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Abstract

This paper presents a Differential Evolutionary (DE) algorithm for solving multi-objective kinematic problems (e.g., end-
effector locations, centre-of-mass and comfort factors). Inverse kinematic problems in the context of character animation
systems are one of the most challenging and important conundrums. The problems depend upon multiple geometric factors
in addition to cosmetic and physical aspects. Further complications stem from the fact that there may be non or an infinite
number of solutions to the problem (especially for highly redundant manipulator structures, such as, articulated characters).
What is more, the problem is global and tightly coupled so small changes to individual link’s impacts the overall solution. Our
method focuses on generating approximate solutions for a range of inverse kinematic problems (for instance, positions, orien-
tations and physical factors, like overall centre-of-mass location) using a Differential Evolutionary algorithm. The algorithm is
flexible enough that it can be applied to a range of open ended problems including highly non-linear discontinuous systems with
prioritisation. Importantly, evolutionary algorithms are typically renowned for taking considerable time to find a solution. We
help reduce this burden by modifying the algorithm to run on a massively parallel architecture (like the GPU) using a CUDA-
based framework. The computational model is evaluated using a variety of test cases to demonstrate the techniques viability
(speed and ability to solve multi-objective problems). The modified parallel evolutionary solution helps reduce execution times
compared to the serial DE, while also obtaining a solution within a specified margin of error (<1%).

Keywords: inverse kinematics, animation, differential evolution, multi-threading, patterns, motion, detection, poses, articulated

skeletons

1 Introduction

Solving Inverse Kinematic (IK) problems efficiently and quickly
is challenging and important. The challenges stem from the fact
that inverse kinematic problems are typically highly non-linear
and multi-modal, not to mention, requiring prioritization control
(e.g., minimal change in angle/position, centre-of-mass location,
obstacle avoidance and joint singularity circumvention). For in-
stance, a particular element of articulated character structures of-
ten overlooked is the tightly-coupled nature of the problem (mi-
nor changes to joints lower in the hierarchy will influence inherited
joints) [Ken12b], including the ‘discontinuous’ search space due to
joint limits and conflicting goals which we address in this paper
using an evolutionary algorithm.

Modelling programs (e.g., Blender [Ble17]) are limited to solv-
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ing local optimisation (such as, end-effector placement location)
and do accommodate global multi-objective problems (e.g., centre-
of-mass and controlled stylistic input) due to the complexity of
the search space. For instance, as the complexity of the search
space increases due to the multiple objectives, the search space
becomes more non-linear and discontinuous dramatically increas-
ing search times and the chance of converging on an optimal so-
lution. However, human-like characters possess a vast assortment
of degrees of freedom (DOF) that allows them to perform a di-
verse range of actions. Controlling a character’s pose to gener-
ate targeted actions that accomplish specific tasks (e.g., reaching
and stepping) while controlling physical aspects of the pose is of
particular interest [Ken12b, GMHP04] Many kinematic optimisa-
tion algorithms are only effective at finding ‘local’ optimal solu-
tions (e.g., gradient-based algorithms like, steepest decent and hill-
climbing). Global kinematic optimisation techniques are often re-
quired for ‘multi-model” and ‘highly non-linear’ problems (e.g.,
DE algorithm). These kinematic optimisation problems are often
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extremely challenging (especially for problems with large num-
bers of parameters and fitness criteria). Of course, recent research
into metaheuristic algorithms have suggested that population based
optimisations are promising for solving these tough optimisation
problems [Yan12].

As we explain in this paper, the heuristic Differential Evolution al-
gorithm has three main advantages; (1) able to find an optimal mini-
mum for a multi-modal search space regardless of the initial param-
eter values, (2) fast convergence, and (3) uses few control param-
eters. As we show, the DE algorithm is particularly well suited for
numeric optimization problems (e.g., multi-object kinematic tasks).
While the DE algorithm is a population based solution similar to a
genetic algorithm, it does not require as many parameters to tune
(mutation, selection, crossover).

Contribution The key contributions of this paper are: (1) we
evaluate and demonstrate the practical viability of the differen-
tial evolutionary algorithm for multi-modal kinematic problems;
(2) we amalgamate the differential evolutionary algorithm with a
massively parallel execution environment to reduce the time-frame
for solving complex multi-modal inverse kinematic problem; and
(3) we evaluate and discuss the limitations and bottlenecks of the
differential evolutionary algorithm in addition to comparing the se-
quential and parallel algorithm for solving non-linear inverse kine-
matic problems.

2 Related Work
2.1 Inverse Kinematics

Articulated structures are used to represent virtual character skele-
tons (e.g., humans, insects and horses). The IK problem comes
down to the problem of finding the angles for the joints to achieve
some expected goal (end-effector location, pose or obstacle avoid-
ance). For simple IK character problems, such as, knee or arm loca-
tions with 2 or 3 degrees of freedom, we can use analytical methods
to find a solution [Kal08]. However, for more complex IK systems,
we require numerical methods due to the highly non-linear and
discontinuous nature of the problem [TGB0OO]. Numerical meth-
ods are able to find an ‘approximate’ solutions (i.e., closest or best
guess) through an iterative manner. However, these methods are
vulnerable to local optimal and long convergence times. For ex-
ample, the Cyclic Coordinate Descent (CCD) algorithm [Ken12a]
is a computationally inexpensive technique based upon a hybrid
heuristic technique based upon a iterative trigonometric search. The
CCD algorithm is a good compromise between speed and accu-
racy but it limited end-effector problems (does not map to solv-
ing different multi-objective problems). On the other hand, evo-
lutionary algorithms are another type of numerical method, such
as, the genetic algorithm, which have the advantage of being able
to search difficult search spaces (handle redundancy and multiple
goals) as demonstrated by Parker et al. [PKG89] and Kallmann et
al. [KAATO3]. The genetic algorithm has also been parallalized us-
ing the GPU for solving character animation problems [Ken14].
The method works towards minimizing a fitness criteria (e.g., min-
imal joint displacement) to find the optimal solution to the problem.
While the Genetic Algorithm (GA) has a number of advantages and
has shown promising results it does require the hand-tuning of mul-

tiple parameters to achieve acceptable performance (e.g., conver-
gence speed). What is more, the parameters need to be re-tuned for
each problem (i.e., the search space) [GCO0]. The data also need to
be mapped to a genome for cross-breeding - which can be unintu-
itive depending upon the problem. In this paper, we continue with
an evolutionary paradigm but base it upon a ‘differential’ model
to reduce the number of parameters and the representation of the
data [SP97].

Various research has approached different problems in the con-
text of inverse kinematic algorithms, such as, enforcing an arbi-
trary number of strict priority levels [BB04] to minimising the
effort in redundant manipulators [DW97]. In particular, gradient-
based IK methods are a popular solution for end-effector prob-
lems [KSB10, BK0O5]. Robotic humanoid with end-effector con-
straints for resolved motion rate control (RMRC) [DVSO01] using
a statistical learning algorithm. On the positive side, gradient based
methods have the advantage of converging quickly on similar so-
lutions, yet struggle with discontinuous or multiple objective prob-
lems. In comparison our approach is primarily a heurstic model
with an underlying ‘gradient’ concept. This means the technique
does not purely rely on ‘gradient’ information for local search op-
timisations. In fact, for complex search spaces with constraints and
multiple fitness criteria gradient information may be non-existent,
unreliable or poorly specified causing issues for convergence.

2.2 Evolutionary Algorithms

Genetic Algorithms (GA) Genetic algorithms keep pretty
closely to the metaphor of genetic reproduction. While both ge-
netic algorithms and differential evolution are examples of evolu-
tionary computation they have distinct advantages and disadvan-
tages depending upon the problem. For example, GAs operate by
mimicking the language of biology, using chromosomes, genes,
crossover and mutation to represent the problem. This translat-
ing of data to a low-level biological form can disconnect the op-
timisation problem from the goal and induce additional computa-
tional and managerial overhead [Deb00, Ken14]. One of the first
people to apply GA to solving IK problems was Joey and David
[PKG89] who solved redundant robotic problems using a ‘single’
fitness function. This later led onto numerous modified solutions,
such as, the Multi Population Genetic Algorithm (MPGA) by Zhen
and Yan-Tao [SJTJ15]. and an optimised a genetic algorithm for
real-time inverse kinematic trajectories called the Dynamic Multi-
layered Chromosome Crossover (DMCC) algorithm by Albert et
al. [AKT*08].

Differential Evolution (DE) Differential evolution is in the
same style as GA, but the correspondences are not as exact. The
first big change is that DE is using actual real numbers (in the
strict mathematical sense, while the technique is implemented as
real numbers (e.g., floating or double precision values) enabling
the technique (in theory) to cover the complete range of real num-
ber values. As a result, the ideas of mutation and crossover are sub-
stantially different. The mutation operator is modified and repre-
sented as a ‘probabilistic’ mixing of the population - to accom-
plish the same purpose of breaking things out of local minima
[Pri96, QHS09].

On the plus side, there are a handful of results showing DEs are
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Figure 1: Parallel DE Implementation - The parallel implementa-
tion calculates an candidate for each individual for the next pop-
ulation - if the new candidate has a greater fitness than the orig-
inal individual it is replaced. Since we have the current and next
memory locations, we do not have any ‘blocking’ calculations (i.e.,
neighbouring dependencies such as reading/writing to the same
memory location).

often more effective and/or more efficient than genetic algorithms
[VT04,QHS09,0OLMY 14]. For instance, when working in numer-
ical optimization, it is valuable to be able to represent things as
actual ‘real numbers’ instead of having to work around represen-
tations, such as, chromosomal values. Importantly, the DE per-
forms well for certain situations because the vectors can be con-
sidered to form a ‘cloud’ that explores the high value areas of the
solution-space quite effectively. The concept closely mimics a par-
ticle swarm optimization in some senses [VT04]. On a side note,
as DEs are based upon the evolutionary concept, they still have the
usual problem of local minima depending upon the fitness functions
causing bottlenecks and exasperating search times.

Recently the DE was employed in a robotic IK problem by Ro-
driguez et al. [RSRHO]. Rodriguez et al. [RSRHO] presented a
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Figure 2: Multiple Fitness Criteria - (a) Single objective end-
effector (distance); (b) Multi-objective: end-effector distance plus
a secondary biasing constraint for the links near the start of the
chain to remain as straight as possible; and (c) Multi-objective:
end-effector distance plus a secondary object to keep links near the
end-of the chain as straight as possible.

four Degrees of Freedom (DOF) solution for a robotic system
using a Differential Evolution algorithm. Prior to that Gonzalez
and Blanco [GBM12] showed the DE increased convergence in a
memetic IK solution. A hybrid DE was proposed by Nguyen and
Ho Pham [SAC14] to train an adaptive neural network for the solu-
tion of inverse kinematic (solve the inverse kinematic of a 3 DOF
manipulator).

Our Work While the DE has gained popularity in robotics for
solving IK problems, we are not aware of it being used in the graph-
ical community. The paper presents a differential evolutionary (DE)
approach for solving inverse kinematics (IK) problems (e.g., artic-
ulated character systems). The interest in using DE is the flexibility
in searching the space for possible solutions. We reduce the search
times through the adaptation of the algorithm onto the GPU.

3 Method

We combine the Inverse Kinematic problem with multiple tasks
(e.g., minimal change in angle/position, centre-of-mass location,
obstacle avoidance and joint singularity avoidance) to evaluate the
DE algorithm. We demonstrate the viability of the DE optimisa-
tion method by solving complex kinematic problems in relation to
convergence times, population sizes, and parameters. We start with
simple single objective problems and extend them to include multi-
objective problems in addition to prioritization using a weighted
sum objective function. Examining the results from a sequential
DE optimisation algorithm it provides a reference point for quan-
tifying the quality of the modified parallel version. However, we
explore and explain the problems and modifications necessary to
port the DE technique to the graphical processing unit (GPU).

Population As shown in Figure 3, we can see that the DE opti-
misation algorithm is able to converge on a solution with a limited
number of generations even for small populations (e.g., less than
100). What is more, Figure 3 shows, there is a relationship between
population size and the number of generations required to find a so-
lution. Hence, reducing any computational bottlenecks for rapidly
advancing generations and the ability to instance large population
sizes would seriously reduce computational times (i.e., paralleliza-
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Data: Parameters & Initialization
// Differential Weight [0,2]

FwW=2
/I Crossover Probability [0,1]
CR=0.5

// Dimensions

N = Number of Joint Angles

// Population Size

POP_SIZE

/I Array Individuals (Population)
Initialize to random values

// Evolution Function

Function E poch()

for (j=0; j<POP_SIZE; ++j) do

/Il Pick a random candidate from population
x = RandomNumber(0, POP_SIZE-1)

/I Pick three different random points

// from population

a = RandomNumber(0, POP_SIZE-1);
b = RandomNumber(0, POP_SIZE-1);
¢ = RandomNumber(0, POP_SIZE-1);
// Note a b and ¢ cannot be the same

/l Pick a random index [0-Dimensionality]
R = RandomNumber(0, N-1);

for (i=0; i<N; ++i) do
if (i==R || RandomNumber(0,1)<CR ) then
| candidate=a+FW*(b-c)
end
end

// See if new individual is better than the original //
candidate, if so replace
if ( candidateFitness < originalFitness ) then
| population[x] = candidate;
end

end
generation++
EndFunction

Algorithm 1: Sequential Algorithm for the Differential Evolution-
ary Implementation.

tion of the technique). The details of the algorithm for solving IK
problems:

e The joint angles are stored as ‘Euler’ angles to reduce memory
footprint for storing large populations (compared to matrices)

e Euler angles enable us to easily limit ranges (intuitive to artists)

e Forward kinematic calculations can be performed through the
generation of the transform matrices (e.g., rotations/transla-
tions)

e During the forward kinematic update, we are able to calculate
the fitness details (end-effector locations, difference between
current and desired angles, location of the overall centre-of-
mass)

e The individuals within the population have the joint angles ran-

Number of Joirits

Population Size

Number of Generations to Converge (<1%)

Figure 3: Population Size vs Generations - Average over 100 iter-
ations - Population Size vs Number of Generations required to con-
verge on a solution (< 1%) for different numbers of serial linked
chains. Single fitness criteria (distance of the end-effector from the
target location).

domly initialize to values between —m and T during the initial-
ization phase

e Since we focus on articulated character structures, the different
types of joints (e.g., hinge and ball-joint) can all be represented
using Euler angles with limits (i.e., only angular joints no sliders
- rigid lengths)

An important ‘optimisation’ factor for articulated character struc-
tures is the ability to tune ‘aesthetic’ qualities. For instance, coher-
ent changes between poses, smooth overall variations (distributed
averaging vs abruptly applying the solution to few links) even the
ability to best guess or match reference key-frame examples. Fig-
ure 2 shows a simple proof of concept whereby the structure is
smoothed at different ends of the chain (secondary priority) when
finding the end-effector reach location.

The centre-of-mass is often an overlooked property in articulated
kinematic problems, due to its challenging and costly overhead.
As shown in Figure 4 and Figure 5 the importance of the physical
properties of the character for generating ‘coordinated’ balanced
poses.

Weighted Sum Fitness Functions Evolutionary algorithms op-
erate on a population and are well suited to solving multiple so-
lutions in parallel (i.e., they are readily able to adapt to multi-
objective optimisation problems). The weighted sum of the differ-
ent fitness functions is a fairly standard way to handle multiple ob-
jectives. Then again, the final answer does depend greatly on the set
priorities. We manage the priorities using a weighted fitness factor.
The weighted fitness function is defined in Equation 1 as:

total __

M=

fitness

wifj (D)

j=1

where n is the number of fitness criteria, w; denotes the rela-
tive weight of importance for the fitness criterion f;. Examples of
the different criteria include, end-effector orientation and location,
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(a)

Figure 4: Centre-of-Mass (COM) Character Body - The impor-
tance of the COM constraint (a) COM and end-effector constraint
‘equal’ priority and (b) Setting the COM as priority in the weighted

sum objective function.
( Target (End-Effector)

//

»
\ Centre-of-Mass

—
NN NN NN

Figure 5: Centre-of-Mass Priority - The centre-of-mass (COM) is
crucial for dynamic systems. We set three fitness criteria: highest
priority is the COM must remain above the support point, second
is the end-effector reach target, and finally the pose should coherent
between joints (i.e., avoid abrupt jumps).

comfort factors, self-collision, obstacle avoidance and even overall
centre-of-mass position (e.g., see Equation 2).

Fitness =(wg) (fee)

2

00 eom) + 0 i)+

where wy represent the weights and are in the range [-1.0..0.0..1.0]

and fee, feom, and fmle are fitness values. The weights determine

how important the fitness value is in achieving the final objective

(trade-off objectives). As shown in the following fitness calcula-

tions, we normalize the fitness criteria using an exponential curve

(i.e., 1 —exp(—[|x||)) to limit the fitness function between 0.0 and
1.0.

The overall centre-of-mass represents a unique point for an object
(or system) which is used to describe the object’s physical charac-
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teristics, such as, the object’s ability to respond to external forces
and torques (see Equation 3).

N
M= Zm,-
e 3)
13C0M = va:l il
M

where M is the total mass, m; is the mass of joint i, N is the number
of joints, Pcoyy is the position of the centre-of-mass, and P; is the
position of mass m;.

The fitness calculation between the current and desired overall
centre-of-mass location (Equation 4):

feom = 1—exp(—||Pcom,,, — Pcomy,|) “)

where feom is the fitness value for the overall centre-of-mass (0.0 to
1.0), Pcom,,, is the current, Pcoyy,,, desired positions of the overall
centre-of-mass.

The end-effector error is the difference between the desired and
current end-effector location (Equation 5):

feg:1—6'XP(_HI_)‘cur—ﬁdes||,U) (5)

where fe. is the fitness value for the end-effector location, ﬁcur is
the current end-effector location, ﬁdes is the desired end-effector
location. We subtract the negative exponent from 1.0 to limit the
fitness function to 0.0 to 1.0, and u is a scaling factor to deal with
numerical issues due to the exp calculation (e.g., u < 1.0)

The comfort fitness calculation compares the current joint angles
with a set of reference angles (see Equation 6).

N
Ocroral = ; | |ecurr,» - edesi H (6)

fsumstyle =1- exp(_eelolal:u)

where fiy/, is the fitness value for the quality of the pose, N is the
number of angles, 6. is the current joint angle, 0,4, is the desired
joint angle and u is a scaling factor to deal with numerical issues
due to the exp calculation (e.g., 4 ~ 0.1). For example, when re-
targeting key-frame poses in animation data, we want the adapted
pose to remain as close to the original reference pose as possi-
ble while meeting the specified criteria (e.g., feet on the ground
or location of the centre-of-mass for balance). There are different
methods for accomplishing the joint-different penalty, for exam-
ple, Rodriguez et al. [RSRHO] stores only the single maximum
rotational error for all the joint angles compared to our approach
that sums the error (shown in Equation 7). We compare the two fit-
ness criteria in Figure 6. Since only the largest error is stored and
compared against, for small numerical movements there is no per-
ceivable feedback into the population to steer the algorithm causing
long delays between updates.
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Figure 6: Comfort Fitness - The DE algorithm performs better
with gradually changing fitness functions compared to binary (step-
wise) solutions.

if (abs(®)> 2 ) then
d=abs(0)-2m

o=
end

Algorithm 2: Penalty feedback for constraining joint angle ranges
(£2m).

Ocrr = max(||0curro — Ogesol |
|\9wrr1 - edesl H7

| ‘ec‘urrZ - edesZ ‘ |7 (7)
)

fmaxstyle =1- exp(_eerr)

where 0., is the current joint angle for joint 0, 04, is the desired
joint angle for joint 0.

Joint angles are limited to —7 to ©. As the algorithm evolves, the
values will violate these limits. Instead of hard clamping the values
- we introduce a penalty feedback.

Massively Parallel Architecture The sequential differential
evolutionary algorithm in its original form is difficult to map to
a massively parallel architecture such as the Graphical Processing
Unit (GPU). Our modified algorithm and optimisation problem is
highly suited to the GPU due to the fixed structure of the computa-
tion (i.e., the kinematic composition is the same for each individual
in the population). A sequential implementation shown in Algo-
rithm 1, randomly selects individuals from the population, hence,
inside the Epoch update, an individual candidate may be overwrit-
ten multiple times in a single step. This would cause problems on
the GPU since neighbouring individuals would be changing - and
if this was to be implemented on the GPU would require data to be
locked while different processes read/write to elements. However,
we modify the algorithm so it is more compatible with the GPU
architecture. We have ‘two’ blocks of memory for the population -

: : : — Séquential'candid'ates (Pa}’alle\l
: : : Random Candidates (Serial)
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Figure 7: Random vs Sequential - Removing the ‘random’ candi-
date selection component from the sequential version of the algo-
rithm 1. Plot the average fitness (100 iterations) vs population for
20 joints (Population = 500).
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Figure 8: Timing Information - Population of 500 for varying
numbers of joints (i.e., degrees of freedom). Plot of the time vs num-
ber of generations for both the CPU and GPU implementation.

the current population and the next population. Each Epoch update
takes the current population as the source for ‘reading’ from and
use it to calculate the ‘next’ population (i.e., the differential evolu-
tionary technique is used to calculate each individual for the subse-
quent population). After the Epoch update, we ‘swap’ the memory
so the next population becomes the current and the current popula-
tion becomes the next. Essentially, ‘ping-ponging’ back and forth -
rapidly evolving the population without any ‘bottlenecks’ to hinder
the computations (see Figure 1).

In contrast with a similar evolutionary algorithm known as the ge-
netic algorithm - the differential evolutionary algorithm has the
added advantage of not requiring ‘sorting’ of the population af-
ter each Epoch to identify the elitist individuals - enabling us to
quickly evolve the solution over multiple generations.

(© 2017 The Author(s)
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— CPU (Time vs Gens) Population=500, Joints=20

CPU (Time vs Gens) Population=500, Joints=40
— CPU (Time vs Gens) Population=500, Joints=100
—— CPU (Time vs Gens) Population=500, Joints=500

Time

(a)

—— GPU-CUDA (Time vs Gens) Population=:
GPU-CUDA (Time vs Gens) P

—— GPU-CUDA (Time vs Gens) Popula

—— GPU-CUDA (Time vs Gens) Population=500, Joints=500
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Time
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Generations
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Figure 9: Separate Timing Data - Serial (CPU) vs Parallel (GPU)
- Comparison of the differential evolutionary algorithm timing in-
formation for (a) CPU and (b) GPU (averaged over 100 iterations).
On average, with a population size of 500 and each individual hav-
ing 100 links the parallel CUDA implementation was 12x faster
than the serial (CPU) version.

CUDA CUDA (Compute Unified Device Architecture) is an ex-
tension of the C programming language and was created by NVidia
for programming massively parallel architectures [Nvil7]. Impor-
tantly, CUDA is well suited to massively parallel problems (e.g.,
articulated character inverse kinematic problems). The GPU is an
attractive solution for problems that require the calculation of lots
of operations with floating point variables in parallel (i.e., while
not requiring too much access to global memory). The GPU’s in-
ternal memory registers offer access to hundreds or thousands of
computing cores. Since CUDA is based on the SIMD (Single In-
struction Multiple Data) paradigm, it is well suited to our inverse
kinematic problem which requires the execution of the same op-
eration on different data. As we show in this paper, as long as the
fitness criteria does not have a substantial number of conditional
branches or have considerable dependencies between neighbouring
threads the implemented parallel solution is able to outperform the
sequential version.

(© 2017 The Author(s)
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4 Conclusion

This paper has shown the promising potential of using a differen-
tial evolutionary algorithm for solving multi-objective kinematic
problems. What is more, combining the technique with a massively
parallel architecture helps reduce search times. For example, with a
population size of 500 and each individual having 100 links the par-
allel CUDA implementation was 12x faster than the serial (CPU)
version (see Figure 9). While we only applied the DE algorithm
to small selection of character kinematic problems, the solution
has a wide range of potential applications - especially when com-
bined with a massively parallel execution environment - allowing
the technique to converge on solutions in viable time frames. In
addition, we explored various test scenarios, but later work will ex-
plore both static and dynamic situations (e.g., optimising multiple
articulated poses to predict future motions).

Possible future directions of the research presented in this paper in-
clude: Firstly, multiple sub-populations to ensure the massively par-
allel implementation (on the GPU) is kept continually working at
100% (i.e., no waiting or stalls between population updates) which
leads onto possibly extending this to multiple GPUs and clusters.
Secondly, we focused on adapting a single articulated structure
(i.e., single pose), however, the technique could be extended to pro-
cess multiple-frames simultaneously (coherency and fitness criteria
between frames - e.g., motion frequency analysis [Ken15]). Finally,
depending upon the complexity of the model, it might be possi-
ble to extend the optimisation criteria beyond a purely kinematics
problem to include physically-based simulation data (i.e., for low-
dimensional approximations).

Acknowledgements

We gratefully acknowledge the support of the NVIDIA Corporation
for the donation of hardware used in this research. In addition, we
want to thank the reviewers for taking the time to provide insightful
and valuable comments to help to improve the quality of this paper.

References

[AKT*08] ALBERT F., KOH S., TIONG S., CHEN C., YAP F.: Inverse
kinematic solution in handling 3r manipulator via real-time genetic al-
gorithm. In Information Technology, 2008. ITSim 2008. International
Symposium on (2008), vol. 3, IEEE, pp. 1-6. 2

[BB04] BAERLOCHER P., BOULIC R.: An inverse kinematics architec-
ture enforcing an arbitrary number of strict priority levels. The visual
computer 20, 6 (2004), 402-417. 2

[BKO5] Buss S. R., KiM J.-S.: Selectively damped least squares for in-
verse kinematics. journal of graphics, gpu, and game tools 10, 3 (2005),
37-49. 2

[Blel7] BLENDER: Blender.
(05/02/2017)) (2017). 1

[Deb00] DEB K.: An efficient constraint handling method for genetic
algorithms. Computer methods in applied mechanics and engineering
186, 2 (2000), 311-338. 2

[DVSO01] D’SouzA A., VIJAYAKUMAR S., SCHAAL S.: Learning in-
verse kinematics. In Intelligent Robots and Systems, 2001. Proceed-
ings. 2001 IEEE/RSJ International Conference on (2001), vol. 1, IEEE,
pp- 298-303. 2

[DW97] DEO A. S., WALKER 1. D.: Minimum effort inverse kinematics
for redundant manipulators. IEEE Transactions on Robotics and Au-
tomation 13,5 (1997), 767-775. 2

URL: www.blender.org (Accessed:



74 Ben Kenwright / Inverse Kinematic Solutions for Articulated Characters

[GBM12] GONZALEZ C., BLANCO D., MORENO L.: A memetic ap-
proach to the inverse kinematics problem. In Mechatronics and Automa-
tion (ICMA), 2012 International Conference on (2012), IEEE, pp. 180-
185.3

[GCO0] GEN M., CHENG R.: Genetic algorithms and engineering opti-
mization, vol. 7. John Wiley & Sons, 2000. 2

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A., POPOVIC
Z.: Style-based inverse kinematics. In ACM transactions on graphics
(TOG) (2004), vol. 23, ACM, pp. 522-531. 1

[KAAT03] KALLMANN M., AUBEL A., ABACI T., THALMANN D.:
Planning collision-free reaching motions for interactive object manipu-
lation and grasping. In Computer Graphics Forum (2003), vol. 22, Wiley
Online Library, pp. 313-322. 2

[Kal08] KALLMANN M.: Analytical inverse kinematics with body pos-
ture control. Computer animation and virtual worlds 19, 2 (2008), 79—
91.2

[Kenl2a] KENWRIGHT B.: Inverse kinematics—cyclic coordinate descent
(ced). Journal of Graphics Tools 16, 4 (2012), 177-217. 2

[Ken12b] KENWRIGHT B.: Synthesizing balancing character motions. In
VRIPHYS (2012), pp. 87-96. 1

[Ken14] KENWRIGHT B.: Planar character animation using genetic al-
gorithms and gpu parallel computing. Entertainment Computing 5, 4
(2014), 285-294. 2

[Kenl5] KENWRIGHT B.: Quaternion fourier transform for character
motions. 7

[KSB10] KUMAR S., SUKAVANAM N., BALASUBRAMANIAN R.: An
optimization approach to solve the inverse kinematics of redundant ma-
nipulator. International Journal of Information and System Sciences (In-
stitute for Scientific Computing and Information) 6, 4 (2010), 414-423.
2

[Nvil7] NvVIDIA C.: Compute unified device architecture programming
guide. 7

[OLMY14] OMIDVAR M. N, L1 X., ME1 Y., YAO X.: Cooperative co-
evolution with differential grouping for large scale optimization. IEEE
Transactions on Evolutionary Computation 18, 3 (2014), 378-393. 2

[PKG89] PARKER J. K., KHOOGAR A. R., GOLDBERG D. E.: Inverse
kinematics of redundant robots using genetic algorithms. In Robotics and
Automation, 1989. Proceedings., 1989 IEEE International Conference
on (1989), IEEE, pp. 271-276. 2

[Pri96] PRICE K. V.: Differential evolution: a fast and simple numeri-
cal optimizer. In Fuzzy Information Processing Society, 1996. NAFIPS.,
1996 Biennial Conference of the North American (1996), IEEE, pp. 524—
527.2

[QHS09] QIN A. K., HUANG V. L., SUGANTHAN P. N.: Differential
evolution algorithm with strategy adaptation for global numerical opti-
mization. IEEE transactions on Evolutionary Computation 13, 2 (2009),
398-417. 2

[RSRHO] RODRIGUEZ E., SAHA B. N., ROMERO-HDZ J., ORTEGA
D.: A multi-objective differential evolution algorithm for robot inverse
kinematics. SSRG International Journal of Computer Science and Engi-
neering (SSRG - IJCSE). 3,5

[SAC14] SON N. N., ANH H. P. H., CHAU T. D.: Inverse kinemat-
ics solution for robot manipulator based on adaptive mimo neural net-
work model optimized by hybrid differential evolution algorithm. In
Robotics and Biomimetics (ROBIO), 2014 IEEE International Confer-
ence on (2014), IEEE, pp. 2019-2024. 3

[SJTI15] Sul Z., JIANG L., TIAN Y.-T., JIANG W.: Genetic algorithm
for solving the inverse kinematics problem for general 6r robots. In Pro-
ceedings of the 2015 Chinese Intelligent Automation Conference (2015),
Springer, pp. 151-161. 2

[SP97] STORN R., PRICE K.: Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. Journal
of global optimization 11,4 (1997), 341-359. 2

[TGB0O] ToLANI D., GOsSwWAMI A., BADLER N. I.: Real-time inverse
kinematics techniques for anthropomorphic limbs. Graphical models 62,
5(2000), 353-388. 2

[VT04] VESTERSTROM J., THOMSEN R.: A comparative study of dif-
ferential evolution, particle swarm optimization, and evolutionary algo-
rithms on numerical benchmark problems. In Evolutionary Computa-
tion, 2004. CEC2004. Congress on (2004), vol. 2, IEEE, pp. 1980-1987.
2,3

[Yan12] YANG X.-S.: Chaos-enhanced firefly algorithm with automatic
parameter tuning. Int J Swarm Intell Res 2, 4 (2012), 125-36. 2

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.



	Introduction
	Related Work
	Inverse Kinematics
	Evolutionary Algorithms

	Method
	Conclusion
	References

