
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2018)
F. Jaillet, G. Zachmann, K. Erleben, and S. Andrews (Editors)

Real-Time Virtual Pipes Simulation and Modeling
for Small-Scale Shallow Water

F. Dagenais1, J. Guzmán1, V. Vervondel1, A. Hay2, S. Delorme2, D. Mould3 & E. Paquette1

1École de technologie supérieure, Canada 2OSSimTech, Canada 3Carleton University, Canada

Figure 1: Frames from an animation where blood flows from a vertebra. Note the multiple overhangs and holes.

Abstract

We propose an approach for real-time shallow water simulation, building upon the virtual pipes model with multi-layered
heightmaps. Our approach introduces the use of extended pipes which resolve flow through fully-flooded passages, which is
not possible using current multi-layered techniques. We extend the virtual pipe method with a physically-based viscosity model
that is both fast and stable. Our viscosity model is integrated implicitly without the expense of solving a large linear system.
The liquid is rendered as a triangular mesh surface built from a heightmap. We propose a novel surface optimization approach
that prevents interpenetrations of the liquid surface with the underlying terrain geometry. To improve the realism of small-scale
scenarios, we present a meniscus shading approach that adjusts the liquid surface normals based on a distance field. Our
approach runs in real time on various scenarios of roughly 10 x 10 cm at a resolution of 0.5 mm, with up to five layers.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

In this paper, we focus on real-time simulation of shallow water
at small scales, such as in scenarios of spilled coffee or bleeding
during surgery. In such situations, thin layers of liquid flow on a
surface and may also eventually fill up small cavities. At this scale,
effects such as the viscous drag force exerted on the liquid by the
surface of the obstacles, as well as the meniscus at the wet–dry
boundary, are much more prominent.

In many real-time contexts, such as medical applications and
games, it is necessary to have a very efficient simulation since other
systems are running on the same resources (e.g., haptic feedback,
other physics, AI). A full 3D simulation is often too expensive; only
very coarse resolutions can achieve real time. However, a coarse
3D resolution fails to represent thin films of liquids, such as blood
or paint flowing over a surface. To reduce computation times, some

methods focus on performing a 2D simulation on a heightmap, such
as Chentanez and Müller [CM10] and Mei et al. [MDH07]. Such
methods can simulate liquids that are arbitrarily deep or shallow,
with no impact on the resolution of the simulation.

Our approach builds upon the virtual pipes (VP)
method [vBBK08]. Existing work does not use a physical
model to handle the viscous drag force from the terrain. This force
is non-negligible for various liquids such as blood and paint. To
allow more complex terrain geometries that contain overhangs and
holes, previous researchers extended virtual pipe methods to use
a multi-layered heightmap [Kel14] and created interconnections
between the layers to allow the liquid to flow between them. Such
configurations are important for different scenarios, such as when
blood should flow below organs in a surgery simulation. Neverthe-
less, current multi-layered methods do not handle the flow through

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/vriphys.20181067

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20181067


F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

fully flooded passages below obstacles. When such passages get
completely filled, the flow to these cells stops, preventing future
flow while the passages remain filled. Additionally, current multi-
layered VP methods have a limited surface representation, with
some leading to discontinuities in the surface mesh, while others
are unable to accommodate multiple overlapping layers. Finally,
most related works typically aim for large-scale simulations and
ignore the surface meniscus shading.

Our approach extends current multi-layered heightmap VP
methods to enhance both the behavior and the shading. The behav-
ior is improved using a physically-based viscosity model and by
considering the flow below obstacles. Furthermore, our improved
multi-layered surface reconstruction does not suffer from discon-
tinuity issues. Our novel surface optimization approach provides a
correction to the mesh surface, preventing interpenetrations with
the underlying terrain geometry. We work on the simulation of
moderate amounts of liquid, roughly in the 10 ml to slightly over 1
liter range. At this scale, our new meniscus shading approach sig-
nificantly improves the visual results of our simulations. To sum-
marize, our contributions are as follows:

• We present a physically-based stable viscous model that takes
the fluid height into account.

• We propose the extended pipes interconnection framework al-
lowing flow below obstacles.

• We perform independent multi-layered surface reconstruction
with smooth boundaries.

• We use a surface optimization to prevent unwanted interpenetra-
tions between the heightmap and an arbitrary mesh.

• We propose a distance-based correction of the normals to en-
hance the specular shading of the meniscus.

2. Related work

In the computer graphics field, most efforts for animating liquids
are spent on offline simulations using either an Eulerian [EMF02],
particle-based [IOS∗14], or hybrid [JSS∗15] simulation. Some
work focuses computations on areas with more details using adap-
tive grid structures [AGL∗17], narrow band surfaces [FAW∗16],
or adaptive particle radii [IOS∗14]. These methods are capable of
generating astonishing visual results, but are nevertheless too slow
for real-time applications. Macklin and Müller [MM13] were able
to achieve impressive visual results by simulating and rendering
more than 100,000 particles in real time using their position-based
dynamics framework. While this method is real-time, its ability to
reproduce smooth thin layers of liquid is limited.

To reduce memory and computational costs, it is more effi-
cient to use a heightmap to represent the fluid and perform a
2D simulation to update the liquid’s height. While methods us-
ing the heightmap as such cannot exhibit some more complex be-
haviors such as splashes and wave crests, they are adequate for
a broad range of scenarios. For example, intricate wave patterns
in shallow water can be encoded as height displacements by par-
ticles [YHK07] or packets of similar wavelengths [JW17]. Fur-
thermore, heightmap methods can simulate arbitrarily thin films
of liquids with no impact on the simulation resolution. Lee and
O’Sullivan [LO07] allowed some compressibility in their 2D sim-

ulation based on the Navier-Stokes equations and adjusted the liq-
uid’s height based on its density. While simple and efficient, this
technique does not account for the underlying terrain elevation. By
assuming a vertical anisotropy of the liquid’s velocity, the Navier-
Stokes equations can be simplified, resulting in the shallow wa-
ter equations, which can be further simplified to the shallow wave
equations [KM90]. Several papers focus on implicitly solving these
equations on a regular grid [KM90, LvdP02] or on triangular mesh
surfaces [WMT07,ATBG08]. Methods with an implicit integration
maintain stability at larger timesteps, but are prone to a lot of diffu-
sion as well as volume gain when using a large timestep. Further-
more, faster-moving boundaries require a smaller timestep, which
can considerably increase the computation time. On the other hand,
Chentanez and Müller [CM10] showed that their explicit integra-
tion of the shallow water equations is able to simulate large-scale
scenarios in real time. For their part, our experiments show that
the explicit integration requires a considerably smaller timestep for
small-scale examples because of the larger ratio between the liq-
uid’s velocity and the simulation cell size, which limits its use for
real-time applications in that context.

A simpler model for simulating shallow water, the VP method,
was introduced by O’Brien and Hodgins [OH95]. It is based on
the hydrostatic pressure difference between neighbor cells of a
uniform grid. Liquid is transferred between them through virtual
pipes connected at their bottom, and the simulation uses an ex-
plicit integration. This method has been extended to support multi-
layered heightmaps in order to allow simulations above partially
submerged floating obstacles [Kel14] and on more complex terrains
with overhangs [BMPG11]. Furthermore, our experiments show
that the VP method allows a considerably larger timestep than with
the shallow water method of Chentanez and Müller [CM10] for
small-scale scenarios. As such, our approach builds upon the VP
method to simulate real-time, small-scale shallow waters. However,
these methods have some limitations in in the case of small-scale
simulations. First, they lack a physically-based viscosity model:
they do not account for the viscous drag forces applied on the liq-
uid. Furthermore, multi-layered methods completely block the liq-
uid’s flow under obstacles (e.g., overhangs), which results in an
unrealistic behavior. For those reasons, we improve the behavior of
the VP method by formulating a novel physically-based viscosity
model and by considering the flow underneath fully-flooded pas-
sages.

Our goal is to simulate small amounts of liquids, with a mil-
limeter to sub-millimeter resolution. Another feature is important
at such scales: the meniscus, which is the effect of the capillary ac-
tion at the fluid–solid boundary. Kerwin et al. [KSS09] propose a
real-time meniscus shading method relying on a pixel-based edge
detection. Although fast, this method delivers limited realism, as
it does not take into account the size of the meniscus, nor does it
differentiate between a concave and a convex meniscus.

Prior VP methods often ignore effects that are visible at a smaller
scale, such as the viscous drag force from the terrain and the menis-
cus near boundaries. Furthermore, multi-layered frameworks ne-
glect the flow underneath fully-flooded passages below obstacles.
We thus extend the VP method with a physically-based model for
the viscous drag force and we propose an extended pipe model that

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

46



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

handles the flow underneath obstacles. Furthermore, we improve
the surface to account for its evolving multi-layer topology and we
develop a new meniscus shading approach.

3. Liquid simulation

Our approach targets the real-time simulation of small amounts of
liquid based on the VP method (Sec. 3.1). Our contribution breaks
down into two categories: improving fluid behavior and improving
the rendering. On the behavior side, we first propose a new for-
mulation for the viscosity (Sec. 3.2), allowing a varying amount of
viscosity and widening the range of behavior from water to liquids
such as blood and paint. In a further improvement to the behavior,
we add the ability to handle simulation domains containing over-
hangs and holes, extending the multi-layered VP method to account
for the flow under obstacles through extended pipes (Sec. 3.3). Our
rendering improvements include optimizing the surface to prevent
various forms of artifacts (Sec. 4), and adjusting the surface nor-
mals to account for the meniscus (Sec. 5).

3.1. Virtual pipes simulation

This section explains how we combined different VP methods
to derive our specific VP model. Our base liquid simulation fol-
lows the VP method formulation introduced by O’Brien and Hod-
gins [OH95], with the multi-layer structure of Kellomäki [Kel14].
The VP method uses a 2D simulation grid divided into 2D cells.
In turn, each cell has one or multiple columns when we extend to
the multi-layered VP model. Each column corresponds to a range
[mini,maxi] along the vertical axis, with base height bi, liquid
height hi, and maximum range maxi (Fig. 2). Adjacent columns are

 

Δx

mini
bi

himaxi

fi,j fi,k
ij

k
cell

column

Figure 2: The simulation grid is divided into cells, which in turn
contain one or more columns. Here we see three linked columns i,
j, and k, and column i’s properties: its range [mini,maxi] along the
vertical axis, its base height bi, and its liquid height hi.

connected using virtual pipes through which they exchange liquid.
In the multi-layer case, a pipe connects two adjacent columns i and
j when their liquid ranges [bi,maxi] overlap. Note that one column
can be connected to multiple columns from the same adjacent cell.
As in the work of Mei et al. [MDH07], pipe connections are created
only for the 4-neighborhood. These connections are created at the
beginning of the simulation and updated when there is a change in
the geometry of the obstacles. Throughout this paper, we often use
the term terrain to refer to any obstacle (soft or rigid) lying below
the columns of liquid. At each simulation step, the flux fi, j between

a column i and its neighbor column j is updated using their differ-
ence in hydrostatic pressure and an explicit Euler integration:

f t+∆t
i, j = ζ f t

i, j +∆tA
g(ht

i−ht
j)

l
, (1)

where ζ is the friction parameter introduced by Mould and
Yang [MY97], ∆t is the simulation timestep, g is the gravita-
tional acceleration, A is the cross-section area of the virtual pipe,
and l is the length of the virtual pipe. As in the work of Št’ava
et al. [vBBK08], we set l to be equal to the grid cell size ∆x,
and A = ∆x2. To remove the dependency of the value of ζ on
the timestep, we propose to set ζ = ω

∆t , where ω = [0,1] is the
fraction of flux retained per unit time. In our examples, we set
ω = 0.5. Note that fi, j = − f j,i; thus we compute the flux once
per pipe. In order to prevent the liquid height from going below
the base height, the outflow fluxes are scaled as described by Mei
et al. [MDH07]. Similarly, to prevent the liquid height from going
above the maximum height, we scale the inflow fluxes as explained
by Kellomäki [Kel14]. The scaled fluxes are then used to compute
the new liquid heights, again using an explicit Euler integration:

ht+∆t
i = ht

i +
∆t

∆x2 ∑
j∈neighbor(i)

f t+∆t
j,i .

Each frame, the fluxes are first computed, and then the liquid
heights are updated using the new fluxes. The main steps of our
simulation loop are:

1. Update extended pipes connections (Sec. 3.3)
2. Update liquid fluxes
3. Apply viscosity (Sec. 3.2)
4. Scale liquid fluxes
5. Update liquid heights
6. Source liquid in the simulation

Lines in bold indicate the steps that we added to the VP method to
handle viscosity and the flow under fully-flooded passages.

3.2. Viscosity model

When a thin layer of liquid flows on a surface, it is slowed down
by the shear stress forces from its interaction with the terrain. This
effect is propagated further away through the liquid by the viscous
shear forces. As the depth of the liquid layer increases, the impact
of this interaction on the overall liquid velocity decreases, at a rate
determined by its viscosity. Handling a wide range of liquid depths
is important in may applications, including virtual surgery, for ex-
ample. Hence, our goal is to handle a wide range of depths in a
physically-based manner, which cannot be done by the current VP
method.

Our proposed viscosity model is based on the Navier-Stokes
equations, which are based on the velocity. The VP method works
with the flux fi, j instead of the velocity ui, j; These are related as
follows:

fi, j =
ui, j

C
, (2)

where C = ∆x(h−b) is the cross-sectional area of the liquid’s flow
from one column to its neighbor. Note that ui, j is a scalar that repre-
sents the speed of the flow along the pipe orientation. For simplicity

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

47



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

we assume that the vertical axis is z; pipes are thus aligned with ei-
ther the x- or y- axis. Because ui, j lies between adjacent columns,
it can be interpreted as a staggered grid, where ui, j = ux or uy, de-
pending on its orientation.

The VP method assumes that the liquid’s properties are constant
along the vertical axis. However, because viscous forces are com-
puted from the spatial differences of the velocity, this assumption
would result in no shear viscous forces along the vertical axis. For
that reason, we define a velocity profile that varies vertically up

i, j(z),
and interpret ui, j as the average vertical velocity. We derive the re-
lationship between up

i, j(z) and ui, j in App. A, which leads to:

up
i, j(z) =−

3ui, j

H2

(
z2

2
−Hz

)
, (3)

where H is the liquid’s depth (hi− bi) of the column from which
the flux originates. Using this vertically varying velocity, we derive
(App. B) the effect of the viscosity on the average velocity ui, j:

un+1
i, j =

(
H2

H2 +3∆tν

)
un

i, j,

where ν is the kinematic viscosity of the liquid. Using Eq. 2, we
can convert from velocity to flux:

f n+1
i, j Cn+1 =

(
H2

H2 +3∆tν

)
f n
i, jC

n.

By assuming that the liquid depth remains the same during the
timestep, we get Cn =Cn+1:

f n+1
i, j =

(
H2

H2 +3∆tν

)
f n
i, j. (4)

Each step, this equation is used to enforce viscosity on the fluxes
computed from Eq. 1.

In Eq. 4, the right-hand side coefficient is guaranteed to be in the
range [0,1] for 0 ≤ 3∆tν and 0 < H. This means that no energy is
added in the simulation, and thus it remains stable even for arbitrar-
ily small or large kinematic viscosity values. In terms of behavior,
as the liquid depth H increases, the coefficient of the right-hand side
gets closer to 1, lessening the impact of viscosity. Additionally, the
viscosity ν damps the fluxes with a greater impact as H becomes
smaller. This shows that our viscosity model is stable and produces
the intended behavior. Furthermore, it is simple and fast to com-
pute, making it ideal for real-time purposes. Deriving this simple,
stable, and efficient model required some simplifications from the
Navier-Stokes equations. One notable simplification is that we ne-
glect the contribution from neighbor cells to the viscosity (App. B).
While our model does not capture all the features of the complete
viscosity model, we will see in Sec. 6 that our animations live up
to the expected behavior of a viscous fluid.

3.3. Multi-layer and extended pipes

The multi-layer VP method can only exchange liquid among neigh-
bor columns. If there is a passage through or below obstacles, then
as soon as the level of one column of the passage (Fig. 3 left, pin)
reaches its maximum, the VP method will block the flow of liquid.

Passage Passage

bin bout
pin pout

bin
pin pout bout

Figure 3: Left: The VP method prevents flow between bin and bout
(it is blocked at pin). Right: Our approach permits flow between
bin and bout using an extended pipe.

To allow liquid flow inside a passage, we identify fully-flooded pas-
sages and change the connections using extended pipes to link both
ends of the passage (Fig. 3, right). Thus, instead of having only
connections among neighboring columns, we will also connect the
ends of fully-flooded passages. A fully-flooded passage consists of
a group of consecutive columns with pipe connections having a
level of liquid equal to their maximum limit. For efficiency reasons,
we restrict the search for consecutive cells along two orientations,
namely, alignment with the local x- and y- axes of the grid. Once a
fully-flooded passage is identified, we use an extended pipe to make
a connection between the columns at the boundary (bin and bout).
The flux between these columns is initialized to zero. Once we have
adjusted the pipe connections of the columns on both sides of the
passage, the standard VP method is used with the new connections.
At each timestep, extended pipes are connected and disconnected
as needed based on the identified fully-flooded passages.

4. Liquid surface

There are several requirements for the generation of the liquid sur-
face: real-time generation and rendering, support for multi-layer
surfaces, and flexibility to use an arbitrary geometry for the obsta-
cles’ surface. To render the liquid surface, Borgeat et al. [BMPG11]
displace the terrain using the liquid height in the nearest column,
and adjust the vertex colors and normals. As such, the following
constraints are imposed on the meshes of the obstacles: the need to
have the appropriate resolution and uniformity to correctly repre-
sent the liquid. Furthermore, discontinuities are introduced at over-
hangs where the obstacle meshes of both levels are not connected to
each other (see accompanying video). Kellomäki [Kel14] displaces
the vertices of a regular mesh grid based on the height of the top-
most columns, but this method assumes a single continuous surface
over the whole simulation domain, which is not the case in multi-
layer scenarios. Considering the limitations of current methods, we
devised a new surface creation approach which detects links be-
tween adjacent columns (Sec. 4.1), and connects them using an
optimal triangle configuration (Sec. 4.2). Furthermore, we handle
boundaries of the liquid to ensure a coherent surface (Sec. 4.3). Fi-
nally, we propose an optimization approach to prevent conflicting
intersections between the liquid surface and the surface of the ob-
stacles (Sec. 4.4).

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

48



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

4.1. Multi-layered surface links

When handling multiple layers, the surface of the liquid gets more
complex: adjacent cells could have a different number of columns,
and parts of the obstacle geometry can exhibit overhangs. This in-
creases the complexity of the surface creation. It is thus important
to derive a robust approach that can handle all cases. In our ap-
proach, neighbor columns that will be linked by the liquid mesh
surface are identified using a multi-layered link test (Fig. 4). With
this test, columns are linked if their respective liquid heights fit be-
tween each other’s minimum and maximum heights. As such, we
define two neighbor columns i and j as linked if: min j < hi <max j,
and mini < h j < maxi. In contrast to the pipe connections, the sur-
face links are computed for the 8-neighborhood of each cell. They
are computed for each pair of adjacent wet or wet–dry columns; a
dry column is defined as a column where hi ≤ bi. This approach
works in the general case, while a few special cases occurring at
the boundary are handled differently (Sec. 4.3). The surface links
change over the course of the simulation and are updated at each
frame. In the next section, we explain our approach to generating
the surface from the surface links.

a b

c

a b

c

Figure 4: Multi-layered linking. The thick lines show linked
columns. On the left: columns a and b are initially linked. On the
right: as the liquid height of b increases, it becomes linked with c.

4.2. Surface creation

Our work extends the idea of displacing the vertices of a regular
mesh grid to multi-layered simulations. At the beginning of the
simulation, a 3D vertex is allocated for each column, and matches
the 2D coordinates of its column. Then, at each frame, its ver-
tical position is updated to match the liquid’s height. Afterward,
these vertices are used to create triangular faces among adjacent
linked columns (based on the link test from Sec. 4.1). To that end,
quartets of neighbor cells {(i, j), (i+1, j), (i, j+1), (i+1, j+1)}
are iterated. For each quartet of cells, we analyze the links among
their columns. First, we find the groups of four mutually inter-
linked columns (these will form two triangles). From the remaining
columns, we then identify the groups of three mutually interlinked
columns (these will form a single triangle). Finally, the remaining
groups of two mutually interlinked columns are discarded as they
do not correspond to a triangle. For groups of four linked neighbor
columns, two triangle configurations are possible. In such cases, we
pick the configuration for which the sum of the liquid height of the
diagonal endpoints is the greatest, as described by Chentanez and
Müller [CM10], in order to align the diagonal edge of the triangles
with the curvature of the surface.

Before rendering, the normals are updated from the liquid

heights, and the vertex opacity oi is adjusted to the liquid depth:

oi = min
(

hi−bi

depthmax
,1
)
,

where depthmax is the depth from which the liquid starts being
opaque. This enhances the realism by better matching the opac-
ity of the simulated liquid, and it improves the look of the wet–dry
boundary on flat and convex surfaces.

4.3. Boundaries

In order to render a smooth liquid boundary and avoid having
cracks at the junction with the terrain, the surface requires special
treatment at the boundary of the liquid. Wet columns can be linked
with dry columns having a base height (and thus liquid height) sig-
nificantly higher than the liquid height of the wet column. Blindly
creating triangles to the liquid height of dry columns would result
in unrealistic slopes on the liquid surface near dry columns (Fig. 5
left). The vertex height of dry columns is thus adjusted to the av-

Figure 5: A bowl filled with liquid without adjusting boundaries
(left), and with boundary adjustments (right)

erage height of their linked wet neighbors, and the surface normals
of dry columns are adjusted in a similar fashion. With these cor-
rected vertices and normals, the surface is smoother and appears as
expected (Fig. 5, right). Also, during the triangle generation step,
the triangle configuration that allows the ends of the diagonal edge
to be both inside or both outside the boundary is prioritized.

In some cases, generally below overhangs, the liquid surface in
a wet column i might be next to a wall boundary belonging to a
neighbor column j to which it is not linked, i.e., min j < hi < max j,
but maxi < b j. This results in a crack between the wet column and
the wall boundary. To prevent such cracks, we create an extra vertex
positioned at the center of column j. This new vertex is identified
as linked to column i, as well as linked to its wet neighbor columns
that are linked with column i. Its height and normal are then set to
the average of these linked neighbor columns. The triangle genera-
tion step is triggered again for all such new boundary links.

4.4. Surface optimization for rendering

Because the rendered terrain geometry could come from an arbi-
trary source of data, it can be misaligned with the simulation grid.
This often results in incorrect interpenetrations with the mesh of
the liquid surface (Fig. 6 left). To prevent such issues, columns with
thin layers of liquid are corrected: to prevent surface interpenetra-
tions and z-fighting, any non-zero liquid height cannot go below

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

49



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

Figure 6: A comparison without (left) and with (right) our mini-
mum height correction of the liquid surface heights

a computed minimum height (Fig. 6 right). This minimum height
hmin

k is a combination of a global parameter to avoid z-fighting, and
a locally-computed height to avoid interpenetrations. The global
parameter is set to 0.05∆x in our examples. By contrast, the locally-
computed height is different for each column: it is precomputed
from the terrain mesh, and updated when the terrain changes.

The goal of the local height optimization is to compute a mini-
mum height for each column to ensure that all triangles of the liquid
surface will be above the terrain mesh vertices, even if the amount
of liquid in a column is very small. We iterate through each vertex
of the terrain mesh surface, identifying the quartet of four columns
surrounding the vertex, and optimizing the local heights to make
them as small as possible, under the constraint that the triangles
formed by these columns are above the terrain vertex. We express
the height of the liquid surface, hl , along the vertical axis through
a terrain vertex as the bilinear interpolation of the heights of the
related quartet. The height of each column is the sum of the lo-
cal height lk and the base height bk. We optimize the local heights
lk under the constraint that the bilinear interpolation hl should be
slightly above the terrain vertex hv:

min
lk

∑
k

(
wkl2

k

)
, subject to hv + ε = bilinear

k∈quartet
(bk + lk), (5)

where wk are weights assigned to each column, which will be dis-
cussed later in this section. This constrained equation is solved an-
alytically using the Lagrange multipliers. As such, the approach is
efficient as it does not require that a system of equations be solved
for each terrain vertex. The final lk for a column is the maximum
over the lk computed for all terrain vertices. Once the local heights
are computed, the local minimum height hmin

k of each of the four
columns can be computed as hmin

k = bk + lk.

The solution of Eq. 5 can create unnatural bumps on the surface,
generally in regions near a steep slope on the terrain, where the
differences among base heights in the quartet are quite large. We
prevented such issues by designing weights wk based on the dis-
tance between the column base height bk and the vertex height hv:

wk =


∆x

hv−bk
, if bk ≤ hv

1E10, otherwise
. (6)

These weights enforce a greater correction to the columns with a
base height at the bottom of a large slope, and limits corrections to
those already above the terrain vertex height.

Terrain vertices whose normal is facing downward are skipped.
Furthermore, we discard terrain vertices that create a height hmin

k
higher than a cell size ∆x above the highest base height of the quar-
tet. Such cases usually generate unrealistic bumps near edges of
large slopes. Finally, large corrections can be induced by terrain
vertices that are extremely close to one of the four columns. To
prevent such large corrections, we take the global minimum into
account during the calculations of the local minimum height, con-
straining the lk to be greater than or equal to the global minimum
height.

5. Meniscus shading

The capillary action at the fluid–solid interface causes the fluid
surface to curve near the borders, which affects the surface nor-
mals and results in specular highlights at the boundary. We rely on
an inexpensive correction of the normal to provide the desired vi-
sual effect, similar to bump mapping (Fig. 7). First, we identify the

Figure 7: An example of a rendering without meniscus (on the left),
and with our approach (on the right)

columns of liquid affected by the meniscus. This is done by com-
puting a distance field to the boundary on the surface of the liquid,
within the given meniscus range. For each meniscus column, we
also obtain the direction to the boundary, as well as an estimate of
the terrain inclination at the boundary. This information is needed
for our last step, where we tilt the normals of the meniscus columns
to emulate the expected curvature, as depicted in Fig. 8.

α

Figure 8: Correction of the normals on the liquid surface based
on the distance to the boundary (left: original normals, middle:
expected curvature, right: corrected normals)

5.1. Distance and direction to boundary

To identify the region containing the meniscus, we use the 2D dis-
tance and direction to the Nearest Boundary Column (NBC), i.e.,
the closest column on the “dry” side of the fluid–solid boundary.
We proceed in a flood-fill manner from the NBC inward to the
wet columns. We start from the first ring of wet columns, i.e., wet

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

50



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

columns linked to a dry column or an extra vertex below an over-
hang (Sec. 4.3). We use these links to initialize the NBCs and dis-
tances of the first ring. We then do several iterations to propagate
the information from the boundary. The number of iterations is au-
tomatically set to cover the meniscus region based on the meniscus
length and the cell size. During the iterations, for the current wet
column, we consider its linked columns and use the Dead Reckon-
ing algorithm [Gre04], a variant of the Chamfer distance transform
algorithm: if the NBC distance of the current column is greater than
that of a linked column summed with the distance to that column,
we update the current NBC and distance (with the Euclidean dis-
tance to the NBC).

We also need the direction to the NBC for each column in the
meniscus region in order to orient the meniscus accordingly. To
that end, we can either compute the directions to the NBCs and
then filter to attenuate any aliasing from the discrete grid distance
field or use the finite central difference. We choose the latter, as
it gives a smoother approximation than the raw directions, while
limiting the amount of computation required.

5.2. Normal correction

The contact angle α between a liquid and a solid is given by
Young’s equation [You05]. The normal correction angle at the con-
tact point (i.e., the fluid–solid interface) varies with the slope of the
terrain at that point, as illustrated in Fig. 9. We use the base heights

αα α

Figure 9: The contact angle α affects the surface differently based
on the inclination of the solid, resulting in a concave (left) or convex
(right) meniscus, or no meniscus (middle)

of our column and of its NBC to obtain an estimate of the tilt an-
gle of the solid β. This allows us to compute the normal correction
angle ψ = β−α at the contact point (Fig. 10).

α
βψ

α

β

ψ

Figure 10: From contact angle α and solid tilt angle β, we obtain
the correction angle ψ to apply to the normal at the contact point

We adjust the normals of the liquid surface for all the columns
within the meniscus region. In our examples, we use a meniscus
length of 2.8 mm, based on the densities of water and air [MWE16].
Using the distance to the NBC and the correction angle at the con-
tact point, we find the tilting angle for each affected column, lin-
early interpolated from 0 at the maximal meniscus distance to the
angle ψ at the interface. Finally, we rotate the normal vector accord-
ingly, as shown in Fig. 8, using the horizontal vector perpendicular

to the NBC direction. This approach results in a convincing shading
effect that can emulate both convex and concave menisci.

6. Results

We tested our approach with a wide range of scenarios to show
its behavior, as well as the impact of its parameters. Results are
also available in the accompanying video. Parameter values as well
as timings can be found in Table 1. As with typical fluid simula-
tion methods with an explicit integration, the timestep should be
adjusted according to the CFL condition. Viscosity values in the
range [1.0E−6,1.0E−5] provide realistic results for most liquids
such as water, blood, and paint.

An important contribution of our work is the viscosity model for
small-scale liquid simulation (Sec. 3.2). We tested our approach
with varying viscosity values (see the video and stills in Fig. 11).
The images show the simulation at time t = 3.0s, with ν = 0,
4.0E−6, 4.0E−5, and 4.0E−1 m2/s. As the viscosity increases, the
liquid flows more slowly on the inclined terrain. Even with a very
large viscosity (Fig. 11(d)) our approach is stable.

(a) ν = 0 (b) ν = 4.0E−6 (c) ν = 4.0E−5 (d) ν = 4.0E−1

Figure 11: A liquid flows on an inclined terrain with varying vis-
cosity, ν, expressed in m2/s

We make several contributions to the optimization of the liq-
uid surface. As shown in Sec. 4, we improve the smoothness of
the boundaries, and we prevented incorrect interpenetrations. To
demonstrate the surface construction with multiple layers, we show
a three-layer scenario with cavities and overhangs in the accompa-
nying video and in Fig. 12. Through the simulation, the surfaces of

Figure 12: This scenario shows how our surface linking approach
correctly handles multiple changes in the surface topology

the multiple layers link the appropriate columns, even with this con-
figuration exhibiting overhangs and a hole in the middle platform.
We also validated extended pipes on a scenario with four passages.
Fig. 13 shows how, after the passages are flooded, the liquid trans-
fer does not stop, and is able to fill the other parts of the container.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

51



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

∆t ∆x ν Simulation Surface Rendering Total

Example Resolution (ms) (m) (m2/s) Max Avg Max Avg Max Avg Max Avg

Surgery (Fig. 1) 200×200×5 3.00 0.0005 4.0E−6 5.43 4.86 2.11 1.10 0.66 0.34 7.04 6.30
Viscosity (Fig. 11(a)) 200×200×1 3.00 0.0005 0 1.05 0.61 0.49 0.43 0.19 0.16 1.63 1.21
Viscosity (Fig. 11(b)) 200×200×1 3.00 0.0005 4.0E−6 1.03 0.62 0.52 0.46 0.21 0.16 1.63 1.22
Viscosity (Fig. 11(c)) 200×200×1 3.00 0.0005 4.0E−5 1.02 0.60 0.52 0.44 0.25 0.16 2.41 1.21
Viscosity (Fig. 11(d)) 200×200×1 3.00 0.0005 4.0E−1 0.93 0.60 0.52 0.41 0.22 0.16 2.40 1.20
Three layers (Fig. 12) 100×100×3 9.00 0.001 4.0E−6 0.68 0.32 0.85 0.37 0.89 0.17 1.53 0.86
Passages (Fig. 13) 100×100×3 9.00 0.001 4.0E−6 0.50 0.26 0.48 0.34 1.10 0.15 2.36 0.78

Table 1: Statistics for all the examples shown in this paper: resolution (N×N×Layers), timestep ∆t, cell size ∆x, and kinematic viscosity ν

as well as maximum/average timings (in ms) per frame for the simulation, surface generation, and rendering

Figure 13: The liquid flows from the center and through four pas-
sages (left). When the passages are fully flooded, the extended pipes
continue the transfer of liquid (right).

We also validated our approach with a surgery simulation scenario,
including multiple overhangs and holes. In Fig. 1, blood originates
on top of a vertebra during surgery. As the simulation domain is
filled, our surface correctly handles the evolving topology of the
liquid surface, and no holes or discontinuities are visible.

We executed the tests presented in this paper on an Intel Core
i5-6600 3.30 GHz with 16 GB of RAM and a GeForce GTX 970.
To take advantage of the GPU parallelism, our approach is imple-
mented using CUDA. The timings (Table 1) show that all of our ex-
amples run in real time. The most computationally expensive part is
the simulation step which takes around 50-80% of the total compu-
tation time in our examples. All of our examples take considerably
less than the 16.6 ms needed to achieve real-time rates, leaving time
for other computations such as soft body simulation, haptic feed-
back, rendering, and collision detection.

7. Discussion

We show in the accompanying video that our viscosity model, sur-
face reconstruction, and meniscus modeling are independent of
the underlying height map simulation; it works just as well with
the Shallow Water Equation (SWE) simulation [CM10]. While
the SWE method can take advantage of our contributions, the VP
method proved to be a better choice since it had results of equiva-
lent quality with significantly smaller computation times.

The simulation behavior is improved by the use of extended

pipes, which allow the liquid to flow through fully-flooded pas-
sages. However, the extended pipes approach sometimes introduces
some ripples when these pipes get connected and disconnected,
even when using the scaling method of Mei et al. [MDH07].

The surface constructed by our approach can handle the evolving
topology of the liquid throughout the simulation. However, there is
no geometry created to close the gap near edges between unlinked
cells (e.g., the edge of an overhang). Nonetheless, these are in areas
where the liquid falls down, thus the water height is generally low,
and the gap is not very apparent. Another downside is that the grid
generally does not follow exactly the silhouette at the edge of these
overhangs, which sometimes results in having a part of the geome-
try that will never be covered by the liquid surface. Additionally, the
dry/wet boundary moves on a cell-by-cell basis, which can result in
some popping. While the depth-based opacity significantly reduces
this issue, it is still visible in our examples. This behavior can be
improved by increasing the resolution of the grid, or by tracking the
surface as suggested by Thuerey and Hess [MSJT08, Chapter 11].

In our approach, we modify only the normals and not the mesh.
This may not trigger enough fragments to give an acceptable high-
light, especially when viewing the surface of the fluid from the side.
However, modifying the mesh would be more demanding as we
would need to handle problems involving cracks and interpenetra-
tions between the surface of the meniscus and the solid.

8. Conclusion

In this paper, we have presented a real-time shallow water simula-
tion approach for small-scale scenarios. It introduces a fast and sta-
ble viscosity model that can be used for any heightmap simulation
method, such as the VP or the shallow water equations. It improves
the behavior of multi-layered simulations by handling the flow in-
side passages. Moreover, it constructs a triangular mesh surface that
accounts for the interlinks among the multiple layers of liquid. We
also introduce a new surface optimization approach that computes
minimum heights of the liquid surface in order to prevent interpen-
etration of the underlying terrain surface. Finally, we improved the
shading with a novel real-time meniscus approach that proved to be
useful for the VP, but can also be used for other heightmap-based
simulation methods. All these contributions improve the realism

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

52



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

of small-scale simulations. Furthermore, the approach is compu-
tationally inexpensive, which allows it to co-exist with other real-
time systems normally required in the context of real applications
such as surgery training and games. We have demonstrated that the
approach works in real time for various scenarios such as blood
simulation for virtual surgery.

Although we improved the surface boundaries while maintain-
ing real-time performance, the former could be further improved
by closing the gap near overhanging edges. In those regions, the
liquid falling from one layer to another could be simulated using
particles to improve realism, such as in the work of Chentanez and
Müller [CM10]. We restricted ourselves to linear passages to be
computationally efficient. In future works, we could expand the va-
riety of passages that can be handled, but doing so while balancing
realism and efficiency is not an easy task. Finally, we believe the
computation time for the meniscus shading could be improved by
using a precomputed distance field for static solids such as in the
work of Morgenroth et al. [MWE16].

Acknowledgements

The work was supported by OSSimTech, Digital District, NSERC,
Mitacs, and Prompt. We would like to thank Side Effects Software
for providing Houdini licenses.

Appendix A: Velocity profile

In this section, we derive the vertically varying velocity up
i, j(z). For

simplicity, we assume that the base of the liquid is at z = 0 and
that the top is at z = H. The function up

i, j(z) is thus defined inside
the liquid, i.e., for 0 ≤ z ≤ H. The velocity is derived from the
incompressible Navier-Stokes equations:

∂~u
∂t

+~u ·∇~u−ν∇·∇~u =− 1
ρ
∇p+~g, (7)

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0, (8)

where p is the pressure, ~g = (0,0,gz) is the gravity, and ~u =
(ux,uy,uz) is the velocity. To make the velocity profile a function of
only the height z inside the liquid, we show that the Navier-Stokes
momentum equation (Eq. 7) can be simplified. To begin, the first
term can be removed by considering a steady flow:

∂~u
∂t

= 0. (9)

We also assume the velocity is constant along the horizontal plane:

∂~u
∂x

=
∂~u
∂y

=~0, (10)

Using this assumption, Eq. 8 yields:

∂uz

∂z
= 0. (11)

At the terrain level, we use a no-slip boundary condition, and at the
surface level a traction-free boundary condition:

~u|z=0 =
~0,

∂~u
∂z

∣∣∣∣
z=H

=~0. (12)

The terrain boundary condition and Eq. 11 tell us that uz = 0 ev-
erywhere, and can thus be ignored. Using this result and Eq. 10,

the second term of the Navier-stokes momentum equation becomes
zero:

~u ·∇~u = ux
∂~u
∂x

+uy
∂~u
∂y

+uz
∂~u
∂z

(13)

= ux(0)+uy(0)+(0)
∂~u
∂z

=~0. (14)

Finally, the third term can be simplified similarly:

−ν∇·∇~u =−ν

(
∂

2~u
∂x2 +

∂
2~u

∂y2 +
∂

2~u
∂z2

)
. (15)

Using Eq. 10, the first two terms become zero, yielding:

−ν∇·∇~u =−ν
∂

2~u
∂z2 . (16)

After these simplifications, Eq. 7 now becomes:

−ν
∂

2~u
∂z2 =− 1

ρ
∇p+~g. (17)

Now that the Navier-Stokes equations have been simplified, we can
derive the horizontal velocity as a function of z. As we use fluxes
between cells, we derive the velocity along ux- and uy- axes. We
will show ux, and uy can be derived in the same way. From Eq. 17,
considering the x component, we get:

ν
∂

2ux

∂z2 =
1
ρ

∂p
∂x

. (18)

We assume the horizontal pressure variation to be constant, and
replace it by a constant w:

ν
∂

2ux

∂z2 = w, (19)

Integrating both sides twice with respect to z, using the boundary
conditions from Eq. 12 to find the values of the integration con-
stants, dividing both sides by ν, and rearranging the terms yields:

ux =
w
ν

(
z2

2
−Hz

)
. (20)

To link the velocity function to the flux velocity ui, j , we find the
expression of the pressure gradient w that will make the average
velocity of ux inside the liquid equal to ui, j

ui, j =
1
H

∫ H

0

w
ν

(
z2

2
−Hz

)
dz =−wH2

3ν
(21)

w = −
3νui, j

H2 (22)

Using that result in Eq. 20 yields:

ux =−
3ui, j

H2

(
z2

2
−Hz

)
(23)

Performing the same derivation on uy yields the same result. Know-
ing that a flux is always aligned with the x or y axis, ux can be
substituted by up

i, j(z):

up
i, j(z) =−

3ui, j

H2

(
z2

2
−Hz

)
(24)

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

53



F. Dagenais, J. Guzmán, V. Vervondel et al. / Real-Time Virtual Pipes Simulation and Modeling for Shallow Water

Appendix B: Viscosity model

In this section, we derive the viscosity model, using the vertically
varying velocity up

i, j(z) (App. A). Our goal is to determine how to

update the velocity, i.e., ∂ui, j
∂t , based on the viscosity. Our model

accounts for the effect of viscosity from the terrain to the liquid
surface, ignoring the effect of neighbor cells. While this is less ac-
curate, neglecting the relation between neighbor cells allows us to
implicitly integrate each column independently, instead of having
to solve a large system of equations. We derive our viscosity model
by considering only the viscous term of the Navier-Stokes momen-
tum equation. Here, we show the derivation for ∂ux

∂t , but the same

process can be applied to ∂uy
∂t :

∂ux

∂t
= ν

(
∂

2ux

∂x2 +
∂

2ux

∂y2 +
∂

2ux

∂z2

)
. (25)

With the assumption of Eq. 10, Eq. 25 is simplified to:

∂ux

∂t
= ν

∂
2ux

∂z2 (26)

Using the velocity profile defined by Eq. 24, this equation becomes:

∂ux

∂t
= ν

∂
2

∂z2

[
−

3ui, j

H2

(
z2

2
−Hz

)]
=−

3νui, j

H2 (27)

This result is used to compute how the velocity ui, j varies over time:

∂ui, j

∂t
=

∂

∂t

(
1
H

∫ H

0
uxdz

)
. (28)

Using the Leibniz integral rule, and simplifying the problem by
assuming that the liquid depth H does not vary over time, yields:

∂ui, j

∂t
=

1
H

∫ H

0

(
−

3νui, j

H2

)
dz =−

3νui, j

H2 . (29)

Finally, we integrate the average velocity implicitly using the back-
ward Euler method to get the temporal update of the velocity con-
sidering the viscosity:

un+1
i, j = un

i, j−
3∆tν
H2 un+1

i, j . (30)

Rearranging the terms yields:

un+1
i, j =

(
H2

H2 +3∆tν

)
un

i, j. (31)

References
[AGL∗17] AANJANEYA M., GAO M., LIU H., BATTY C., SIFAKIS E.:

Power diagrams and sparse paged grids for high resolution adaptive liq-
uids. ACM Trans. Graph. 36, 4 (July 2017), 140:1–140:12. 2

[ATBG08] ANGST R., THUEREY N., BOTSCH M., GROSS M.: Robust
and efficient wave simulations on deforming meshes. Computer Graph-
ics Forum 27, 7 (2008), 1895–1900. 2

[BMPG11] BORGEAT L., MASSICOTTE P., POIRIER G., GODIN G.:
Layered surface fluid simulation for surgical training. In Proc. of Med-
ical Image Computing and Computer-Assisted Intervention – MICCAI
2011 Conference (2011), Springer, pp. 323–330. 2, 4

[CM10] CHENTANEZ N., MÜLLER M.: Real-time simulation of large
bodies of water with small scale details. In Proc. of ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation (2010), SCA ’10,
pp. 197–206. 1, 2, 5, 8, 9

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Animation and
rendering of complex water surfaces. ACM Trans. Graph. 21, 3 (July
2002), 736–744. 2

[FAW∗16] FERSTL F., ANDO R., WOJTAN C., WESTERMANN R.,
THUEREY N.: Narrow band flip for liquid simulations. Computer
Graphics Forum 35, 2 (2016), 225–232. 2

[Gre04] GREVERA G. J.: The “dead reckoning” signed distance trans-
form. Computer Vision and Image Understanding 95, 3 (2004), 317–333.
7

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: SPH Fluids in Computer Graphics. In Eurograph-
ics 2014 - State of the Art Reports (2014), Lefebvre S., Spagnuolo M.,
(Eds.), The Eurographics Association. 2

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOM-
AKHIN A.: The affine particle-in-cell method. ACM Trans. Graph. 34, 4
(July 2015), 51:1–51:10. 2

[JW17] JESCHKE S., WOJTAN C.: Water wave packets. ACM Trans.
Graph. 36, 4 (2017), 103:1–103:12. 2

[Kel14] KELLOMÄKI T.: Rigid body interaction for large-scale real-time
water simulation. Int. J. Comput. Games Technol. (2014). 1, 2, 3, 4

[KM90] KASS M., MILLER G.: Rapid, stable fluid dynamics for com-
puter graphics. Comput. Graph. 24, 4 (Sept. 1990), 49–57. 2

[KSS09] KERWIN T., SHEN H.-W., STREDNEY D.: Enhancing Realism
of Wet Surfaces in Temporal Bone Surgical Simulation. IEEE Trans. on
Visualization and Computer Graphics 15, 5 (Feb. 2009), 747–758. 2

[LO07] LEE R., O’SULLIVAN C.: A Fast and Compact Solver for the
Shallow Water Equations. In Workshop in Virtual Reality Interactions
and Physical Simulation (VRIPHYS) (2007), pp. 51–57. 2

[LvdP02] LAYTON A. T., VAN DE PANNE M.: A numerically efficient
and stable algorithm for animating water waves. The Visual Computer
18, 1 (Feb 2002), 41–53. 2

[MDH07] MEI X., DECAUDIN P., HU B.-G.: Fast hydraulic erosion
simulation and visualization on gpu. In Pacific Conference on Computer
Graphics and Applications, PG ’07 (Oct 2007), pp. 47–56. 1, 3, 8

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans.
Graph. 32, 4 (July 2013), 104:1–104:12. 2

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real time
physics. In SIGGRAPH Class Notes (2008), ACM, pp. 88:1–88:90. 8

[MWE16] MORGENROTH D., WEISKOPF D., EBERHARDT B.: Direct
raytracing of a closed-form fluid meniscus. The Visual Computer 32, 6-8
(June 2016), 791–800. 7, 9

[MY97] MOULD D., YANG Y.-H.: Modeling water for computer graph-
ics. Computers & Graphics 21, 6 (1997), 801–814. 3

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic simulation of splash-
ing fluids. In Proc. of Computer Animation ’95 (Apr 1995), pp. 198–205,
220. 2, 3

[vBBK08] ŠT’AVA O., BENEŠ B., BRISBIN M., KŘIVÁNEK J.: Inter-
active terrain modeling using hydraulic erosion. In Proc. of ACM SIG-
GRAPH/Eurographics Symp. on Comp. Anim. (2008), SCA ’08, Euro-
graphics Association, pp. 201–210. 1, 3

[WMT07] WANG H., MILLER G., TURK G.: Solving general shallow
wave equations on surfaces. In Proc. of ACM SIGGRAPH/Eurographics
Symp. on Comp. Anim. (2007), SCA ’07, Eurographics Association,
pp. 229–238. 2

[YHK07] YUKSEL C., HOUSE D. H., KEYSER J.: Wave particles. ACM
Trans. Graph. 26, 3 (2007). 2

[You05] YOUNG T.: An essay on the cohesion of fluids. Philosophical
Trans. of the Royal Society of London 95 (1805), 65–87. 7

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

54


