
Vision, Modeling, and Visualization (2024)
L. Linsen and J. Thies (Eds.)

3D Real-Time Hydraulic Erosion Simulation using Multi-Layered
Heightmaps

Alexander Maximilian Nilles1 and Lars Günther1 and Tobias Wagner1,2 and Stefan Müller1

1University of Koblenz, Institute for Computational Visualistics, Germany
2TOMRA Sorting GmbH, Germany

Abstract
We present a novel method for real-time 3D hydraulic erosion simulation of large-scale terrain. Existing hydraulic erosion
methods based on heightmaps and the virtual pipes method are extended to multi-layered heightmaps that can represent more
complex 3D features. Our new method for horizontal erosion is able to create overhangs, arches and to some extent caves by
allowing water to erode horizontally adjacent bedrock, eventually splitting a column into two new columns. Additionally, we
developed an iterative method for bedrock support check that efficiently prevents floating terrain and unrealistic overhangs by
propagating bedrock connectivity while incorporating the weight of each column. We implement our method in CUDA, using only
features that are also available in standard compute shaders. On a RTX 3070, the resulting method runs at approximately 6ms
and 23ms per simulation step for resolutions of 20482 and 40962, respectively.

CCS Concepts
• Computing methodologies → Real-time simulation; Physical simulation; Volumetric models;

1. Introduction

Terrain modeling is essential in computer graphics for applica-
tions like games, movies, and simulators. Real-world terrain forms
through complex processes such as tectonics, hydraulic and aeolian
erosion, and thermal weathering, making manual modeling chal-
lenging without specialized tools. Additionally, real-world terrain
features complex 3D structures like overhangs, arches, and caves,
beyond simple 2.5D heightmaps.

We focus on hydraulic erosion, a well-researched topic in com-
puter graphics, with fast heightmap-based methods like MEI et
al. [MDH07]. However, 3D hydraulic erosion has received less at-
tention, with some exceptions like the Arches framework [PGGM09]
and recent particle-driven methods [HMFF24].

We propose a novel 3D erosion approach, combining hydraulic
erosion via the virtual pipes method with a 3D, multi-layered
heightmap, resulting in a fast real-time GPU implementation. Our
method generates detailed overhangs, arches, and given the right cir-
cumstances even caves. Unlike voxel grid methods, we achieve high
resolutions and floating-point precision for height values. We sup-
port two ground materials: bedrock and sand. Bedrock, the structural
support, collapses if unstable. Sand is stabilized to its talus angle
and can be dissolved, deposited and softened by water. Bedrock
can also be eroded by water, with our method enabling horizontal
erosion, forming overhangs by splitting bedrock columns.

The paper is structured as follows: Section 2 covers related work,

Section 3 details our method, Section 4 provides implementation
specifics, Section 5 presents results, and Section 6 concludes with
future work ideas.

The full source code, scenes with their exact parameters, addi-
tional screenshots and videos are provided in the supplementary
material and available open source on GitHub [NG24].

2. Related work

This section introduces relevant related work, focusing on hydraulic
erosion simulation and the virtual pipes method. For a comprehen-
sive overview of terrain modeling, see GALIN et al. [GGP*19]. For
water modeling and fluid simulation methods, we refer to IGLESIAS

[Igl04] and WANG et al. [WXL*24].

2.1. Virtual pipes method

The virtual pipes method, proposed in O’BRIEN and HODGINS

[OH95], simplifies previous shallow water models [KM90]. By
assuming vertical isotropy, it allowed fast simulations by discretizing
fluid into columns connected by virtual pipes. Improvements include
dividing columns vertically [MY97] and modeling waterfalls, rivers,
and rapids [HW04]. Later, the method was brought to the GPU for
real-time simulations [MFC06; MDH07].

BORGEAT et al. [BMPG11] introduced a multi-layer heightmap
representation for fluid flow on geometry with overhangs. To im-
prove performance, outflowing water could only go to the lowest

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vmv.20241211 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-4196-7424
https://doi.org/10.2312/vmv.20241211


2 of 8 A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps

connected column. A similar approach by KELLOMÄKI [Kel13]
supported only one additional layer for blocking geometry with-
out the previous limitation on outflowing water. DAGENAIS et al.
[DGV*18] extended this to multiple blockers and added a viscos-
ity model. DAGENAIS et al. [DVG*18] improved this further by
adding support for flooded passages by allowing pipe connections
to non-neighboring cells.

2.2. 2D Hydraulic Erosion

MEI et al. [MDH07] proposed a real-time GPU hydraulic ero-
sion simulation on heightmaps, integrating different early ideas
from MUSGRAVE et al. [MKM89], CHIBA et al. [CMF98], and
SUTHERLAND and KEYSER [SK06], and utilizing the virtual pipes
method for water simulation. In contrast, BENES [Ben07] used the
shallow-water equations to model erosion via a viscous regolith
layer. ŠT’AVA et al. [ŠBBK08] combined these approaches, using
the virtual pipes method and erosion/deposition model from MEI et
al. [MDH07] while also simulating a regolith layer similar to BENES

[Ben07]. They extended the method with multiple material layers,
such as rock, soil, and sand, transformed by erosion and aging
processes. KRIŠTOF et al. [KBKŠ09] later proposed 3D smoothed
particle hydrodynamics (SPH) for hydraulic erosion, resulting in
more accurate water behavior, though it was limited to heightmaps
and could not generate overhangs.

2.3. Other notable 2D methods

Other methods focus on different erosion types, such as aeolian ero-
sion for fast desertscape simulation in PARIS et al. [PPG*19], later
improved for real-time performance on the GPU [TK23; NGM24].
Recently, TZATHAS et al. [TGSC24] focused on procedural terrain
generation using the stream power law and tectonic uplift for fast,
consistent results.

2.4. 3D methods

BENEŠ et al. [BTHB06] and WOJTAN et al. [WCMT07] introduced
3D voxel grid-based hydraulic erosion using the Navier-Stokes
equations, suitable for small scenes but slow. BEARDALL et al.
[BFO*07] proposed interactive aeolian erosion for 3D goblin shapes
using voxel grids. The Arches framework [PGGM09] achieves high
resolutions with multi-layered heightmaps and an implicit surface
representation, used for terrain sculpting and local erosion tools for
artists. Recently, HARTLEY et al. [HMFF24] proposed a particle-
based erosion method for various terrain representations, supporting
hydraulic, aeolian, and thermal erosion. However, it only supports a
single material and cannot collapse unstable overhangs or floating
terrain after erosion.

3. Our method

We extend real-time 2D hydraulic erosion methods using heightmaps
to 3D multi-layered heightmaps, enabling 3D erosion and overhang
formation while maintaining large horizontal resolutions and full
floating-point height values. The virtual pipes method, known for
high performance and GPU parallelism, is adopted here.

We refer to the erosion in 2D heightmap methods as vertical

Figure 1: A diagram of our multi-layered heightmap structure with
bedrock (gray), sand (brown) and water (blue), showing 7 cells hori-
zontally. The center cell has 3 vertically stacked columns, annotated
according to our notation in Section 3.1. Cell indices are omitted
for clarity.

erosion, eroding downwards into a column. A 3D extension requires
additional upward vertical erosion, eroding into columns from be-
low. Sediment and sand transport need to be adapted to the new data
structure. On its own, vertical erosion allows erosion in a pre-made
3D environment but cannot create new overhangs. To achieve this,
we develop horizontal erosion, eroding into and splitting neighbor-
ing columns to create overhangs. Finally, to address degenerate rock
formations, such as floating columns, we develop a support check
to collapse unstable columns.

3.1. Terrain definition

The terrain is an Nx×Ny 2D grid of lc× lc sized cells i = (i, j).
Each cell has up to Nz columns k = (i, j,k) layered vertically. Cells
contain at least one bottom column extending infinitely downwards.
We used Nz = 8 in our examples.

Each column stores the absolute bedrock height Bk, relative sand
height sk, relative water height wk, and the absolute ceiling height
Ck, which also serves as the floor G(i, j,k+1) of the column above.
The lowest column’s floor is −∞ and the highest column’s ceiling
is +∞. For each column, sand is placed on top of the bedrock and
water on top of sand. Uppercase letters denote absolute quantities,
while lowercase denotes relative quantities, transformed as follows:

Sk = Bk + sk (1)

Wk = Sk +wk (2)

bk = Bk−Gk (3)

The relative height of the empty space above a column is:

ek =Ck−Wk. (4)

Figure 1 illustrates our data structure.

3.2. Water and sand transport

Our method transports water, sediment (dissolved or dispersed sand),
and sand (via slippage when exceeding the angle of repose) between
adjacent columns using the virtual pipes framework. Originally
designed for water, we extend this to handle sediment and sand.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps 3 of 8

Unlike 2D methods using backward Euler advection for sediment,
we transport sediment via pipes due to linear interpolation being
challenging on multi-layered heightmaps.

Each column connects via a pipe to the lowest eligible column in
its 4-neighborhood, akin to BORGEAT et al. [BMPG11]. A neigh-
boring column k′ is eligible if

Bk <Ck′ and ek′ > 0. (5)

This ensures fluid does not flow through bedrock and prevents filled
columns from blocking flow to higher columns. Limiting to one pipe
per neighboring cell balances performance. Columns are denoted as
L,U,R, and D for left, up, right, and down neighbors, respectively.

The virtual pipes method transports fluid based on static pres-
sure. Each column computes positive flux through its pipes using
acceleration:

ḟ (k,k′) = g ·A · (min(Wk,Ck′)−max(Wk′ ,Sk))

lc
, (6)

with gravity g = −9.81 m
s2 , cross-sectional pipe area A = lc2, and

pipe length lc. The maximum limits flow for steep cliffs as in KEL-
LOMÄKI [Kel13], while the minimum prevents overfilling of
columns. Then, the outflow flux for the next simulation step is
computed as

f̄ t+∆t(k,k′) = Ke ·max((1−δd∆t) f t(k,k′)−∆t · ḟ (k,k′),0), (7)

with dampening factor δd = 0.01 and Ke scaling based on available
space:

Ke = min(lc2 · ek′

f̄ ·∆t
,1). (8)

To prevent negative water heights from excessive outfluxes, we
limit the final flux value, following MEI et al. [MDH07]:

Kw = min

(
wk · l2

c

∆t( f̄L + f̄U + f̄R + f̄D)
,1

)
, (9)

f (k,k′) = Kw · f̄ (k,k′). (10)

After calculating outflow fluxes, each column adjusts water volume
based on inflow from all neighboring columns and its own outflow:

∆V (k) = ∆t
(
∑ fout−∑ fin

)
(11)

Water height is updated as

wt+∆t
k = wt

k−
∆V (k)

lc2 , (12)

which we clamp to prevent overfilling due to inflow potentially
originating from multiple columns per neighbor cell, in contrast to
outflow.

To optimize memory and computations, we utilize existing fluid
flux values for sediment transport. We calculate a sediment flux
scale:

Kr = min

(
rk · l2

c
∆t( fL + fU + fR + fD)

,1

)
, (13)

where rk denotes the dissolved sediment in a column. Kr functions
similarly to Ke. Sediment values are updated as in Equations (11)
and (12), scaled by the Kr of the source column.

Figure 2: The RiversSource scene, featuring purely vertical
erosion of sand using four water sources. After a while, we let the
water evaporate to show sedimentation patterns and terrain surface
below the water. Despite our simplified approach to regolith, the
terrain is appropriately smoothed and interesting sedimentation
patterns are visible.

Sand transport is handled similarly. Positive slippage values are
computed based on the angle of repose, using the same neighboring
columns determined for outflow flux:

ā(k,k′) = min
(

max
(

Sk−Sk′ − tan(θ) · lc
8

,0
)
,

ek
4

)
. (14)

Divisions by 8 and 4 prevent oscillations and overfilling. The angle
of repose θ is linearly interpolated between 0◦ and 30◦ based on
the average water depth of the columns, with the lowest angle at a
depth of one. This mimics a regolith layer at no cost, unlike ŠT’AVA

et al. [ŠBBK08].

Similar to water and sediment, slippage values are scaled to pre-
vent negative sand heights:

Ka = min
(

sk
āL + āU + āR + āD

,1
)
, (15)

a(k,k′) = Ka · ā(k,k′). (16)

Sand heights are updated accordingly:

st+∆t
k = st

k−
(
∑aout−∑ain

)
, (17)

which we clamp to prevent overfilling.

We implemented reflecting and outflow boundaries. Reflecting
boundaries are handled by omitting pipes to neighboring cells out-
side the grid, creating an invisible wall. This prevents any outflow to
or inflow from those neighbors. For outflow boundaries, all outflow
quantities are calculated with the bedrock height of each column
clamped to the border, while sand, water, and sediment outside the
grid are set to zero. This setup treats the border as a sink, removing
matter from the scene. The boundary mode can be set for slippage
independent of the one used for water and sediment.

3.3. Vertical erosion

Vertical erosion in our method involves the dissolution of sand into
sediment and the deposition of sediment as sand as in MEI et al.
[MDH07]. Bedrock erosion is also considered, serving as a second
material layer. ŠT’AVA et al. [ŠBBK08] employed a similar dissolu-
tion model across all material layers. Our approach instead converts
bedrock into sand, which can then be dissolved into sediment later.

MEI et al. [MDH07] define sediment transport capacity κ using

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 8 A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps

a sediment capacity constant κC, local tilt angle α, and horizontal
velocity v as

κ(k) = κC · sin(αk) · ‖vk‖ . (18)

Velocity is computed based on the flux values of our pipe model:

vk =
1

2 · lc2

(
fR− fL
fU − fD

)
. (19)

The local tilt angle is ambiguous in our data structure. We determine
it using central differencing of the four neighbor columns found
during outflow flux computation, utilizing absolute sand heights.

There are several issues with Equation (18). As noted by MEI

et al. [MDH07], perfectly flat terrain cannot be eroded using this
equation, prompting the use of a remapping of sin(α) with a user-
specified minimum threshold, which we also implement. Another
concern is the vertical isotropy, which affects accuracy, especially
for erosion at the bottom of deep water columns. MOULD and YANG

[MY97] already address this, but introducing more columns and
pipes is costly. Instead, we multiply Equation (18) by a factor that
reduces capacity with water depth:

1− tanh
(

wk ·
2

wmax

)
(20)

where wmax is a user-defined soft maximum water depth.

In our multi-layered method, velocities in flooded passages are
often zero. To resolve this without extending the method as in DA-
GENAIS et al. [DVG*18], we apply the same remapping used for
the tilt angle to ‖v‖. We additionally interpolate to zero when water
height is below 1mm to avoid erosion without the presence of water.

Additionally, the capacity equation’s encouragement of steep,
thin, and deep ridges is problematic for bedrock erosion which does
not utilize slippage. We mitigate this by interpolating sin(α) to-
wards zero for values in [0.6,1] using smooth Hermite interpolation.
This adjustment complements horizontal erosion, which specifically
targets steep angles.

With our modified capacity model, dissolution and deposition
of sand happens as in MEI et al. [MDH07]. Given a user-defined
sand dissolving constant κs and sediment deposition constant κd ,
sand dissolves when there is less sediment than capacity, otherwise,
sediment is deposited. For bedrock, we use a bedrock erosion con-
stant κb without the capacity model. Bedrock erosion is scaled by
velocity, tilt angle, and water depth. We linearly interpolate bedrock
erosion towards zero as sand height in the cell exceeds 1cm.

Our multi-layered model allows erosion of the bedrock above
a column when Wk ≈ Ck. This increases the ceiling and adds the
removed bedrock to the sand layer. This effect is controlled by κb
and scaled by velocity. No tilt angle is computed for the underside
of bedrock columns, instead we use the user-defined minimum tilt
angle. Erosion strength linearly interpolates based on the space
between water surface and ceiling, fully active when no space is
available and inactive when ek ≥ κt (typically set to 1−2m).

3.4. Horizontal erosion

Vertical erosion alone cannot create new overhangs. We propose a
horizontal erosion method that splits bedrock columns to form new

Figure 3: Top row: The ChasmRain scene shows a chasm eroded
by rain, forming overhangs and a triangular ridge that collapses
after further erosion, leaving flow-like sedimentation patterns after
evaporation. Bottom row: The ChasmSource scene features a
water source inside the chasm and no rain, yielding very different
results. The initial chasm is 126 cells wide in a 20482 scene.

columns within a cell. This process is driven by water in neighboring
cells, rather than within the same cell or column as in vertical
erosion. Managing the number of columns in a cell is crucial, as
excessive splitting can quickly reach the limit Nz without generating
interesting terrain. To mitigate this, we structure our method in a
way that minimizes unnecessary splits and we provide mechanisms
to recover from unfavorable splits.

We iterate over columns k′ of the four neighboring cells of col-
umn k. The overlap bounds between bedrock in k and water in k′

are calculated as

σ(k,k′) =
(

max(Gk,Sk′)
min(Bk,Wk′)

)
. (21)

Erosion strength is computed if σ.y > σ.x as

∆D(k,k′) = κhAσ · sin?(β(k,k′)) · ‖vk′‖ ·κn(k,k′), (22)

where κh is a user-defined constant, Aσ = lc(σ.y−σ.x) is the overlap
area, and β(k,k′) is the tilt angle:

β(k,k′) =

{
π

2 Fk > Sk′

atan2(min(Bk,Ck′)−Sk′ , lc) otherwise
. (23)

For columns floating with respect to their neighbor, we use the
maximum angle. The minimum ensures appropriate clamping at
overhangs. sin? denotes a sine remapping using smooth Hermite
interpolation from 0 to 1 for values in [0.9,1], targeting steep slopes
only. κn weights erosion based on the dot product between the vector
towards the neighbor and the normalized velocity, calculated as

κn(k,k′) =

1
2
−

〈
i′− i, vk′

‖vk′‖

〉
2

 . (24)

∆D is computed for all neighboring columns and we determine the
highest damage ∆Dmax and its overlap σmax, discarding the other
damage values to simplify the algorithm. This updates the height

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps 5 of 8

Figure 4: The Bridges scene at resolutions 2562 (top) and 10242

(bottom). Behavior is consistent with resolution and bridge type.

damage Dk of the column as

Dt+∆t
k = Dt

k +
∆t
lc2 ∆Dmax. (25)

Height damage accumulates over time and triggers column split-
ting at σmax.y (i.e. the water surface or top of the bedrock if sub-
merged) once surpassing a split threshold Dsplit. Post-split, the lower
column has ceiling σmax.y and consists solely of bedrock. Dsplit is
subtracted from its bedrock height and added as sand, available
for subsequent erosion. The upper column resets its damage to 0,
while the lower retains its pre-split damage, minus Dsplit. Splitting
only occurs if the cell has fewer than Nz columns. Columns with no
bedrock can be generated, which are removed by our support check.

To reduce splits further, we introduce damage recovery. Dk de-
creases by κr ·∆t per step, with κr as a recovery constant (typically
0.005). Bedrock shrinks by the same amount from its top, possibly
eroding it completely without splitting, keeping column count low.
This mimics vertical erosion, justifying our decision to fade out
vertical erosion for steep slopes.

3.5. Support Check

Our algorithm can create degenerate columns with thin or absent
bedrock, floating columns, and unrealistically large overhangs. To
address this, we propose a support check algorithm with phases:

1. Stability initialization
2. Stability propagation
3. Column collapse

Stability initialization sets a stability value pk for each column. The
lowest column in each cell is always stable and set to∞, all oth-
ers are set to 0. Stability propagation iteratively determines actual
column stability over typically 10 steps per simulation step. Af-
ter a user-defined total number of propagation steps, columns are
collapsed and the process repeats, starting with initialization.

3.5.1. Stability Propagation

A single stability propagation step updates stabilities of all columns
except the lowest, based on the columns in the 4-neighborhood.
Column mass mk is calculated as:

mk = lc2 (ρbbk +ρssk +ρwwk) (26)

with densities ρb = 2600, ρs = 1600, and ρw = 1000 kg
m3 for bedrock,

sand, and water, respectively. We define the maximum bedrock

support mass as κp = 60000 kg
m2 . Using the overlapping bedrock

surface area, a columns maximal support is calculated as:

∆B = min(Bk′ ,Bk)−max(Fk′ ,Fk) (27)

p̄k = max
k′∈N4

(
min

(
lcκp

∆B2

Bk−Fk
, pk′

))
(28)

The minimum ensures that a neighbor cannot support more than its
current stability. We implement two boundary modes: border sup-
port assumes infinitely large bedrock with infinite stability outside
boundaries. Otherwise, no neighbors exist out-of-bounds.

Using the mass and maximal support, stability is updated:

pt+∆t
k = max(pt

k, p̄k−mk). (29)

Thus, stability can only increase, starting from an initialized value
of 0. Our stability propagation is aimed at efficiency and is at best
physically plausible. However, it effectively detects floating bedrock
and unrealistic, large overhangs connected to ground through thin
sections. Behavior can be tweaked using κp and a strict maximum
overhang size can be imposed by limiting the number of iterations.
The delayed collapse mechanism introduced provides significant per-
formance gains, but for immediate collapse detection, all iterations
can be executed in a single step if required.

3.5.2. Column collapse

After sufficient stability propagation steps, columns with pk ≤ 0
collapse, in addition to columns with bedrock thickness below a
threshold bmin. This process reverts splits that are close in proximity,
as well as fully eroded columns, lowering column count. The col-
lapsing column’s bedrock becomes sand. Water, sand and sediment
are merged with the column below.

Additionally, columns with Ck−Bk < 0.05Dsplit are merged with
the column above. Sand is converted to bedrock and the height of
the upper column is adjusted accordingly. This can only happen due
to petrification of sand, for example when a column is buried under
sand and ensures that no space is wasted on columns that are not
needed anymore.

3.6. Water sources and aging

To enable hydraulic erosion, water is added to the terrain. Follow-
ing MEI et al. [MDH07], we increase the topmost column’s water
level by ∆t · κrain at the start of each simulation step, modulated
with time-varying discrete noise for randomness. Users can place
up to four noise-modulated circular water sources with adjustable
radius, strength, and flux acceleration. These sources add water to
the topmost column, but could be extended to a 3D position in the
future.

Evaporation is unnecessary with outflow borders, but with reflect-
ing boundaries, it prevents overflow. Unlike MEI et al. [MDH07],
who remove a water percentage each step, we take a more realis-
tic approach and subtract ∆t ·κevap from the water level each step.
This is done after the transport step, which enables water accumu-
lation even if κevap ≥ κrain. Evaporation is interpolated to 1% of
its strength if the water level is near the ceiling to accommodate
flooded passages.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 8 A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps

Figure 5: Top: RiversRain scene with heavy rain which is de-
creased over time. The last image is a closeup of the middle of the
scene, showing a collapsed structure. Middle: Cave scene showing
cave formation based on a initial guide cut. Bottom: Arches scene
showing arch generation without initial overhangs. The first image
in each row shows the scene pre-simulation and for the last image,
water was evaporated fully.

Sand petrifies into bedrock over time, influenced by the petrifica-
tion constant κpetr and sand height. Each step, we move κpetr ·∆t · sk
from sand to bedrock. This simplifies the approach of ŠT’AVA et
al. [ŠBBK08], which involved timestamps and additional material
layers.

4. Implementation details

We implemented our method on the GPU using CUDA with 9
kernels. Each kernel is launched with one thread per cell. Every
thread reads the number of columns from a buffer (8-bit integer per
cell) and iterates over all columns of its cell, avoiding unnecessary
threads and simplifying our parallel implementation. Buffers are
pre-allocated to the full Nx×Ny×Nz size, avoiding re-allocations.
We use 32-bit integers and floats unless stated otherwise. Our buffers
require 84 bytes per column and one additional byte per cell, totaling
673 bytes per cell at Nz = 8. No CUDA exclusive features are used,
so our method can be implemented in regular compute shaders on
any modern graphics card.

The first kernel adds rain and source water. Transport is handled
by two kernels to avoid race conditions: the first iterates over the
neighborhood of each column, starting with the lowest to allow early
exit. It computes outflow flux, sediment flux scale, slippage values,
and tilt angle, storing them together with the z-index of the respec-
tive neighbor column (8-bit integer). The second kernel collides
outflow and inflow flux values by checking whether the z-index
of the neighboring column matches the current column, calculates
velocities and updates height and sediment values. Evaporation and
petrification are also handled here.

Next, Horizontal and vertical erosion are applied, split into three
kernels to avoid race conditions. The first kernel iterates over neigh-
bor columns starting from the highest and exits early for a direction
if Wk′ ≤ Fk. It finds σmax and ∆Dmax, increases the column damage
and stores σmax in a buffer. The second kernel checks if damage
exceeds the threshold and splits by inserting a new column if needed
while keeping all columns in ascending order. The third kernel

applies vertical erosion and damage recovery locally within each
cell.

The final three kernels handle the support check algorithm as
described in Section 3.5. The stability propagation kernel resolves
race conditions on the stability values by alternating updates using a
checkerboard pattern, fitting well with our iterative approach.

4.1. Visualization

Our work focused on simulation, so we developed only a basic real-
time visualization. We use OpenGL to allocate buffers for bedrock,
sand, water, and ceiling/floor height values, mapping them to CUDA.
After each simulation step, we fill an index buffer with all existing
column indices using an atomic counter. The visualization draws a
point for each column, expanded to cuboids in the geometry shader.
Basic normal mapping, volumetric effects, refraction, reflection, and
caustics are applied to the water using time-varying noise functions.
Cuboid rendering results in blocky visuals and poor performance
due to many hidden fragments and z-fighting artifacts.

We improve this visualization by interpolating the top and bottom
surfaces of each cuboid. This checks the 8-neighborhood of cells
and averages up to four height values from connecting columns per
vertex if the neighboring bedrock overlaps with the center column.
Top vertices interpolate with the highest column, and bottom vertices
with the lowest. If a higher or lower column exists that overlaps the
same neighbor, no interpolation is applied with that neighbor for the
top, respectively bottom vertices.

This method hides many side faces, allowing us to skip emitting
them in the geometry shader, resulting in faster rendering. However,
determining which faces to discard is challenging, and our heuristic
misses some faces that can be omitted. Side faces remain blocky,
and the visualization is much slower than the simulation. A more
advanced method, like in Arches [PGGM09], which computes an
implicit representation and generates a smooth mesh, would be
better.

We include a user interface for changing most parameters interac-
tively, even during the simulation. Resolution and lc changes require
a reset. Scenes can be saved and loaded via the UI. The scenes used
in this paper are included in the supplementary material.

5. Results

We evaluate our method on scenes with resolutions from 2562 to
40962. All scenes span 256m×256m with lc set appropriately. Ex-
cept for Cave, all scenes start with a single column per cell and
no initial overhangs. Cave generation required a preformed guiding
cave to be cut into the terrain, as our method does not cover the ma-
jority of the complex natural processes that lead to cave formation.

Performance was measured on an Nvidia RTX 3070 with 8 GB
VRAM. At 40962, we reduced Nz to 4 due to VRAM limits. Four
layers are enough for our scenes, but we used eight in all other scenes
for safety. 6 GB VRAM is sufficient for simulating our largest scene,
the rest of our scenes require less than 4 GB each. We summarize
average simulation time after 50,000 steps in Table 1. Simulation
time is predicted to grow by a factor of 4 with resolution doubling,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps 7 of 8

Scene Resolution Time/Step [ms]
Bridges 2562 0.17
ChasmRain 2562 0.23
ChasmRain 5122 0.44
ChasmSource 5122 0.49
Bridges 10242 1.44
Arches 10242 1.50
ChasmRain 10242 1.61
ChasmSource 10242 1.53
Cave 20482 5.77
ChasmRain 20482 6.00
ChasmSource 20482 5.89
RiversRain 20482 6.16
RiversSource 20482 5.46
RiversSource* 20482 4.53
RiversRain 40962 23.00

Table 1: Performance in milliseconds per simulation step across
various scenes and resolutions. We used Nz = 8 except for the highest
resolution, where we set it to 4. The scene marked with an asterisk
ran with horizontal erosion and support check kernels disabled.

but our method overperforms slightly, achieving better than real-
time performance up to 20482 (6ms per step with ∆t = 50ms). Even
40962 runs in real-time at 23ms per step. At 20482, our fastest scene
needs ≈ 5.5ms as it generates no extra columns. The slowest scene,
generating the most extra columns, is about 10% slower. Horizontal
erosion and support check on the fastest scene add about 1ms, which
is about 20% of a simulation step. Transport is the most expensive
part of our method, taking up approximately 50% of a step.

Our simplified method for the regolith layer works well, gener-
ating smooth sand surfaces under lakes and rivers (Figure 2). We
produce interesting sedimentation and flow-like patterns on the sand
surface (Figures 2 and 3). Overhang generation is easy and adapts to
the scene conditions, as seen in Figure 3, comparing global rainfall
to placing a water source inside a chasm using the same terrain. Our
support check is evaluated on three bridge types (Figure 4). The
most stable bridge starts thick and thins out, the second is uniformly
thick, and the least stable grows thicker in an arch. Results match
expectations, and parameters can be tweaked for different overhang
lengths.

Figure 5 shows our method on a terrain initialized with procedural
noise eroded by heavy rainfall, alongside scenes producing arches
and a cave. Rounded overhangs and arches form in scenes initialized
with rectangular bedrock blocks and no overhangs. Cave generation
was guided by cutting a small rectangular guiding shaft through the
bedrock.

Compared to voxel grid methods, a 5123 grid matches the column
count of a 40962 grid with up to 8 layers in our method. Most cells
contain a single column, rarely reaching the maximum, so less
columns have to be processed. In contrast to a voxel grid, we can
handle larger horizontal resolutions matching typical game terrain
heightmaps and use full floating-point precision for height values.
For example, a 1km vertical span using 512 voxels means each voxel

is 2 meters high. While voxels allow for more overhangs, this is
unnecessary for large-scale terrain erosion. Our method is faster
than typical voxel grid methods as we use the simple pipe model
instead of solving the incompressible Navier-Stokes equations and
we only have to process existing columns.

Lastly, our visualization has limitations. The limited interpolation
reveals the box shape of the data structure, and z-fighting causes
flickering artifacts in some scenes, as visible in Figure 4 when
zooming in. Interpolation can stretch sand and water along steep
cliffs (see Figure 3). Worst of all, our current visualization can take
up to 10 times longer per frame than a single simulation step.

6. Conclusion and future work

In conclusion, our novel GPU 3D erosion method leverages multi-
layered heightmaps to extend existing techniques, introducing inno-
vations like horizontal erosion and bedrock support check. Demon-
strated on an RTX 3070, it achieves real-time performance up to
40962 resolution, potentially scaling to 81922 with high-end GPUs.
The method facilitates easy generation of overhangs and arches,
with limited cave generation. It recovers efficiently from unrealistic
terrain features like floating structures. By employing multi-layered
heightmaps with full floating-point precision, we effectively handle
high-resolution scenes, far surpassing the resolutions that would be
feasible real-time in voxel grid methods.

Future directions include exploring tiled simulation as in ŠT’AVA

et al. [ŠBBK08] for exceptionally large terrains as seen in open-
world games or elevation data from satellites, enhancing user interac-
tion through a more intuitive parameterization, and integrating with
modeling tools like the Arches framework [PGGM09] for better in-
teractivity and scene authoring. Our performance leaves enough
room for more advanced algorithms, such as reducing vertical
isotropy and adding more pipe connections as in [MY97; MFC06;
Kel13; DGV*18] or treatment of flooded passages [DVG*18]. In-
tegrating more accurate regolith models [Ben07; ŠBBK08] and
sediment advection [MDH07; ŠBBK08] is feasible as well. Alter-
natively, the virtual pipes model could be replaced with SPH for
proper 3D fluid flow, as proposed in KRIŠTOF et al. [KBKŠ09].
HARTLEY et al. [HMFF24] have recently shown how to perform
particle-based erosion on many terrain representations, including
layered heightmaps, so this is certainly possible.

Our current implementation needs a faster real-time visualization
that produces smoother results and should be extended with import
and export capabilities using standard mesh formats. Importing
meshes would be feasible using depth-peeling to build the multi-
layered heightmap and mesh generation for exporting can be adapted
from PEYTAVIE et al. [PGGM09].

Ultimately, our method provides a robust and high-performance
3D erosion simulation for large-scale terrain, with many possibilities
for future enhancements in functionality and integration into existing
tools for various applications.

References
[Ben07] BENES, BEDRICH. “Real-Time Erosion Using Shallow Water Sim-

ulation”. Workshop in Virtual Reality Interactions and Physical Simula-
tion "VRIPHYS" (2007). Ed. by DINGLIANA, JOHN and GANOVELLI,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 8 A. M. Nilles & L. Günther & T. Wagner & S. Müller / 3D Hydraulic Erosion using Multi-Layered Heightmaps

FABIO. The Eurographics Association, 2007. ISBN: 978-3-905673-65-4.
DOI: 10.2312/PE/vriphys/vriphys07/043-050 2, 7.

[BFO*07] BEARDALL, M., FARLEY, M., OUDERKIRK, D., et al. “Gob-
lins by spheroidal weathering”. Proceedings of the Third Eurographics
Conference on Natural Phenomena. NPH’07. Prague, Czech Republic:
Eurographics Association, 2007, 7–14. ISBN: 9783905673494 2.

[BMPG11] BORGEAT, LOUIS, MASSICOTTE, PHILIPPE, POIRIER, GUIL-
LAUME, and GODIN, GUY. “Layered Surface Fluid Simulation for Surgi-
cal Training”. Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2011. Ed. by FICHTINGER, GABOR, MARTEL, ANNE,
and PETERS, TERRY. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, 323–330. ISBN: 978-3-642-23623-5 1, 3.

[BTHB06] BENEŠ, BEDŘICH, TĚŠÍNSKÝ, VÁCLAV, HORNYŠ, JAN, and
BHATIA, SANJIV K. “Hydraulic erosion”. Computer Animation and
Virtual Worlds 17.2 (2006), 99–108. DOI: 10.1002/cav.77 2.

[CMF98] CHIBA, N., MURAOKA, K., and FUJITA, K. “An erosion model
based on velocity fields for the visual simulation of mountain scenery”.
The Journal of Visualization and Computer Animation 9.4 (1998), 185–
194. DOI: 10.1002/(SICI)1099-1778(1998100)9:4<185::
AID-VIS178>3.0.CO;2-2 2.

[DGV*18] DAGENAIS, F., GUZMÁN, J., VERVONDEL, V., et al. “Real-time
virtual pipes simulation and modeling for small-scale shallow water”. Pro-
ceedings of the 14th Workshop on Virtual Reality Interactions and Phys-
ical Simulations. VRIPHYS ’18. Delft, The Netherlands: Eurographics
Association, 2018, 45–54 2, 7.

[DVG*18] DAGENAIS, FRANÇOIS, VERVONDEL, VALENTIN, GUZMÁN,
JULIÁN E., et al. “Extended virtual pipes for the stable and real-time
simulation of small-scale shallow water”. Computers & Graphics 76
(2018), 84–95. ISSN: 0097-8493. DOI: 10.1016/j.cag.2018.08.
005 2, 4, 7.

[GGP*19] GALIN, ERIC, GUÉRIN, ERIC, PEYTAVIE, ADRIEN, et al. “A
Review of Digital Terrain Modeling”. Computer Graphics Forum 38.2
(2019), 553–577. DOI: 10.1111/cgf.13657 1.

[HMFF24] HARTLEY, MARC, MELLADO, NICOLAS, FIORIO,
CHRISTOPHE, and FARAJ, NOURA. “Flexible terrain erosion”. The Visual
Computer (June 2024). ISSN: 1432-2315. DOI: 10.1007/s00371-
024-03444-w 1, 2, 7.

[HW04] HOLMBERG, NATHAN and WÜNSCHE, BURKHARD C. “Efficient
modeling and rendering of turbulent water over natural terrain”. Proceed-
ings of the 2nd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia. GRAPHITE
’04. Singapore: Association for Computing Machinery, 2004, 15–22. ISBN:
1581138830. DOI: 10.1145/988834.988837 1.

[Igl04] IGLESIAS, A. “Computer graphics for water modeling and render-
ing: a survey”. Future Generation Computer Systems 20.8 (2004). Com-
puter Graphics and Geometric Modeling, 1355–1374. ISSN: 0167-739X.
DOI: 10.1016/j.future.2004.05.026 1.

[KBKŠ09] KRIŠTOF, P., BENEŠ, B., KŘIVÁNEK, J., and ŠT’AVA, O. “Hy-
draulic Erosion Using Smoothed Particle Hydrodynamics”. Computer
Graphics Forum 28.2 (2009), 219–228. DOI: 10.1111/j.1467-
8659.2009.01361.x 2, 7.

[Kel13] KELLOMÄKI, TIMO. “Interaction with dynamic large bodies in
efficient, real-time water simulation”. Journal of WSCG 21.2 (2013), 117–
126. ISSN: 1213–6964. URL: http://hdl.handle.net/11025/
6973 2, 3, 7.

[KM90] KASS, MICHAEL and MILLER, GAVIN. “Rapid, stable fluid dy-
namics for computer graphics”. SIGGRAPH Comput. Graph. 24.4 (Sept.
1990), 49–57. ISSN: 0097-8930. DOI: 10.1145/97880.97884 1.

[MDH07] MEI, XING, DECAUDIN, PHILIPPE, and HU, BAO-GANG. “Fast
Hydraulic Erosion Simulation and Visualization on GPU”. 15th Pacific
Conference on Computer Graphics and Applications (PG’07). 2007, 47–
56. DOI: 10.1109/PG.2007.15 1–5, 7.

[MFC06] MAES, MARCELO M., FUJIMOTO, TADAHIRO, and CHIBA,
NORISHIGE. “Efficient animation of water flow on irregular terrains”. Pro-
ceedings of the 4th International Conference on Computer Graphics and
Interactive Techniques in Australasia and Southeast Asia. GRAPHITE
’06. Kuala Lumpur, Malaysia: Association for Computing Machinery,
2006, 107–115. ISBN: 1595935649. DOI: 10 . 1145 / 1174429 .
1174447 1, 7.

[MKM89] MUSGRAVE, F. K., KOLB, C. E., and MACE, R. S. “The synthe-
sis and rendering of eroded fractal terrains”. SIGGRAPH Comput. Graph.
23.3 (July 1989), 41–50. ISSN: 0097-8930. DOI: 10.1145/74334.
74337 2.

[MY97] MOULD, DAVID and YANG, YEE-HONG. “Modeling water for
computer graphics”. Computers & Graphics 21.6 (1997). Graphics in
Electronic Printing and Publishing, 801–814. ISSN: 0097-8493. DOI:
10.1016/S0097-8493(97)00059-9 1, 4, 7.

[NG24] NILLES, A. M. and GÜNTHER, L. CUDA 3D Hydraulic Ero-
sion Simulation with layered stacks. https : / / github . com /
Clocktown/CUDA-3D-Hydraulic-Erosion-Simulation-
with-Layered-Stacks. 2024 1.

[NGM24] NILLES, ALEXANDER, GÜNTHER, LARS, and MÜLLER, STE-
FAN. “Real-Time Desertscapes Simulation with CUDA”. Proceedings of
the 19th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications - Volume 1: GRAPP.
INSTICC. SciTePress, 2024, 34–45. ISBN: 978-989-758-679-8. DOI:
10.5220/0012315600003660 2.

[OH95] O’BRIEN, J.F. and HODGINS, J.K. “Dynamic simulation of splash-
ing fluids”. Proceedings Computer Animation’95. 1995, 198–205. DOI:
10.1109/CA.1995.393532 1.

[PGGM09] PEYTAVIE, A., GALIN, E., GROSJEAN, J., and MERILLOU,
S. “Arches: a Framework for Modeling Complex Terrains”. Computer
Graphics Forum 28.2 (2009), 457–467. DOI: 10.1111/j.1467-
8659.2009.01385.x 1, 2, 6, 7.

[PPG*19] PARIS, A., PEYTAVIE, A., GUÉRIN, E., et al. “Desertscape
Simulation”. Computer Graphics Forum 38.7 (2019), 47–55. DOI: 10.
1111/cgf.13815 2.

[ŠBBK08] ŠT’AVA, ONDŘEJ, BENEŠ, BEDŘICH, BRISBIN, MATTHEW,
and KŘIVÁNEK, JAROSLAV. “Interactive terrain modeling using hydraulic
erosion”. Proceedings of the 2008 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’08. Dublin, Ireland: Eurographics
Association, 2008, 201–210. ISBN: 9783905674101 2, 3, 6, 7.

[SK06] SUTHERLAND, BEN and KEYSER, JOHN. “Particle-based enhance-
ment of terrain data”. ACM SIGGRAPH 2006 Research Posters. SIG-
GRAPH ’06. Boston, Massachusetts: Association for Computing Ma-
chinery, 2006, 96–es. ISBN: 1595933646. DOI: 10.1145/1179622.
1179732 2.

[TGSC24] TZATHAS, PETROS, GAILLETON, BORIS, STEER, PHILIPPE,
and CORDONNIER, GUILLAUME. “Physically-based analytical erosion
for fast terrain generation”. Computer Graphics Forum 43.2 (2024),
e15033. DOI: 10.1111/cgf.15033 2.

[TK23] TAYLOR, BRENNEN and KEYSER, JOHN. “Real-Time Sand Dune
Simulation”. Proc. ACM Comput. Graph. Interact. Tech. 6.1 (May 2023).
DOI: 10.1145/3585510 2.

[WCMT07] WOJTAN, CHRIS, CARLSON, MARK, MUCHA, PETER J.,
and TURK, GREG. “Animating corrosion and erosion”. Proceedings of
the Third Eurographics Conference on Natural Phenomena. NPH’07.
Prague, Czech Republic: Eurographics Association, 2007, 15–22. ISBN:
9783905673494 2.

[WXL*24] WANG, XIAOKUN, XU, YANRUI, LIU, SINUO, et al. “Physics-
based fluid simulation in computer graphics: Survey, research trends, and
challenges”. Computational Visual Media (Apr. 2024). ISSN: 2096-0662.
DOI: 10.1007/s41095-023-0368-y 1.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.2312/PE/vriphys/vriphys07/043-050
https://doi.org/10.1002/cav.77
https://doi.org/10.1002/(SICI)1099-1778(1998100)9:4<185::AID-VIS178>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1099-1778(1998100)9:4<185::AID-VIS178>3.0.CO;2-2
https://doi.org/10.1016/j.cag.2018.08.005
https://doi.org/10.1016/j.cag.2018.08.005
https://doi.org/10.1111/cgf.13657
https://doi.org/10.1007/s00371-024-03444-w
https://doi.org/10.1007/s00371-024-03444-w
https://doi.org/10.1145/988834.988837
https://doi.org/10.1016/j.future.2004.05.026
https://doi.org/10.1111/j.1467-8659.2009.01361.x
https://doi.org/10.1111/j.1467-8659.2009.01361.x
http://hdl.handle.net/11025/6973
http://hdl.handle.net/11025/6973
https://doi.org/10.1145/97880.97884
https://doi.org/10.1109/PG.2007.15
https://doi.org/10.1145/1174429.1174447
https://doi.org/10.1145/1174429.1174447
https://doi.org/10.1145/74334.74337
https://doi.org/10.1145/74334.74337
https://doi.org/10.1016/S0097-8493(97)00059-9
https://github.com/Clocktown/CUDA-3D-Hydraulic-Erosion-Simulation-with-Layered-Stacks
https://github.com/Clocktown/CUDA-3D-Hydraulic-Erosion-Simulation-with-Layered-Stacks
https://github.com/Clocktown/CUDA-3D-Hydraulic-Erosion-Simulation-with-Layered-Stacks
https://doi.org/10.5220/0012315600003660
https://doi.org/10.1109/CA.1995.393532
https://doi.org/10.1111/j.1467-8659.2009.01385.x
https://doi.org/10.1111/j.1467-8659.2009.01385.x
https://doi.org/10.1111/cgf.13815
https://doi.org/10.1111/cgf.13815
https://doi.org/10.1145/1179622.1179732
https://doi.org/10.1145/1179622.1179732
https://doi.org/10.1111/cgf.15033
https://doi.org/10.1145/3585510
https://doi.org/10.1007/s41095-023-0368-y

