
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2018)
F. Jaillet, G. Zachmann, K. Erleben, and S. Andrews (Editors)

MLS Pressure Extrapolation for the Boundary Handling in
Divergence-Free SPH

Stefan Band† Christoph Gissler Andreas Peer Matthias Teschner

University of Freiburg, Germany

Figure 1: Our boundary handling processes complex geometries with reduced artifacts and more efficiently compared to previous methods.

Abstract

We propose a novel method to predict pressure values at boundary particles in incompressible divergence-free SPH simulations
(DFSPH). Our approach employs Moving Least Squares (MLS) to predict the pressure at boundary particles. Therefore, MLS
computes hyperplanes that approximate the pressure field at the interface between fluid and boundary particles. We compare
this approach with two previous techniques. One previous technique mirrors the pressure from fluid to boundary particles. The
other one extrapolates the pressure from fluid to boundary particles, but uses a gradient that is computed with Smoothed Particle
Hydrodynamics (SPH). We motivate that gradient-based extrapolation is more accurate than mirroring. We further motivate that
our proposed MLS gradient is less error prone than the SPH gradient at the boundary. In our experiments, we indicate artifacts
in previous approaches. We show that these artifacts are significantly reduced with our approach resulting in simulation steps
that can be twice as large compared to previous methods. We further present challenging and complex scenarios to illustrate the
capabilities of the proposed boundary handling.

CCS Concepts
•Computing methodologies → Physical simulation; Massively parallel and high-performance simulations;

1. Introduction

Iterative pressure solvers such as PCISPH [SP09], IISPH [ICS∗14]
or DFSPH [BK17] compute a pressure field p and apply pressure
accelerations of the form aaap

i =−∑ j m j
(pi

ρ2
i
+

p j

ρ2
j

)
∇W i j to particles i.

The sum considers all neighboring particles j of particle i. The
variables m,ρ,∇W denote mass, density and the gradient of the
SPH kernel function W, respectively. There exist minor variations,
but the solvers follow the same concept (see Section 4).

† bands@informatik.uni-freiburg.de

Iterative solvers typically compute pressure p f only at fluid par-
ticles f . Pressure pb at boundary particles b is not computed, but
approximated if needed. This is, e.g., the case in the computation of
the pressure acceleration aaap

f at fluid particles f close to the bound-
ary. Here, the respective SPH sum iterates over fluid neighbors with
known pressure, but also over boundary neighbors with unknown
pressure. I.e.,

aaap
f =−∑

f f

m f f

(
p f

ρ2
f
+

p f f

ρ2
f f

)
∇W f f f −∑

fb

m fb

(
p f

ρ2
f
+

p fb

ρ2
fb

)
∇W f fb

(1)
with f f and fb denoting fluid and boundary neighbors of fluid par-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/vriphys.20181068

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20181068

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

ticle f , respectively. Equation (1) requires a notion of mass mb,
density ρb, and pressure pb at boundary particles b. The density ρb
is typically set to the rest density of the adjacent fluid and the
mass mb can be geometrically motivated from the boundary particle
volume, see e.g. [AIA∗12].

In terms of the pressure pb, there exist different options. E.g.,
Akinci et al. [AIA∗12] propose to mirror known pressure from
fluid particles to adjacent rigid particles. Alternatively, Adami et
al. [AHA12] propose to extrapolate pressure from the fluid to bound-
ary particles using an SPH approximation of the pressure gradient.

Our contribution: We propose a novel variant to predict un-
known pressure pb at boundary particles b. In contrast to Akinci
et al. [AIA∗12], we compute one unique pressure value per bound-
ary particle. We further extrapolate the pressure using the pressure
gradient instead of copying pressure from the fluid to the boundary.
This improves the quality of the pressure gradient of fluid particles
near the boundary as illustrated in Fig. 2. In contrast to Adami et
al. [AHA12], where pressure is extrapolated using SPH, we propose
to use MLS [KK56,Nea04]. MLS is more accurate than SPH in case
of particle deficiency which can particularly be the case near the
boundary. We illustrate artifacts when using the boundary handling
of Akinci et al. [AIA∗12] and Adami et al. [AHA12]. We further
show that these artifacts can be reduced with the proposed MLS
extrapolation of pressure values. We have implemented our bound-
ary handling in a DFSPH framework. Capabilities of the approach
are illustrated for scenarios with challenging boundary setups, e.g.
Fig. 1. We particularly show performance gain factors of up to two
compared to [AIA∗12].

Organization: The remainder of this paper is organized as fol-
lows. The following Section 2 describes existing approaches re-
lated to SPH fluid simulation and the handling of solid boundaries.
In Section 3, we discuss the proposed pressure extrapolation con-
cept whereas implementation details are described in Section 4. In
Section 5, we show simulations employing our method and compare
it to the boundary handling schemes of Akinci et al. [AIA∗12] and
Adami et al. [AHA12]. Finally, we conclude in Section 6.

2. Related Work

SPH is a popular choice for Lagrangian simulations in computer
graphics [IOS∗14]. First used by Stam and Fiume [SF95] to sim-
ulate gaseous phenomena and by Desbrun and Cani [DG96] for
deformable objects, Müller et al. [MCG03] employed SPH to sim-
ulate compressible fluids. From that time on, research has focused
on practical formulations of incompressible fluids with recent im-
provements in volume preservation [ICS∗14, BK17, TDNL16], mul-
tiphase simulation [MSKG05, SP08, RLY∗14, ATO17], highly vis-
cous fluids [PICT15, TDF∗15, PT17, BGFAO17, WKBB18] and
deformable objects [KAG∗05, SSP07, PGBT18]. Incompressibility
can be enforced in various ways. Unlike non-iterative state equa-
tion solvers, e.g. [Mon94, MCG03, APKG07, BT07], iterative SPH
pressure solvers, such as PCISPH [SP09], IISPH [ICS∗14] and
DFSPH [BK17], compute a pressure field p by solving a pres-
sure Poisson equation (PPE) of the form ∇2 p = s, c.f. [Cho68].
Thereby, s is a source term that either encodes a predicted den-
sity deviation [SL03, SP09, ICS∗14], the divergence of a velocity

ggg

p
∇p

(a) Mirrored pressure at boundary particles.

ggg

p
∇p

(b) Extrapolated pressure at boundary particles.

Figure 2: Mirroring pressure from fluid to boundary particles re-
sults in erroneous pressure gradients at fluid particles near the
boundary. Extrapolating the pressure instead improves the gradient
computation.

field [CR99, PDC∗03] or a combination of both [HA07, BK17].
Computing the pressure field from a global formulation seems to
improve the stability of the simulation. Rather large time steps can
typically be used compared to the aforementioned non-iterative state
equation solvers.

This paper focuses on the optimization of the boundary handling.
Therefore, we briefly discuss related works regarding the modeling
of solid boundaries in the next section.

Boundary Handling in SPH As particle-based representations are
very flexible and can handle arbitrarily shaped geometries, represent-
ing solid boundaries with particles is a popular choice for SPH fluid
simulations, e.g. [Mon05, IAGT10, ICS∗14, BK17, TDNL16]. One
popular technique for handling fluid-boundary contact is to apply
penalty forces between two particles as soon as they are within a cer-
tain distance, e.g. [Mon05, MST∗04, MK09]. Penalty forces should
prevent fluid particles from penetrating the boundary. Therefore, the
magnitude of the penalty force is determined based on a penetra-
tion measure between the particles. As the results are sensitive to
the stiffness parameter of the penalty force, small time steps are
typically required to produce a smooth pressure field.

In order to achieve larger time steps, the direct forcing method
of Becker et al. [BTT09] uses a predictor-corrector scheme to com-
pute control forces and velocities. This method guarantees non-
penetration. However, due to an incomplete support domain at the
boundary, stacking of fluid particles can occur.

Another technique to treat boundaries are ghost particles [CL03,
YRS09, SB12]. For fluid particles that are located at a certain dis-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

56

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

tance to the boundary, a narrow layer of ghost particle is generated.
Those ghost particles mirror the hydrodynamic quantities of their
associated fluid particle, i.e. they have the same viscosity, mass,
density and pressure. However, for complex geometries, generating
such ghost particles is challenging. Furthermore, ghost particles
have to be re-generated per simulation step.

Using only one layer of pre-generated boundary particles, Ak-
inci et al. [AIA∗12] treat irregular samplings by computing volume
contributions, c.f. [OS03, SP08], and by mirroring the quantities
of a fluid particle onto its neighboring boundary particles. While
adhering to the SPH concept, this approach is efficient to compute
and allows a versatile coupling of fluids and solid objects [ACAT13].
Band et al. [BGT17] proposed an extension of the boundary han-
dling scheme of Akinci et al. [AIA∗12] by employing MLS. To
improve the accuracy of the density estimate and normal compu-
tation in planar regions, they locally reconstruct the surface of the
true boundary by fitting boundary particles to a plane. This ap-
proach results in a smooth representation of the boundary. However,
it is only applicable to planar boundaries. Furthermore, Band et
al. [BGT17] do neither compute unique pressure values nor per-
form any pressure extrapolation at boundary particles. Instead, they
use the mirroring scheme of Akinci et al. [AIA∗12]. Yet, MLS
techniques have been successfully applied in many research areas,
e.g. [Dil99, ABCO∗03, MKN∗04, BRHN11].

Instead of mirroring fluid particle quantities onto the boundary,
Adami et al. [AHA12] propose to use pre-generated dummy bound-
ary particles. Thereby, fluid particles at the boundary interact with
dummy particles according to the overlap of the kernel function.
This has the advantage that, even for complex geometries, the bound-
ary is well-described through-out the simulation. Furthermore, by
extrapolating the pressure of boundary particles from the surround-
ing fluid particles, this method allows an accurate approximation of
a fluid particle’s pressure gradient near the boundary.

As an alternative to particles, boundaries are also representable
with triangle meshes [HEW15, FM15]. Yet, as stated in [AIA∗12],
handling discontinuous surface normals and non-manifold structures
that cause spatial and temporal discontinuities of the fluid properties
is challenging for triangulated boundaries. Another alternative is
an implicit representation of the boundary as proposed by Koschier
and Bender [KB17]. Based on a pre-computed density map, this
approach allows to efficiently evaluate the density and pressure
gradient of fluid particles at the boundary.

3. Method

We first discuss the previous concepts of Akinci et al. [AIA∗12] in
Section 3.1 and Adami et al. [AHA12] in Section 3.2. Our approach
is introduced in Section 3.3. This section focuses on the concepts.
The combination of the boundary handling with DFSPH is described
in Section 4.

3.1. Pressure mirroring

Pressure mirroring is motivated by its simple and efficient imple-
mentation. When a pressure acceleration is computed at a fluid
particle f that has a boundary particle fb with unknown pressure in

its neighborhood, the pressure at the boundary particle is simply set
to the pressure of the fluid particle, i.e. p fb = p f . The computation
in Eq. (1) slightly changes to

aaap
f =−∑

f f

m f f

(
p f

ρ2
f
+

p f f

ρ2
f f

)
∇W f f f

−∑
fb

ρ
0
f Vfb

 p f

ρ2
f
+

p f(
ρ0

f
)2

∇W f fb . (2)

Compared to Eq. (1), the mass of a boundary neighbor m fb , i.e.
its contribution in the SPH sum, is computed as m fb = ρ

0
f Vfb and

the density of a boundary neighbor is set to ρ fb = ρ
0
f . Please refer

to [AIA∗12] for a motivation of these choices and for a discussion
how to compute the volume Vfb .

While density and mass in Eq. (2) play an important role for
the accurate weighting of a boundary particle in the SPH sum, the
employed pressure approximation p fb = p f negatively affects the
accuracy of the pressure gradient computation, i.e. the computation
of the pressure acceleration. As illustrated in Fig. 2, it would be
more appropriate to extrapolate the pressure from the fluid to the
boundary.

Pressure mirroring does not require to iterate over boundary par-
ticles or to store pressure values at boundary particles. If a boundary
pressure is required, it is simply set to the pressure of the currently
processed fluid particle. While this efficiency is positive, it results
in inconsistent pressure values at boundary particles. If two fluid
particles f 1 and f 2 with different pressure values p f 1 and p f 2 share
the same boundary particle b, the gradient computations at both
fluid particles work with different pressure values. Fluid particle f 1

works with pb = p f 1 in Eq. (2), while the other fluid particle f 2

uses pb = p f 2 at the same boundary particle b.

3.2. Pressure extrapolation with SPH

Pressure extrapolation can be motivated by Pascal’s law for hydro-
static pressure which states that the pressure difference at two fluid
points is proportional to their height difference. For a boundary
particle b and an adjacent fluid particle b f , this can be written as
pb = pbf +ρb f ggg · xxxbbf with gravity ggg and distance xxxbbf = xxxb− xxxbf .
In order to handle the interaction of one boundary particle with
several neighboring fluid particles, the respective contributions are
weighted with the kernel function Wbbf , summed up and normalized
as proposed by Adami et al. [AHA12]:

pb =
∑b f

pb f Wbbf +ggg ·∑b f
ρb f xxxbb f Wbbf

∑b f
Wbbf

. (3)

In contrast to the pressure mirroring in [AIA∗12], this approach
requires an additional loop over boundary particles to compute
the pressure which is also stored at boundary particles. On the
other hand, boundary pressures are not inconsistent as in [AIA∗12].
Instead, each boundary particle is attributed a unique pressure value.
If the pressure pb is computed for all boundary particles b, Eq. (1)
can be used to compute the pressure acceleration at fluid particles.

Although the computation in Eq. (3) is normalized, it nevertheless

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

57

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

b

p
(αb,βb,γb,δb)

Figure 3: MLS hyperplane fitting to compute pressure at a bound-
ary particle b (grey). The plane parameters αb,βb,γb and δb are
estimated from pressure values at adjacent fluid particles (blue).

suffers from the typical SPH particle deficiency issue. The neigh-
borhood of a boundary particle is only partially filled with fluid
neighbors which falsifies the pressure computation.

3.3. Pressure Extrapolation with MLS

We propose to resolve the particle deficiency issue by using MLS
instead of SPH for the pressure computation at boundary particles.
Therefore, we fit hyperplanes that approximate the pressure field
as illustrated in Fig. 3. This is conceptually different to [BGT17]
where MLS is used to fit planes through boundary sample posi-
tions. In our case, MLS is performed from the perspective of a
boundary particle b. It employs all pressure values pbf of fluid
neighbors b f adjacent to this boundary particle b to fit a hyper-
plane through the pressure field. The hyperplane parameters cccb =
(αb,βb,γb,δb)

T at boundary particle b are estimated by minimizing
∑b f

(bbbbf · cccb− pbf)
2Vb f Wbb f with bbbbf = (1,xb f ,ybf ,zb f)

T. Consid-
ering the fact that the partial derivatives of this term with respect to
the hyperplane parameters should be zero at the minimum, we get
the following system that has to be solved:

∑
b f

bbbbf

(
bbbbf · cccb− pbf

)
Vbf Wbb f = 000 . (4)

In order to solve for the unknown hyperplane parameters cccb, we
propose to rewrite Eq. (4) as

∑
b f

(
bbbbf ⊗bbbbf

)
cccbVbf Wbb f = ∑

b f

bbbbf pb f Vbf Wbb f (5)

which corresponds to

∑
b f

1 xbf yb f zb f

xb f x2
b f

xb f yb f xb f zb f

yb f xb f yb f y2
b f

yb f zb f

zb f xb f zb f yb f zb f z2
b f

αb
βb
γb
δb

Vbf Wbb f

= ∑
b f

1

xbf

yb f

zb f

 pbf Vbf Wbb f . (6)

This 4×4 system can be rewritten such that αb can be directly com-
puted and the parameters βb, γb, δb can be computed by solving a
3×3 system. We therefore perform a basis transform: all considered

positions xxxbf and also xxxb are translated to positions x̄xxb f and x̄xxb by

dddb =
∑b f

xxxbf Vbf Wbbf

∑b f
Vbf Wbbf

(7)

i.e.

x̄xxb f =
(
x̄b f , ȳb f , z̄b f

)T
= xxxbf −dddb (8)

x̄xxb =
(
x̄b, ȳb, z̄b

)T
= xxxb−dddb. (9)

This basis transform, i.e. the translation of all incorporated particle
positions by the same vector dddb, does not affect the parameters of
the hyperplane. Thus, instead of solving Eq. (6), we now consider
the following system with the same solution:

∑
b f

1 x̄b f ȳb f z̄b f

x̄b f x̄2
b f

x̄b f ȳb f x̄b f z̄b f

ȳb f x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

z̄b f x̄b f z̄b f ȳb f z̄b f z̄2
b f

αb
βb
γb
δb

Vbf Wbb f

= ∑
b f

1

x̄b f

ȳb f

z̄b f

 pbf Vbf Wbbf . (10)

Please note that Wbbf in Eq. (10) depends on the distance between
xxxb and xxxbf . Now, the elements x̄b f , ȳb f and z̄b f can be replaced by
zero based on the following observation:

∑
b f

x̄xxb f Vbf Wbbf = ∑
b f

(
xxxbf −dddb

)
Vbf Wbbf

= ∑
b f

xxxbf Vbf Wbbf −dddb ∑
b f

Vbf Wbbf

= dddb ∑
b f

Vb f Wbbf −dddb ∑
b f

Vbf Wbb f

= 000 . (11)

Therefore, ∑b f
x̄b f βbVbf Wbbf = βb ∑b f

x̄b f Vbf Wbbf in Eq. (10) can
be written as ∑b f

0 ·βbVbf Wbbf . In the same way, the coefficients ȳb f

and z̄b f in the matrix in Eq. (10) can be replaced by zeros, resulting
in the following form:

∑
b f

1 0 0 0
0 x̄2

b f
x̄b f ȳb f x̄b f z̄b f

0 x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

0 x̄b f z̄b f ȳb f z̄b f z̄2
b f

αb
βb
γb
δb

Vbf Wbb f

= ∑
b f

1

x̄b f

ȳb f

z̄b f

 pb f Vbf Wbbf . (12)

Now, we can solve for αb:

αb =
∑b f

pb f Vbf Wbbf

∑b f
Vbf Wbbf

. (13)

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

58

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

The other hyperplane parameters βb, γb and δb are obtained by
solving βb

γb
δb

=

∑
b f

 x̄2
b f

x̄b f ȳb f x̄b f z̄b f

x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

x̄b f z̄b f ȳb f z̄b f z̄2
b f

Vbf Wbb f

−1

∑
b f

1

x̄b f

ȳb f

z̄b f

 pbf Vbf Wbbf .

(14)

Finally, the pressure pb at boundary particle b is computed as

pb = (1, x̄b, ȳb, z̄b)
T · cccb . (15)

If the matrix in Eq. (14) is not invertible, we set βb, γb and δb to
zero resulting in

pb = (1, x̄b, ȳb, z̄b)
T · (αb,0,0,0)

T = αb =
∑b f

pb f Vb f Wbbf

∑b f
Vbf Wbb f

. (16)

This pressure corresponds to the weighted average of the pressure
values of fluid particles b f adjacent to boundary particle b. In our
experiments, however, we only experienced issues with a singular
matrix in Eq. (14) for boundary particles with a single fluid neighbor
and for boundary particles whose fluid neighbors lie exactly on a
line or plane. In these cases, employing the proposed basis transform
sets many coefficients of the matrix to zero.

Similar to the SPH pressure extrapolation, our approach performs
a loop over boundary particles to compute and store pressure at
boundary particles. Each boundary particle has a unique pressure
value. In contrast to the SPH extrapolation, our MLS approach does
not suffer from the particle deficiency issue.

4. Implementation

We have combined our proposed boundary handling with a slightly
modified DFSPH solver [BK17] that is outlined in Algorithm 1.
We follow the idea of combining two solvers, one for the veloc-
ity divergence and one for the density invariance. As a minor
notation change to DFSPH, our two solvers compute pressure p
instead of stiffness parameter κ. DFSPH implicitly introduces κ

with the relation ∇p f = ∑ f j
m f j κ f j∇W f f j with f j denoting a

fluid or a boundary neighbor of f . From the SPH formulation
∇p f = ∑ f j

m f j
ρ f j

p f j∇W f f j , it follows that p f j = κ f j ρ f j . So, we use

the DFSPH solver, but multiply all κ values with the density ρ to
get pressure values.

The functions CORRECTDIVERGENCEERROR and CORRECT-
DENSITYERROR in Algorithm 1 compute pressure at fluid particles,
but they are also responsible for the pressure computation at bound-
ary particles. In case of pressure mirroring, the pressure is not ex-
plicitly computed, but just considered in the computation of aaa∗ and
aaa∗∗ by using Eq. (2) instead of Eq. (1). The SPH extrapolation and
our proposed MLS extrapolation loop over the boundary particles to
compute and store pressure. Then, Eq. (1) is used to compute the
pressure accelerations aaa∗ and aaa∗∗. Finally, we update the pressure
values p f of fluid particles f in a Jacobi step. In our experiments,
we set the relaxation coefficient ω = 0.5.

Algorithm 1 DFSPH with MLS pressure extrapolation

procedure PERFORM SIMULATION

for each fluid particle f do
find neighborhoods Nf (t)

for each fluid particle f do
compute density ρ f (t)

compute factor α f ←
||∑ j m j∇W f j||2+∑ f f

m f m f f

∣∣∣∣∣∣∇W f f f

∣∣∣∣∣∣2
−ρ f (t)2

aaa∗← CORRECT DIVERGENCE ERROR . divergence-free
for each fluid particle f do

predict velocity vvv∗f ← vvv f (t)+∆t aaa∗f
for each fluid particle f do

predict velocity vvv∗∗f ← vvv∗f +∆t aaanon-pressure
f

aaa∗∗← CORRECT DENSITY ERROR . density invariant
for each fluid particle f do

update velocity vvv f (t +∆t)← vvv∗∗f +∆t aaa∗∗f
update position xxx f (t +∆t)← xxx f (t)+∆t vvv f (t +∆t)

procedure CORRECT DIVERGENCE ERROR

for each fluid particle f do
compute source term s f ←− 1

∆t ∇ · vvv f (t)
initialize pressure p f ← 0

while not converged do
for each boundary particle b do

compute pressure pb using MLS . Eq. (15)
for each fluid particle f do

compute pressure acceleration aaa∗f . Eq. (1)

for each fluid particle f do
set pressure p f ← p f +

ω

α f

(
s f −∇ · aaa∗f

)
return aaa∗

procedure CORRECT DENSITY ERROR

for each fluid particle f do

compute source term s f ← 1
∆t2

ρ f (t)−ρ
0
f

ρ f (t)
− 1

∆t ∇ · vvv
∗∗
f

initialize pressure p f ← 0

while not converged do
for each boundary particle b do

compute pressure pb using MLS . Eq. (15)
for each fluid particle f do

compute pressure acceleration aaa∗∗f . Eq. (1)

for each fluid particle f do
set pressure p f ←max

(
0, p f +

ω

α f

(
s f −∇ · aaa∗∗f

))
return aaa∗∗

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

59

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

(a) Pressure mirroring (b) Pressure extrapolation with SPH (c) MLS pressure extrapolation

Figure 4: Comparison of the different boundary handling schemes. Velocities are color-coded with blue corresponding to minimal and red
corresponding to maximal velocity. In contrast to pressure mirroring 4a and pressure extrapolation with SPH 4b, our approach 4c does not
show an incorrect movement of the fluid particles.

5. Results

In this section, we compare our proposed MLS pressure extrapo-
lation to the pressure mirroring of Akinci et al. [AIA∗12] and the
pressure extrapolation with SPH of Adami et al. [AHA12]. We show
that our approach can handle challenging scenarios, such as complex
and fast-moving boundary geometries and high water depths. We
use different particle spacings and time steps for the simulations.
For the SPH interpolation, we use the cubic spline kernel [Mon05]
with a support of two times the particle spacing. The rest density of
the fluids is 1000 kgm−3 while the largest permissible compression
error is 0.1 %. In our implementation, we employ compact hash-
ing [IABT11] for the neighbor search. We apply a drag force to the
fluid as described in [GBP∗17] and model surface tension as pro-
posed in [AAT13]. Viscosity is modeled as proposed by [MFZ97].
To reduce the loss in turbulent details, we use a micropolar material
model [BKKW17]. All computations are fully parallelized with Intel
Threading Building Blocks [Phe08]. We use [FIF18] to reconstruct
the fluid surface. The ray-traced images are rendered with [Sid18].
All presented scenarios have been computed on a 12-core 2.6 GHz
Intel Xeon E5-2690 with 32 GB of RAM.

5.1. Rotating Sphere

First, we compare our new approach to [AIA∗12] and [AHA12] in
a setting where fluid is placed inside a rigid sphere with free-slip
boundary conditions as illustrated in Fig. 4. The boundary sphere has
a radius of 3 m and is rotating slowly at 7 revolutions per minute. We
use a particle spacing of 5 cm. The scenario consists of 417 k fluid
and 44.5 k boundary particles and is simulated for ten seconds with
a fixed time step of 1 ms. The number of density invariant iterations
of our DFSPH solver was fixed to ten while the divergence-free
iterations count was set to zero. This resulted in a density error of
approximately 0.037 %.

In this experiment, the boundary particles should not influence the
fluid velocities and the fluid should rest inside the sphere. However,
as shown in Fig. 4, this is not the case for [AIA∗12] and [AHA12].
Both boundary handling schemes introduce an artificial viscosity,
which causes an incorrect movement of the fluid particles. In contrast
to this, our MLS pressure extrapolation does not suffer from artificial
viscosity at the boundary. The computation time for the pressure

field is very similar for all approaches (our: 64.29 ms, [AIA∗12]:
63.12 ms, [AHA12]: 63.44 ms).

5.2. Breaking Dam

In order to compare the solver iteration counts of our approach
with [AIA∗12] and [AHA12], we simulate a breaking dam scenario
inside a cylindric-shaped domain of size 3m× 3m× 0.5m with
a particle spacing of 8 mm. Thus, making a total of 2.95 million
fluid and 182.2 k boundary particles. The scenario is illustrated in
Fig. 5. Furthermore, we use different fixed time step sizes. Table 1
summarizes the iteration measurements and computation times for
a simulation over ten seconds.

In our experiment, our MLS pressure extrapolation approach al-
ways requires the minimum number of iterations per simulation
step. For larger time step sizes, our approach outperforms [AHA12]
due to more accurate pressure gradients at the boundary. Comput-
ing unique pressure values for boundary particles is not expensive.
For [AHA12], we measured an average computation time for the
boundary pressures of 1.12 ms per iteration. For our approach, as we
have to iterate twice over fluid neighbors of the boundary particles,
the computation time slightly increased to 1.87 ms.

5.3. Vase

As shown in [BGI∗18], computing unique pressure values for bound-
ary particles can be beneficial for scenarios with a high water depth.
In order to show that our approach can also handle such challenging
scenarios, we simulate a vase of height 10 m that is filled with water
over a duration of eighteen seconds. The scene is illustrated in Fig. 6.
The particle spacing is 2 cm and the adaptive time step [IAGT10]
is 0.47 ms on average. The scene consists of up to 13.33 million
fluid and 826 k boundary particles. The total computation time per
simulation step is 3.70 s on average with MLS pressure extrapo-
lation, 3.72 s for pressure mirroring and 3.84 s for SPH pressure
extrapolation. The reduced computation time of our approach is the
result of a reduced solver iteration count.

5.4. Teacup

In order to demonstrate the applicability of our approach to two-
way coupled dynamic objects, we integrated the Bullet physics

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

60

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

average per time step

iterations computation time

∆t Mirroring SPH extrapolation MLS extrapolation Mirroring SPH extrapolation MLS extrapolation

0.25 ms 4.0 4.0 4.0 116 ms 120 ms 123 ms
0.50 ms 5.7 5.7 5.6 186 ms 192 ms 192 ms
1.00 ms 12.0 12.2 11.8 448 ms 467 ms 462 ms
1.50 ms 14.9 16.0 14.9 559 ms 618 ms 587 ms

Table 1: Comparison of the different boundary handling schemes using different time steps for the Breaking Dam scenario.

Figure 5: Cylindrical breaking dam with 2.95 million fluid parti-
cles simulated with our MLS pressure extrapolation approach. The
smooth color-coded pressure field on the bottom-right corresponds
to the top-right frame.

Figure 6: Vase scenario with up to 13.33 million fluid particles. The
bottom image shows a closeup, visualizing the complex boundary
geometry and the particles.

library [Cou18] in our simulation framework. Fig. 1 shows a teacup
that contains a two-way coupled rigid rubber duck that has a rest
density of 500 kgm−3. As fluid is filled into the cup, the rubber
duck begins to rise. We have simulated the scene for ten seconds.
It consists of up to 3.57 million fluid particles and 1.25 million
boundary particles. The particle spacing is 3 mm. Our DFSPH solver
requires a total of 13.22 iterations on average per simulation step
with the adaptive time step being 0.28 ms on average. The total
average computation time per simulation step is 1.112 s whereof
computing the boundary pressures takes 34.33 ms.

5.5. Washing Machine

Our proposed method is particularly appropriate for fast-moving and
complex boundaries. This is indicated in Fig. 7 where we simulate a
washing machine that contains seven two-way coupled rigid spheres
with different radii. The washing drum is animated and contains
holes, i.e. the fluid drains. The particle spacing is 2 cm and the scene
consists of up to 2.04 million fluid particles and 1.18 million bound-
ary particles. We use an adaptive time step with an average of 0.5 ms.
Overall, with our approach the average computation time is 409 ms
per simulation step whereof computing the boundary pressures takes
17.6 ms. The average iteration count is 4.42. Due to instabilities at
the fast-moving boundary, pressure mirroring requires a time step
that is half as large compared to our MLS extrapolation. This results
in a speed-up of factor 1.8 compared to Akinci et al. [AIA∗12].
This speed-up factor is particularly remarkable considering the fact
that [AIA∗12] typically works for time steps that correspond to
rather large CFL numbers.

6. Conclusion and Future Work

MLS pressure extrapolation at boundaries reduces artifacts at fluid-
solid interfaces which can improve the performance of the pressure
computation in iterative solvers. We have shown that pressure mir-
roring and SPH extrapolation suffer from artificial viscosity which
is not the case for the proposed MLS extrapolation. We have also
shown that the reduced velocity artifacts in our boundary handling
can positively influence the pressure computation time for chal-
lenging scenarios. As one of the next steps, we plan to investigate
properties of the MLS gradient estimation for other purposes, e.g.
the computation of the pressure acceleration at fluid particles.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

61

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

Figure 7: Animated washing machine with two-way coupled rigid
spheres.

Acknowledgments

The vase model is courtesy of Eckerput at https://www.cgtrader.com
and is licensed under Royalty Free License. The cup model is cour-
tesy of nerosoft at https://www.cgtrader.com and is licensed under
Royalty Free License. The saucer model is courtesy of trapdormi
at https://www.cgtrader.com and is licensed under Royalty Free Li-
cense. The model of the washing machine is courtesy of vikinger
at https://www.cgtrader.com and is licensed under Royalty Free Li-
cense. The rubber duck is courtesy of willie at www.thingiverse.com
and is licensed under Creative Commons - Public Domain Dedica-
tion license.

References

[AAT13] AKINCI N., AKINCI G., TESCHNER M.: Versatile Surface
Tension and Adhesion for SPH Fluids. ACM Transactions on Graphics
32, 6 (2013), 182:1–182:8. 6

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,
LEVIN D., T. SILVA C.: Computing and Rendering Point Set Surfaces.
IEEE Transactions on Visualization and Computer Graphics 9, 1 (2003),
3–15. 3

[ACAT13] AKINCI N., CORNELIS J., AKINCI G., TESCHNER M.: Cou-
pling Elastic Solids with SPH Fluids. Computer Animation and Virtual
Worlds 24, 3-4 (2013), 195–203. 3

[AHA12] ADAMI S., HU X. Y., ADAMS N. A.: A generalized wall
boundary condition for smoothed particle hydrodynamics. Journal of
Computational Physics 231, 21 (2012), 7057 – 7075. 2, 3, 6

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile Rigid-fluid Coupling for Incompressible SPH.
ACM Transactions on Graphics 31, 4 (2012), 62:1–62:8. 2, 3, 6, 7

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.: Adaptively
Sampled Particle Fluids. ACM Transactions on Graphics 26, 3 (2007). 2

[ATO17] ALDUÁN I., TENA A., OTADUY M. A.: DYVERSO: A ver-
satile multi-phase position-based fluids solution for VFX. In Computer
Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 32–44. 2

[BGFAO17] BARREIRO H., GARCÍA-FERNÁNDEZ I., ALDUÁN I.,
OTADUY M. A.: Conformation constraints for efficient viscoelastic
fluid simulation. ACM Transactions on Graphics 36, 6 (2017), 221. 2

[BGI∗18] BAND S., GISSLER C., IHMSEN M., CORNELIS J., PEER A.,
TESCHNER M.: Pressure Boundaries for Implicit Incompressible SPH.
ACM Transactions on Graphics 37, 2 (2018), 14:1–14:11. 6

[BGT17] BAND S., GISSLER C., TESCHNER M.: Moving Least Squares
Boundaries for SPH Fluids. In Virtual Reality Interactions and Physical
Simulations (2017), Eurographics Association. 3, 4

[BK17] BENDER J., KOSCHIER D.: Divergence-Free SPH for Incom-
pressible and Viscous Fluids. IEEE Transactions on Visualization and
Computer Graphics 23, 3 (2017), 1193–1206. 1, 2, 5

[BKKW17] BENDER J., KOSCHIER D., KUGELSTADT T., WEILER M.:
A Micropolar Material Model for Turbulent SPH Fluids. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2017), ACM,
pp. 4:1–4:8. 6

[BRHN11] BILOTTA G., RUSSO G., HÉRAULT A., NEGRO C. D.: Mov-
ing least-squares corrections for smoothed particle hydrodynamics. An-
nals of Geophysics 54, 5 (2011). 3

[BT07] BECKER M., TESCHNER M.: Weakly Compressible SPH for
Free Surface Flows. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2007), Eurographics Association, pp. 209–217. 2

[BTT09] BECKER M., TESSENDORF H., TESCHNER M.: Direct Forcing
for Lagrangian Rigid-Fluid Coupling. IEEE Transactions on Visualization
and Computer Graphics 15, 3 (2009), 493–503. 2

[Cho68] CHORIN A. J.: Numerical Solution of the Navier-Stokes Equa-
tions. Mathematics of Computation 22, 104 (1968), 745–762. 2

[CL03] COLAGROSSI A., LANDRINI M.: Numerical Simulation of Inter-
facial Flows by Smoothed Particle Hydrodynamics. Journal of Computa-
tional Physics 191, 2 (2003), 448–475. 2

[Cou18] COUMANS, ERWIN: The bullet physics library. www.
bulletphysics.org, 2018. 7

[CR99] CUMMINS S. J., RUDMAN M.: An SPH Projection Method.
Journal of Computational Physics 152, 2 (1999), 584–607. 2

[DG96] DESBRUN M., GASCUEL M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Computer Anima-
tion and Simulation. Springer, 1996, pp. 61–76. 2

[Dil99] DILTS G. A.: Moving-least-squares-particle hydrodynamics I:
Consistency and stability. International Journal for Numerical Methods
in Engineering 44, 8 (1999), 1115–1155. 3

[FIF18] FIFTY2 TECHNOLOGY: PreonLab. www.fifty2.eu, 2018.
6

[FM15] FUJISAWA M., MIURA K. T.: An Efficient Boundary Handling
with a Modified Density Calculation for SPH. Computer Graphics Forum
34, 7 (2015), 155–162. 3

[GBP∗17] GISSLER C., BAND S., PEER A., IHMSEN M., TESCHNER
M.: Generalized drag force for particle-based simulations. Computers &
Graphics 69 (2017). 6

[HA07] HU X. Y., ADAMS N. A.: An incompressible multi-phase sph
method. Journal of Computational Physics 227, 1 (2007), 264–278. 2

[HEW15] HUBER M., EBERHARDT B., WEISKOPF D.: Boundary Han-
dling at Cloth-Fluid Contact. Computer Graphics Forum 34, 1 (2015),
14–25. 3

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER M.: A
Parallel SPH Implementation on Multi-Core CPUs. In Computer Graphics
Forum (2011), vol. 30, Wiley Online Library, pp. 99–112. 6

[IAGT10] IHMSEN M., AKINCI N., GISSLER M., TESCHNER M.:
Boundary Handling and Adaptive Time-stepping for PCISPH. In Virtual
Reality Interactions and Physical Simulations (2010). 2, 6

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HORVATH C.,
TESCHNER M.: Implicit incompressible SPH. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2014), 426–435. 1, 2

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: SPH Fluids in Computer Graphics. In Eurographics
(State of the Art Reports) (2014). 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

62

https://www.cgtrader.com/free-3d-print-models/house/decor/twisted-tubes-vase
https://www.cgtrader.com/free-3d-print-models/art/other/my-coffee-cup
https://www.cgtrader.com/free-3d-models/household/kitchenware/plate-set-a6d3af27-0960-4ad5-86cd-97407675f26f
https://www.cgtrader.com/free-3d-models/household/kitchenware/washing-machine--11
https://www.thingiverse.com/thing:139894
www.bulletphysics.org
www.bulletphysics.org
www.fifty2.eu

Band et al. / MLS Pressure Extrapolation for the Boundary Handling in DFSPH

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P., DUTRE P.,
GROSS M.: A unified Lagrangian approach to solid-fluid animation. In
Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graph-
ics (2005), pp. 125–148. 2

[KB17] KOSCHIER D., BENDER J.: Density Maps for Improved SPH
Boundary Handling. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2017), ACM, pp. 1:1–1:10. 3

[KK56] KENNEY J., KEEPING E.: Mathematics of Statistics Part I. Van
Nostrand, 1956. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based Fluid Simulation for Interactive Applications. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2003),
pp. 154–159. 2

[MFZ97] MORRIS J. P., FOX P. J., ZHU Y.: Modeling Low Reynolds
Number Incompressible Flows Using SPH. Journal of Computational
Physics 136, 1 (1997), 214–226. 6

[MK09] MONAGHAN J., KAJTAR J.: SPH particle boundary forces for
arbitrary boundaries. Computer Physics Communications 180, 10 (2009),
1811 – 1820. 2

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M., GROSS
M. H., ALEXA M.: Point Based Animation of Elastic, Plastic and Melting
Objects. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2004), Eurographics Association, pp. 141–151. 3

[Mon94] MONAGHAN J. J.: Simulating Free Surface Flows with SPH.
Journal of Computational Physics 110, 2 (1994), 399–406. 2

[Mon05] MONAGHAN J. J.: Smoothed Particle Hydrodynamics. Reports
on Progress in Physics 68, 8 (2005), 1703. 2, 6

[MSKG05] MÜLLER M., SOLENTHALER B., KEISER R., GROSS M.:
Particle-based Fluid-fluid Interaction. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2005), pp. 237–244. 2

[MST∗04] MÜLLER M., SCHIRM S., TESCHNER M., HEIDELBERGER
B., GROSS M.: Interaction of Fluids with Deformable Solids: Research
Articles. Computer Animation and Virtual Worlds 15, 3-4 (2004), 159–
171. 2

[Nea04] NEALEN A.: An as-short-as-possible introduction to the least
squares, weighted least squares and moving least squares methods for
scattered data approximation and interpolation. 2

[OS03] OTT F., SCHNETTER E.: A modified SPH approach for fluids
with large density differences. In ArXiv Physics e-prints (2003), p. 3112.
3

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M., JENSEN
H. W., HANRAHAN P.: Photon Mapping on Programmable Graphics
Hardware. In ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware (2003), Eurographics Association, pp. 41–50. 2

[PGBT18] PEER A., GISSLER C., BAND S., TESCHNER M.: An Implicit
SPH Formulation for Incompressible Linearly Elastic Solids. Computer
Graphics Forum (2018). 2

[Phe08] PHEATT C.: Intel R© Threading Building Blocks. Journal of
Computing Sciences in Colleges 23, 4 (2008), 298–298. 6

[PICT15] PEER A., IHMSEN M., CORNELIS J., TESCHNER M.: An
implicit viscosity formulation for SPH fluids. ACM Transactions on
Graphics 34, 4 (2015), 114. 2

[PT17] PEER A., TESCHNER M.: Prescribed Velocity Gradients for
Highly Viscous SPH Fluids with Vorticity Diffusion. IEEE Transac-
tions on Visualization and Computer Graphics 23, 12 (2017), 2656–2662.
2

[RLY∗14] REN B., LI C., YAN X., LIN M. C., BONET J., HU S.-M.:
Multiple-fluid sph simulation using a mixture model. ACM Transactions
on Graphics 33, 5 (2014), 171:1–171:11. 2

[SB12] SCHECHTER H., BRIDSON R.: Ghost SPH for Animating Water.
ACM Transactions on Graphics 31, 4 (2012), 61:1–61:8. 2

[SF95] STAM J., FIUME E.: Depicting Fire and Other Gaseous Phe-
nomena Using Diffusion Processes. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques (1995),
pp. 129–136. 2

[Sid18] SIDE EFFECTS SOFTWARE: Houdini. www.sidefx.com, 2018.
6

[SL03] SHAO S., LO E. Y.: Incompressible SPH method for simulating
Newtonian and non-Newtonian flows with a free surface. Advances in
Water Resources 26, 7 (2003), 787 – 800. 2

[SP08] SOLENTHALER B., PAJAROLA R.: Density Contrast SPH In-
terfaces. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2008), pp. 211–218. 2, 3

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective Incom-
pressible SPH. ACM Transactions on Graphics 28, 3 (2009), 40:1–40:6.
1, 2

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A Unified
Particle Model for Fluid-Solid Interactions. Computer Animation and
Virtual Worlds 18, 1 (2007), 69–82. 2

[TDF∗15] TAKAHASHI T., DOBASHI Y., FUJISHIRO I., NISHITA T., LIN
M. C.: Implicit Formulation for SPH-based Viscous Fluids. Computer
Graphics Forum 34, 2 (2015), 493–502. 2

[TDNL16] TAKAHASHI T., DOBASHI Y., NISHITA T., LIN M. C.: An
Efficient Hybrid Incompressible SPH Solver with Interface Handling for
Boundary Conditions. Computer Graphics Forum (2016). 2

[WKBB18] WEILER M., KOSCHIER D., BRAND M., BENDER J.: A
Physically Consistent Implicit Viscosity Solver for SPH Fluids. Computer
Graphics Forum (2018). 2

[YRS09] YILDIZ M., ROOK R., SULEMAN A.: SPH with the multiple
boundary tangent method. International Journal for Numerical Methods
in Engineering 77, 10 (2009), 1416–1438. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

63

www.sidefx.com

