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Abstract

We present a scheme for achieving level of detail and compression for animation sequences with known constant
connectivity. We suggest compression is useful to automatically create low levels of detail in animations which
may be more compressed than the original animation parameters and for high levels of detail where the original
animation is expensive to compute. Our scheme is based on spatial segmentation of a base mesh into rigidly
transforming segments and then temporal aggregation of these transformations. The result will approximate the
given animation within a user specified tolerance which can be adjusted to give the required level of detail. A
spatio-temporal smoothing algorithm is used on decoding to give acceptable animations. We show that the rigid
transformation basis will span the space of all animations. We also show that the algorithm will converge to the
specified tolerance. The algorithm is applied to several examples of synthetic animation and rate distortion curves
are given which show that in some cases, the scheme outperforms current compressors.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

We consider the representation of synthetic animations con-
sisting of sequences of meshes with constant connectivity
across time. Our goal is to provide automatic level of de-
tail and compression by using a basis of rigidly transforming
subsets of the mesh.

For such animations an effective compression is already
available in the form of the objects used and operations per-
formed by the animator. Most animation packages store their
data parametrically so that, for example, to encode a bounc-
ing ball animation only a few parameters (ball diameter,
elasticity, gravitational constant) are needed. We refer to this
as the animator’s parameterisation. To compress this by con-
sidering a sequence of meshes would seem perverse since it
would seem that the most efficient compression will be given
by the few parameters needed to describe the physics and ge-
ometry of the situation. However, there are three cases where
the animator’s parameterisation is not more efficient and an-
other basis for animation is needed. First, for computation-
ally expensive animations, such as physics based simula-
tions, the parameters of the simulation will give a more com-
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pact representation but the decoding (solving of the simula-
tion) will take a prohibitively long time. For analytic (cap-
tured) animations there is no ready animator’s parameteri-
sation and so a representation (which ought to be more ef-
ficient than a sequence of meshes) must be formed just to
display the animation. In this case there is no temporal cor-
respondence between vertices and we do not consider this
here although our work may be extended to solve the cor-
respondence problem also. Lastly, automatic level of detail
is rarely possible with the animator’s parameterisation since
there is no automatic way to decide which parameters are the
most significant.

With these points in mind, we concentrate on the problem
of providing a controllable level of detail parameterisation
of synthetic animations using a simple rigid transform (RT)
basis for animation. We seek to approximate an animation
with a sequence of rigid transformations applied to regions
of a base mesh. We note that we can always find such a ba-
sis which will span a given animation. This is because we
can always segment the animation into pieces of single ver-
tices and code the RTs as translations of each vertex from
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frame to frame (without compression). We approximate the
animation by segmenting it into larger pieces which are then
rigidly transformed. To optimise the compression, we wish
to have as many large pieces as possible while maintaining
an error within a user specified tolerance. Further compres-
sion is achieved by then aggregating rigid transformations
between time steps where there is little movement of the seg-
ment. The resulting reconstructions, although demonstrably
accurate in the RMSE sense, may not be smooth in space
or time. We therefore present a spatio-temporal smoothing
which can be applied on reconstruction. We give examples
to demonstrate progressive levels of detail of animation and
give rate distortion curves of the compression which show
that the basis is competitive with other schemes. We also
demonstrate automatic level of detail which, for low levels
of detail, is compressed more efficiently than the animator’s
parameterisation.

Our contribution to the field is

e Coding of animations with a simple RT basis which spans
a given animation without residual.

e Weighted least squares segmenting of a base mesh into
rigidly transformable pieces.

e Exploiting temporal coherence in the animation by aggre-
gating transformations which are similar over time.

e Spatio-temporal smoothing

e Rate distortion analysis

2. Previous Research

Both the graphics and the vision communities have con-
tributed to the background for the relatively new field of
the analysis of dynamic meshes. From graphics the need for
level of detail, re-meshing and compression of static meshes
has given rise to a field of research into mesh parameterisa-
tion 10.7.9, The vision community have for a long time been
dealing with compression in video by tracking rigid and non-
rigid scene features 4 and by principal component analysis 3.

Due to a lack of captured dynamic 3D data, research
into dynamic meshes has concentrated on synthetic anima-
tions with constant topology and hence correspondence is-
sues have been by-passed. As a result the full power of these
graphics and vision algorithms - optical flow, re-meshing,
tracking - has not yet been applied to the 3D case. There
has, however, been a research effort which has been moti-
vated by the need for LOD and compression algorithms to
be used in the dynamic setting. Guenter et al 6, for example,
have analysed the 3D positions of face markers to obtain a
compressed representation.

Lengyel ! has introduced the subject of time-dependent
geometry compression. He raises the question of what ba-
sis should be chosen to represent animation and considers a
number of different candidates for bases: free-form deforma-
tions, key-shapes, weighted trajectories and skinning before
describing an algorithm which codes the animation as a set

of dynamic affine transformations on different sections of a
base mesh (although he suggests that an improved scheme
would use a hybrid of bases). After these affinely transform-
ing segments have been decomposed out of the animation,
the residuals of the motion are coded. He goes on to dis-
cuss a sophisticated quantisation of both the residuals and
the affine transformations.

Purely geometric basis have been considered both by
Alexa and Muller 1 and by Bricefio et al. 2. Alexa and Muller
affinely transform each animation frame to the position of
the first frame and then use PCA on the geometry of each
frame to obtain a basis consisting of meshes. However, apart
from the transformation to the centre of mass, their basis is a
static geometry entirely decoupled from the dynamic mesh.
While this may be a highly robust method it cannot claim to
be an optimal basis for the time- dependent geometry. The
result is that a lot of possibly correlated mesh geometries are
stored. Brisceno et al. 2 also encode each mesh separately
as a geometry image 5. The result can be compressed using
standard video compression. Again any temporal coherence
that can be modelled as a basic transformation will not be
exploited.

Shamir and Pascucci’s 12 scheme exploits both temporal
and spatial coherence. They take Lengyel’s scheme and em-
bed it in a multiresolution data structure (TDAG) which can
be accessed temporally or spatially allowing the resolution
of each frame to change as a standard static level of detail
scheme would. The change in resolution of each frame is
driven the cost of performing a decimation in the mesh and
the improvement in the mesh. Such a data structure would
address the coupling of the spatial and temporal components
of any scheme but still leaves open the question of what basis
to choose.

In choosing the most efficient basis there is a trade-off be-
tween the size of the base vectors (for example 12 parame-
ters for affine transformations) and the dimension of the vec-
tor space (which will be larger for less sophisticated trans-
formations). In this paper we go further than Lengyel’s affine
transformations in noticing that any animation can be coded
as a set of rigid transformations (and hence with only 6 pa-
rameters) on a segmented base mesh provided the segments
are small enough (and hence the dimension of the space
larger) In the most trivial lossless case, each vertex could
be translated onto the vertex in the next frame (although, in
this case, no temporal coherence would be exploited) At the
other extreme (as in Alexa and Muller 1) an entire animated
object could be transformed to a central position giving a
very coarse approximation. In between these extremes there
is scope for a level of detail approach.
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3. Preliminaries

At frame i the coordinates of a mesh with N vertices are
given by the homogeneous coordinates:

Vi:{vij} forj=1...Nandfori=1...M.

where N is the number of vertices of the mesh and M is the
number of frames in the sequence. Here, spatial dependence
is given by the subscript j and time dependence is denoted
by the superscript i.

We wish to represent the animation by a base mesh (typi-
cally the first mesh of the sequence) B={b;} for j=1...N
with the same connectivity as each V' and a series of M x N
rigid transformations (RTs) given by 4 x 4 matrices Tj' com-
posed of rotations R'J- and translations t'j. The approximated
vertex of the animation at time frame i is then

Uij =Tjibj

We ensure that each base vertex b has exactly one RT, TJ-' at
each frame i. A lossless compression is possible since rigid
transformations will span the animation. This is apparent
since there exists a base mesh and a series of RTs which will
(without compression) give the animation exactly, namely

bj = V?
Rj=
t)=dvj =V, —vi"%
&) =0 (1)

This representation, as it stands, represents no compres-
sion over the original data. Compression is achieved by seg-
menting the series of RTs into a m x n series of distinct RTS
where m < M and n < N. The mesh B is first spatially seg-
mented into distinct pieces B so that B = {B;,| = 1...n}
and a set of M x n rigid transforms. We then segment tem-
porally by aggregating the M transforms into m transforms
to give the m x n compression.

4, Error Metrics

For a level of detail formulation we require the approxima-
tion be bounded by a given tolerance tol in the sense of some
error metric. We compare two error metrics with the usual
proviso that the metrics are purely geometric and are there-
fore not necessarily the metric to give the “best” visual re-
sults. An alternative may be to consider a metric which takes
into account appearance attributes such as that employed by
Hoppe 8. We use a Euclidean metric which averages error in
the Euclidean norm over time and also a maximum metric
which is the largest error over time and space so that

1 M
ell = |le = —
llell = llell2 =+ i;

or ||e||max :max{max{|T,-ib,-—vij|}}<to| ©)]
i i

1 N )
SSImh - @
=1
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where tol is the user specified tolerance which defines the
level of detail of the approximation.

5. Spatial Segmentation

We now describe an algorithm to segment the base mesh
into pieces with different series of RTs applied to them. Our
problem is to find the minimum number of RTs in such a
way that the error is still bounded by the tolerance tol.

For each time frame i we solve a binary weighted least
squares problem to solve for an average transform T]-' and
the vertices which it applies to. The weights allow us to de-
termine which vertex belongs to the piece under considera-
tion. If the error at a vertex is larger than tol then that vertex
should not belong to the piece and its weight is set to zero
and so does not contribute in the next iteration of the min-
imisation. Otherwise it is set to 1. The minimisation is then
performed again to calculate a new RT with the new weights
and this process is iterated until convergence is reached.

Specifically, to define a series of RTs for a new piece By,
we start at frame 0 with those vertices which have not yet
been segmented:

B = {B—Bsfors=0...1—1}.

Proceeding through each frame i the piece Bi of size N’
will have vertices removed until the end of the animation
is reached and so BM = B.

At each time frame i, we compute a single transformation
Tk and a weight wX( j) where k is the iteration number and j
refers to vertex bj. We wish to find T and wX(j) such that
the error

o= NE WE(DI(T*D; = vi)I?/ % wk(j) < tol
j:l j=1

forj=1...N' (4

is minimised. The weights will determine which vertices will
be included in the current piece. In order to obtain the least
possible number of pieces and hence the optimal compres-
sion, we wish to have the largest value of [jw]||2 for which
the least squares problem will converge to tol. Each weight
is set initially to 1 and the minimisation is performed using
SVD to find minTk{ek} and TX. A weight is then set to 0 if
the distance of its transformed vertex:

d“(j) = IT*bj —v;|
is greater than tol or e so that
w(j) =1

if d(j) < eXor d¥(j) < tol
otherwise

1y )1
Wi ={ ®

With this weighting function the algorithm will converge to
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a value less than tol since it can be shown that, after the least
squares minimisation,

et = minr /5N wRHL(1)|(Tbj — vi) 2/ £ wh1(j)
< /SN ()1 TR — Vi) 2/ 5Ny wkt( )
< /max{eX, tol }2 = max{eX, tol }.

So either the sequence of errors ekis decreasing or it is less
than tol and so has converged. Once convergence has been
reached on frame i, the piece B} is set to

gitt _ [ {bjiw(i) =1}
! {bj : dX(j) > tol}
We then perform the same weighted least squares minimisa-

tion on frame i+ 1. Thus the number of vertices N’ in each
piece reduces as we progress through the frames.

for the L? norm (2)
for the max norm (3)

(6)

The weighted least squares problem (4) becomes under-
determined if 3\, w"1(j) < 3. However this is also ex-
actly the point at which RTs cease to become profitable for
encoding the animation. This is because to encode two trans-
lations at each frame would take 6 floats and to encode a
RT at each frame would also take 6 floats since there are 6
degrees of freedom in a rigid transformation. Therefore we
choose to encode these pieces using translations (which are
trivial to compute) and refer to them as "small pieces".

Once the weighted least squares problem (4, 5) has con-
verged for each time frame we have determined a segment
of the animation and set B| = B|M. The process is then per-
formed again for the unassigned vertices until all the ver-
tices have been assigned. The base mesh is thus segmented
into n independent pieces which each have a sequence of
M transformations. The error of the approximation for each
piece and hence for the whole approximation is within the
prescribed tolerance. The whole process is outlined in the
following pseudocode:

while(B? # 0){
fori=1toM){
while (ex > tol) {
Solve weighted least squares minimisation 4 and 5

Set BI** using 6

}

B, =BV
B?={B—Bsfors=0...I—1}

6. Temporal Segmentation

Since each transformation has been computed for B and
not for the final piece B; we re-calculate the transformations
again by solving 4 with weights fixed to 1.

The next step is to further exploit temporal coherence by

aggregating RTs which are similar over time. To do this we
compute the error of transforming a piece at time i with the
previous transformation TJ-'_l instead of the current transfor-

mation Tji. If this error is bounded be tol then the transforms
are aggregated, so that
N ri—1 i 2
If i1 |T{7 b —Vj| < N'tol” or
max_y_n{T| 'bj—Vv}} <tol
then T =T

depending on the error metric used. Thus the number of dis-
tinct RTs for each piece is reduced from M to m.

7. Smoothing

Although the method will give an accurate representation
of the animation in a purely geometric sense, the animation
may appear jerky in time and space. We have found that this
is easily rectified with a simple spatial-temporal smoothing
scheme. We first convert the transformations to a dense se-
ries of M x N translations 6u'j which are the approximated

version of 6vij in the representation 1.

The smoothing is performed by averaging over frames and
neighboring vertices
T

1 9 itk
6 kzzr Igl6UIJTH

—
5Uj=

1
T
where g and T are the spatial and temporal smoothing param-
eters respectively. The spatial summation is performed over
the o vertex rings surrounding the given vertex. The anima-
tion is reconstructed by translating b; incrementally by the

set of translations {6?]- }

In practice we have found that a spatial smoothing pa-
rameter o = 1 is usually sufficient. However, more temporal
smoothing is required at lower levels of detail where trans-
formations will be very sparse. We therefore vary T between
0 for high levels of detail and 7 at low levels.

7.1. Compression and Error

We calculate the size of the compressed animations analyti-
cally by the formula

Size in Bits =

(Big Piece Transforms x 6 4 Single Vertex Transforms x 3) x Q

+ Transform Indices + Original Mesh

since an RT requires 6 floats to encode but a translation
only requires 3. Transform indices are required to associate
transformations with each vertex. The orginal mesh is en-
coded using Tuoma-Gotsman compression 13, The quantisa-
tion level Q can be calculated as the smallest integer such
that
frmax — frvin
Q> 109
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Figure 1. Level of detail for chicken animation at tol =
0.01,0.05,0.1,2.

where fmax and fyin are the maximum and minimum floats
to be encoded. This will ensure a quantisation error which
is less than the error in the animation and hence will not
affect the overall error greatly. Signal to noise ratio (SNR) is
calculated as suggested in Khodakovsky ° to be

BoundingBoxDiagonal

8. Results

We have tested the algorithm on several data sets which have
been used to evaluate other schemes. We demonstrate seg-
mentation of the mesh, level of detail, convergence, smooth
animation and rate distortion analysis.

Figures (2, 8, 6) show the spatial segmentation of stan-
dard animation examples. It is clear that as the number of
segments increases the animation converges to the original
animation.

8.1. Convergence and Smoothed Convergence

Figure 9 shows the error over time for the snake example at
different tolerances and smoothing. The error is bounded by
tol for all times demonstrating convergence of the algorithm.
We note that the smoothing algorithm does not greatly affect
the error at low levels of detail. The error’s quoted in this
paper are for the smoothed animations. Figure 7 shows the
effect of smoothing the animation.

8.2. Level of Detail

Figure 2 shows the chicken animation reconstructed at dif-
ferent levels of detail in the first 260 frames. At the lowest
level of detail (tol = 2) there is only one piece which moves
rigidly throughout the animation. Figure (1) shows the ani-
mations represented at various levels of detail.

8.3. RateDistortion Analysis

Figures 3, 4 and 5 and tables 1, 2 and 3 show the rate-
distortion analysis for the chicken, avatar and snake ex-
amples. For comparison the PCA algorithm of Alexa and
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Muller 1 was also implemented with the modification that
the geometric basis was quantised to provide greater com-
pression.

The tables show that the algorithm has converged success-
fully since all the errors are within the given tolerance. At
lower tolerances the number of pieces and their transforma-
tions increases. We also show the result of the further tempo-
ral compression by noting the percentage of RTs which are
kept after the aggregation (7). Both compression algorithms
show an improvement on compressing each mesh separately
using Tuoma-Gotsman compression. Also the tables show
the possibility of compressing the animation below the ani-
mator’s parameterisation for low levels of detail.

The rate distortion curves for the snake and avatar models
show that our method outperforms that of the PCA method.
In the avatar example (Figure 8) most of the animation is
rigid. However, skeleton subspace deformation blends the
rigid transforms of the bones so that near joints the anima-
tion is non-rigid. Interestingly the division is not as an ani-
mator may make it (at tol = 0.1 for example the left leg is
segmented at the middle of the thigh rather than the knee).
This shows that at this level of detail, the compression may
be more efficient than the animator’s parameterisation which
would not necessarily find the most correlated pieces. For
higher tolerances the scheme is seen to converge to the orig-
inal animation. At tol = 0.01 we can see a large number of
pieces are needed around the shoulder where much of the an-
imation is non-rigid. The snake example shows the best rate-
distortion performance and demonstrates how well non-rigid
deformation can be approximated by rigid.

The chicken animation involves a character which is an-
imating in an approximately rigid manner for the first 260
frames before doing a cartoonish "take" where the neck and
eyes are stretched and inflated. This non-rigid "take™ along
with the animation of feathers and "cluckers" in the chicken
example provides a difficult challenge for our scheme. Some
of the difficulty is met by manually segmenting the anima-
tion into time sequences which are mostly rigid. Thus for
tol < 1 we code the animation into different sequences (for
example before, during and after the "take"). This method
incurs an overhead of having to code a new base mesh geom-
etry (the first mesh in each sequence) for each segment. This
overhead is seen in the rate-distortion curve which shows
that the purely geometric method of PCA performs better.

9. Conclusion

We have introduced piecewise rigid transformations as a ba-
sis for animation compression. We have used this basis to en-
code animations without having to encode any residuals. We
have shown that this representation can encode an animation
efficiently for visually relevant ranges of SNR. Furthermore,
at low levels of detail, we have shown the possibility of com-
pressing animated meshes beyond the compression given by
the original animator’s parameterisation.
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Tol Max SNR Big Small %RTs Size
Error Pces  Pces (K)

1 0.853 124 6 0 13.4 37.2
05 0462 177 20 2 20.3 42.7
0.1 0.1 31.0 113 48 55.3 129.9
0.01 0.0099 512 216 547 84.3  1085.8

Animator’s Param. (kb) 307.2
8 bit Tuoma Compression (kb)  1619.1

Table 1: Errors for compressing chicken (3030 vertices 400
frames)

Tol Max SNR Big Small %RTs Size
Error Pces  Pces (K)

0.5 0.45 12.0 4 1 9.6 13.1

0.1 0.09% 254 20 0 232 175

0.05 0.049 313 38 9 345 277

0.01 0.0094 456 63 68 67.7  93.0
Mesh + Mocap (kb) 27.8

8 bit Tuoma Compression (kb) 357

Table 2: Errors for compressing avatar (1070 vertices 200
frames)

From the rate-distortion analysis it would appear that
the scheme performs most effectively with animations with
some rigid components. However, the highly non-rigid
movements in the chicken example prove hard to encode un-
less entirely new geometries are used. In the other examples
small non-rigid animations are well approximated by our al-
gorithm. We may conclude that prior knowledge of the type
of animation to be compressed would enhance any scheme
but that rigid transformations are a robust and cheap basis
for most animations.

10. Further Work
This work may be extended in the following ways

e The method could be extended to include a hybrid of
bases such as those suggested by Lengyel. A further level

of optimisation would be required to select which basis to
use.

e Further geometric compression is possible in the manner
described by Shamir 12,

e An automatic method for deciding how to segment the
animation over time would be more efficient. For example
this method would compress the chicken "take" separately
to the rest of the animation.

e Animations with different connectivity could be encoded
with RTs once a correspondence between vertices has
been established.
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Figure 2: Chicken animation at tolerance levels 2, 0.1, 0.01
and the original animation
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Figure 6: Cow animation at tolerance levels 0.1, 0.02, 0.01
and the original animation

Figure 7: Snake animation at tol = 0.02 without smoothing
(top) and with smoothingo=1and 1 =3

Figure 8: Avatar animation at tolerance levels 0.5, 0.1 0.01
and the original animation
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Figure 9: Error over time for snake animation
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