot be easily eliminated
if there is a local minimum nearby. As a consequence of
over-estimation in range bounding, many small intervals are
created by repeated splitting, whose processing may domi-
nate the total work spent on global search. This phenomenon
occurs when the order of the inclusion function is less than
three [KD94], hence with Taylor-Bernstein form of degree
> 2 as inclusion functions the cluster effect is avoided.

We employed an algorithm inspired by a recently pro-
posed global optimisation method [NKO2], based on the
Moore-Skelboe-Hansen branch-and-bound algorithm and
Taylor-Bernstein forms for bounding the range of the ob-
jective function.

The complete optimisation scheme can be summarised as
the pseudo-code reported in the next page. A combination of
several tests has been used in our implementation:

1. The cut-off test uses an upper bound f of the global min-
imum of the objective function f to discard an interval
x from £ if f(x) > f. Any value taken by f is an up-
per bound for its global minimum, but the tighter is the
bound, the more effective is the cut-off test.

2. The monotonicity test determines whether the function f
has no stationary points in an entire sub-interval x. De-
note the interval extension of the gradient of f over x by
Vf(x). If 0 ¢ Vf(x) then x can be deleted.

3. The concavity test examines the concavity of f, using its
Hessian matrix H. Let H; ;(x) denote the interval exten-
sion of the i—th diagonal entry of the Hessian over x. An
interval can be deleted if H; ;(x) < 0 for some i.

4. The Interval Newton step applies one step of the inter-
val Newton method [Kea96] to the non-linear system
Vf(x) =0, x € x. As a consequence we may validate that
X contains no stationary points, in which case we discard
X, otherwise we may contract or subdivide x.

3. Computer Vision background

Throughout this paper we will use the general projective
camera model [HZ03]. Let M = [x,y,z, 1}T be the homo-
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GLOBAL-OPTIMISATION ALGORITHM

U—0

L« {xo} list of intervals sorted in order of increasing f(x)

while £ # () do

remove the first interval x from £
if stop criterion then &/ — U U {x}
else if (cut-off test: f(x) > f or
monotonicity test: 0 ¢ VE(x) or
concavity test: H; ;(x) < 0 for some i) thenY « ()
else interval Newton step: Y «— xNN(V f;x, mid(x))
bisect Y and insert the resulting intervals in £

update f
end
return U/

geneous coordinates of a 3D point in the world reference
frame. The homogeneous coordinates of the projected point
m are given by

km =PM (3)

where K is the depth of M wrt the camera, and P = A [R|¢] is
the camera matrix, whose position and orientation are repre-
sented, respectively, by the translation vector 7 and the 3 x 3
rotation matrix R (extrinsic parameters). The matrix A con-
tains the intrinsic parameters, and has the following form:

Oly Y up
A=(10 o v, 4)
0o 0 1

where o, oy are the focal lengths in horizontal and vertical
pixels, respectively, (ug,vo) are the coordinates of the prin-
cipal point, given by the intersection of the optical axis with
the retinal plane, and 7y is the skew factor, that models non-
rectangular pixels.

Two conjugate points m and m’ are related by the funda-
mental matrix F [LF96]:

m'TFm=0 (5)
which is related to intrinsic and extrinsic parameters by
FoA"T([xR)A" (6)

where - denotes equality up to a scale factor. The rank of
F is two and, being defined up to a scale factor, it depends
upon seven parameters.

When conjugate points are in normalised coordinates
(A~ 'm), i.e. the intrinsic parameters are known, they are re-
lated by the essential matrix:

E « [t]xR. (N

The essential matrix encodes the rigid transformation be-
tween the two cameras, and it depends upon five independent
parameters: three for the rotation and two for the translation
up to a scale factor.

A counting argument implies that there must exist two
linear independent constraints that characterise the essential
matrix. Indeed, the essential matrix is characterised by the
following Theorem [HF89, Har92]:

Theorem 1 A real 3 x 3 matrix E can be factored as the
product of a non-zero skew-symmetric matrix and a rotation
matrix if and only if £ has two identical singular values and
one zero singular value.

4. Autocalibration: problem formulation

In many practical cases, the intrinsic parameters are un-
known and point correspondences are the only information
that can be extracted from a sequence of images. In this
hypothesis, called weak calibration, fundamental matrices
can be obtained directly from conjugate points. Autocalibra-
tion consists in computing the intrinsic parameters, or —in
general— recovering the Euclidean stratum from weak cali-
brated cameras.

The autocalibration method by Mendonga and Cipolla is
based on Theorem 1. They designed a cost function which
takes the intrinsic parameters as arguments, and the funda-
mental matrices as parameters, and returns a positive value
proportional to the difference between the two non-zero sin-
gular value of the essential matrix. Let F;; be the fundamen-
tal matrix relating views i and j (computed from point corre-
spondences), and let A; and A be the respective (unknown)
intrinsic parameter matrices. The cost function is

x(Ai i=1...n) = w2 (g)
S5 loij+ %00

where lci > 20[ ; are the non zero singular values of
T
Ej=ATFyAj, ©)
and w;; are normalised weight factors.
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4.1. The Huang-Faugeras cost function

The use of Eq. (8) as an optimisation criterion has been con-
sidered, however bounding the ranges of the singular val-
ues of an interval matrix is not trivial, since it requires the
solution of a min-max optimisation problem. Therefore, in
the same spirit of the Mendonga-Cipolla algorithm, we min-
imise the following cost function,

X(Ai7i:17"'7n):
_ i i "ZtI(E[jE[jT)Zftrz(EijE[jT)
i=1

Wij
. 2. .F.. T
j=it1 e (EijEij )
based on the Huang-Faugeras constraint:

(10)

det(E)=0 A 2t((EE")*) — (wr(EE"))*=0. (11)

which is equivalent to the constraint expressed by Theorem
1. Indeed, it is easy to see that

3
w(EET)? = Y 6L (E). (12)
k=1
Hence, the second clause of (11) can be rewritten as

2tr(EE")? —t*(EE") =

= (61 —03)° +03(03 —2(01 +063)). (13)

Therefore, provided that 63 = 0, each term of the cost
function expressed by (10) vanishes for 67 = 63, as does the
corresponding term of the Mendonga-Cipolla function (8).
Moreover, as the terms are always positive, we do not need
to take their square, as it would be required in a generic least
squares problem, thereby reducing the order of the numera-
tor and the denominator of the cost function from sixteen to
eight.

The Jacobian and Hessian matrices of the cost function
are derived in closed form in [FBFBO03].

An enclosure A of the intrinsic parameters is obtained as
the result of minimimizing (10) using the global optimiza-
tion algorithm described in Sec. 2.2.

5. Triangulation: problem formulation

Let P;,i=1,...,n be a sequence of n known cameras and
m; be the image of some unknown point M in 3-D space,
both expressed in homogeneous coordinates. The problem of
computing the point M given the camera matrices P; and the
image points m; is known as the friangulation problem. In
the absence of errors, this problem is trivial, involving only
finding the intersection point of rays in the space. When data
are perturbed by errors, however, the rays corresponding to
back-projections of the image points do not intersect in a
common point, therefore only an approximate solution can
be defined. This approximation can be circumvented if one
refrains from searching for one solution and compute instead
a set of solutions that contains the error-free solution and can
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be defined precisely in terms of the error affecting the image
points.

C1
Figure 3: Interval-based triangulation.

In the case of two views, assuming that errors are bounded
by rectangles By and Bj in the image, the solution set of
triangulation is a polyhedron D, with a diamond shape as in
Fig 3. Geometrically, D, is obtained by intersecting the two
semi-infinite pyramids defined by the two rectangles B and
B, and the respective camera centres.

In the general case of n views, the solution set is defined
as the polyhedron formed by the intersection of the n semi-
infinite pyramids generated by the intervals By, ...By. Ana-
Iytically, this region is defined as the set

D, = {M :Vi=1,...,n3dm; € B; s.t. m; ZP[M}.

In the following we will show how the solution set can be
enclosed with an axis-aligned box using Interval Analysis.

Given the camera matrices P; and P, let m; and my
be two corresponding points. It follows that m, lies on the
epipolar line of m; and so the two rays back-projected from
image points m; and m; lie in a common epipolar plane. As
they lie in the same plane, they will intersect at some point.
This point is the reconstructed 3-D scene point M.

The equation of the epipolar line can be derived from the
equation describing the optical ray of m;:

—1 ~1
M= <P3><31,1P- 4,1) +A <P3X31m1> » AER, (14

where P33 1 is the matrix composed by the first three rows
and first three columns of Py, and P. 4 ; is the fourth column
of P;. The epipolar line corresponding to m; represents the
projection of the optical ray of m; onto the image plane 2:

Ky = ey + A (15)
where

—1
—P P _
_ 3x3,11-4,1 - 1
er =P x | ) and my =Py 5 ,P3 5 my.

Analytically, the reconstructed 3-D point M can be found
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using Equation (15), by solving for parameters k and A, us-
ing the following closed form expressions:

1 (myxmj)- (e xmj)

K leaxm[2

)

/
A (myx 63) (m xea) (16)
K |lm} x es]|?

The coordinates of M are then obtained by inserting the
value A into Equation (15) (obviously, M can also be recov-
ered with respect to the other camera, using the optical ray
generated by my). After doing all the substitutions, we can
write a closed form expression that relates the reconstructed
point to the two conjugate image points:

M=f(m1,m2) (17)

We chose this formulation of the triangulation, introduced
by [Fau92], precisely because it leads to this closed form ex-
pression, representing the geometric operation of intersect-
ing rays in 3-D space. This will be a key feature for the ap-
plication of Interval Analysis.

6. Interval-based triangulation

Let us consider the expression f defined in Eq. (17). If we let
m and my vary in B and Bj respectively, then range(f, B; X
B») describes the solution set D;. Interval Analysis gives us
a way to compute an axis-aligned bounding box containing
D5 by simply evaluating f(m;,m;), the natural interval ex-
tension of f, with By = m; and B, = my,.

IA guarantees that if the conjugate intervals m; and m;
contain the exact point correspondences, then the interval
result contains the exact (i.e. error-free) 3-D reconstructed
point.

It may be worth noting that the result is not to be inter-
preted in a probabilistic or fuzzy way: no assumption is made
on error statistical distribution, hence no point inside the re-
sulting 3-D interval is more probable or more important than
others.

Figure 4: Interval-based triangulation with n views.

The approach is easily extendible to the general n-views

case. As defined in Sec. 5, the solution set of triangulation is
the 3-D polyhedron formed by the intersection of the semi-
infinite pyramids generated by back-projecting in space the
intervals my,...,m, (Fig. 4). Thanks to the associativity of
intersection, D, can be obtained by first intersecting pairs of
such pyramids and then intersecting the results. Let D;J be
the solution set of the triangulation between view i and view
Jj. Then:

D,= () Dy. (18)

i=l,..,n

j=i+l,...n
An enclosure of the solution set D is obtained by inter-
secting the n(n — 1)/2 enclosures of D;’j computed with the
method described in Sec. 6. Since each enclosure contains
the respective solution set Déj , their intersection will con-
tain D,. Similarly, as the error-free solution is contained in
each D;’j , then it must be contained in D, as well.

7. Experimental results

Experimental validation of the algorithms described here
and other results can be found in [FBFB04b] and on the
Internet!. In this paper we only report one example of au-
tocalibration and reconstruction.

We used the Valbonne sequence, consisting of five frames.
The starting interval for the global minimisation is chosen
as follows: the midpoint for (ug, vo) is the image centre and
the width is 20% of the image size; the interval for the focal
lengths is [300 x 1700]. The average width of the elements
of the intrinsic parameters matrix obtained at the end of the
minimisation is about one pixel. Table 1 compares our re-
sults with those published in [ZF96], obtained with a differ-
ent autocalibration algorithm.

Oy Oy ug Vo

Zeller & Faugeras  681.3  679.3  258.8 383.2

Our algorithm 6185 699.2 2341 3728

Table 1: Midpoint of intrinsic parameters computed with
our algorithm versus the result found in [ZF96].

Once intrinsic parameters are known, the motion can be
factorised out from the essential matrices [Har92], and the
projection matrices recovered as in [ZF96]. This part is exe-
cuted using mid(A), but at the end of the process the interval
nature of A is taken into account by computing normalised

coordinates in interval arithmetic: m «— A~ 'm.

Normalised pointwise projection matrices P; = [R | 7] are
then used together with interval normalised coordinates to

T http://www.sci.univr.it/~fusiello/demo
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reconstruct the Valbonne church (Figure 5) with our interval-
based triangulation.

Given that image points are contained in 2-pixel wide in-
tervals, the average side length of the 3-D boxes is about 50
cm. It is interesting to note that these boxes extend mainly
along the z-axis.

8. Conclusions

In this paper we discussed how Interval Analysis can be
used to solve some problems in Computer Vision, namely
autocalibration and triangulation. Autocalibration consists
in performing a non-linear minimisation, and triangulation
requires that errors in the localisation of image points are
suitably taken into account. [A allows to propagate input er-
rors with guaranteed results and to obtain provably correct
branch-and-bound algorithms.

On the basis of our preliminary results we maintain that
IA is a very interesting and powerful paradigm, which might
be applied to many other problems.

Work is in progress aimed at including geometrical con-
straints (e.g. known angles or lengths), which, together with
the rigidity of the structure, will help to reduce further the
width of the solution boxes.
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