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Figure 1: This figure gives an overview of our interactive visualization pipeline. (a): First, a dense set of line data is generated, which is
equipped with importance values g(t) and coloration scalar values c(t), which are later color mapped. (b): To reduce the line set, agglom-
erative hierarchical clustering is applied to the line dataset, comprising distance metric calculation and representative selection. (c): Using
decoupled opacity optimization [GTG17], the opacity is optimized to maximize the visibility of important structures. (d): Taking the varying
opacity along the lines into account, the color map is adjusted via histogram equalization to utilize the full range of colors.

Abstract
In flow visualization, the depiction of line geometry in three-dimensional domains is often accompanied by occlusions. If there
is a notion of which geometry is important to see, then a careful adjustment of the transparency is possible to ensure that
irrelevant geometry is not occluding the meaningful structures, which is an inherently view-dependent problem. Past work in
this line of research focused on the view-dependent adjustment of the transparency only and left the color channel open for the
encoding of additional information. For a given viewpoint, the colormap could be set by the user, but once the view changes, the
visible geometry is different and the colormap might no longer be utilizing its full color range. Thus, in this paper, we readjust
the color transfer function to the new view, such that the colors of the colormap are utilized uniformly in the final image. To this
end, a visibility histogram of all scalar values is recalculated and equalized on the GPU each frame. Further, past approaches
required a set of lines that is not too dense, since the opacity optimization would otherwise fade out all lines similarly. For
this reason, we incorporate a hierarchical line clustering for which we experimentally study the influence of distance metrics,
linkage options, and representative choices. We apply the method in a number of scientific data sets, including examples from
atmospheric sciences, aerodynamics, and electromagnetism.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Visibility;

1. Introduction

In flow visualization, streamlines are commonly used to display the
behavior of particles in a vector field [MLP∗10, SBGC20]. When
the domain is three-dimensional, lines often occlude each other
making it easy to overlook structures of interest. Given a notion

of importance for each point along the lines, opacity optimiza-
tion [GRT13, GTG17] adjusts the transparency of the lines to clear
the view onto relevant structures. In this paper, we extend the ap-
proach in two ways. First, when the line density is too high, all
lines cause some amount of occlusion and thus opacity optimiza-
tion tends to fade out all lines similarly, not keeping a subset of lines
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as representatives. Thus, we apply clustering in a preprocess, which
is commonly used to adjust the line density [KFW16, KW18]. We
utilize agglomerative hierarchical clustering, for which we exper-
iment with distance metrics, linkage methods, and representative
choices. Second, opacity optimization intentionally only adjusted
the transparency of the lines and kept the color channel open for the
encoding of additional information. We encode an additional scalar
property using a color map. However, which part of the line ge-
ometry is visible depends on the view, and hence the resulting uti-
lization of the color map range is also view-dependent. Inspired by
visibility histograms [CM10] and multi-scale adjustment of color
maps [WWLM∗19], we first form a histogram of the visible scalar
value ranges and then perform a histogram equalization to arrive
at a color map that maximizes the utilization of the available color
map range. Our view-dependent color adjustment enhances relative
differences, but inhibits the reading of absolute values. To retain se-
mantic structures, a part of the color map can be fixed to maintain
the meaning of certain value ranges. In summary, we add two exten-
sions to the decoupled opacity optimization algorithm [GTG17]:

1. We use agglomerative hierarchical clustering to reduce the set
of lines, such that occlusions can be resolved meaningfully.

2. We form a visibility histogram of the scalar values and adjust
the color map to maximize the used color map range.

The algorithm is applied in several line data sets from atmospheric
sciences, aerodynamics, and electromagnetism.

2. Related Work

In the following, we cover related work on streamline placement
and clustering, the optimization of their visibility, and their color.

Line Placement and Clustering. Streamlines are curves that fol-
low the flow tangentially. In 2D flows, they are commonly placed
with uniform density. An early density-based optimization of
streamlets was proposed by Turk and Banks [TB96]. Jobard and
Lefer [JL97] proposed a greedy algorithm that seeds streamlines a
separation distance away from existing lines and traces them un-
til they get closer than a testing distance. Later, this approach was
accelerated by Liu et al. [LMG06]. To guarantee a good representa-
tion of flow features, Verma et al. [VKP00] started with a template-
based seeding around critical points. A farthest-point sampling of
seed points was proposed by Mebarki et al. [MAD05]. In addition
to uniform placements, a local adjustment of the streamline den-
sity is possible [SHH∗07]. For 3D flows, evenly-spaced placements
have been generated by Mattausch et al. [MTHG03]. If the den-
sity is too high, occlusion becomes a problem. To reduce the num-
ber of lines, clustering is a common choice [Jai10], which requires
similarity metrics between trajectories. Zhang et al. [ZHT06] com-
pared a number of line distance metrics, including (point-wise) Eu-
clidean distance, PCA+Euclidean, Hausdorff, dynamic time warp-
ing, and longest common subsequences. Yu et al. [YWSC11] clus-
tered streamlines based on saliency and their geometric distance.
Rössl and Theisel [RT12] segmented the domain using streamline
similarity. In the context of hemodynamics, Oeltze et al. [OLK∗14]
compared distance metrics and proposed the reduced mean closest
point distance between streamlines, which we use later. Kanzler et
al. [KFW16] reduced the line density by a minimum cost perfect

(a) no clustering (b) with clustering

Figure 2: Opacity optimization fails when too many lines are op-
timized, since all lines cause occlusion. By using agglomerative
hierarchical clustering, the line set size is reduced. Here, for the
BORROMEAN with parameter λ = 1.1,q = 90 and r = 120.

matching to obtain a balanced line hierarchy. Kanzler and Wester-
mann [KW18] proposed an interactive brush for the exploration of
cluster hierarchies. Han et al. [HTW20] learnt a similarity between
streamlines and surfaces in latent space, which was used for explo-
ration. For a comprehensive introduction to streamline seeding and
placement methods, we refer to the survey of Sane et al. [SBGC20].

Visibility Optimization. Visibility optimization strives for an im-
proved visibility of important structures in the domain, for which
there are two orthogonal approaches: either the transparency (or
thickness) of lines is adjusted or the viewpoint is improved. Early
view-dependent approaches considered the pixel occupancy of the
drawn streamlines, adding them one-by-one in a greedy man-
ner [MCHM10]. A popular choice for measuring the informa-
tion content are entropy-based measures, that were considered in
viewpoint and streamline selection [LMSC11]. The coherence be-
tween viewpoints was studied to improve coherence during navi-
gation [MWS13]. Instead of seeding lines, Günther et al. [GRT13]
adjusted the transparency of streamlines for a given camera posi-
tion by phrasing a linear optimization problem that considered how
discrete pieces of lines were occluding each other. The approach
has later been extended to time-dependent line geometry [GRT14]
and to surface geometry [GSME∗14]. For volume data, Ament et
al. [AZD17] have shown that the linear optimization has a closed-
form solution in ray space when the object-space smoothing is
done in a post-process. This has afterwards been translated back to
point, line, and surface geometries [GTG17], leading to the decou-
pled opacity optimization that this paper is building up on. More
recently, the unknowns of the optimization have been stored in
Fourier domain [BRGG20] and with moments [ZRPD20]. For vol-
ume data, the transmittance optimization has been combined with
viewpoint optimization [HG24]. In opacity optimization [GRT13],
the optimization tends to fade out bundles of equally-important
lines equally rather than deciding on one representative to keep, see
Fig. 2. Thus, one aspect of this paper is to adjust the line density
adaptively via an agglomerative hierarchical clustering to obtain
a sufficiently sparse set of lines. Such a clustering has previously
been used to adjust the line discretization [GRT14], but it was not
yet used in an opacity optimization to cluster the lines.
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Coloring and Stylization. A number of approaches are available
to encode information along streamlines. First of all, information
can be mapped to color [FTC20, WNW∗22]. The spatial percep-
tion of lines can be improved by adding shading [ZSH96,MPSS05].
Stoll et al. [SGS05] rendered tubes instead, on which the flow direc-
tion can be indicated by textures. The efficient ray tracing of tube
primitives on the GPU was discussed by Han et al. [HWU∗19]. To
better convey the depth order of lines, halos have been added to
lines [EBRI09]. The local twisting of the field can be shown by
using colored ribbons called streamtapes [CYY∗11]. Neuhauser et
al. [NWKW22] concentrated on the efficient rendering of ribbons.
Global illumination effects such as ambient occlusion [EHS13] in
dense and transparent tube renderings [KRW18, GG21] improve
the depth perception. Kern et al. [KNM∗20] compiled a benchmark
of rendering techniques for large numbers of transparent lines. In
this paper, we adjust the color map such that the full range is used
in the view-dependent visualization. In direct volume rendering,
Correa and Ma [CM10] computed and visualized visibility his-
tograms, which convey how much a scalar value appears in the
image. Waldin et al. [WWLM∗19] adjusted the color mapping in
multi-scale data to the current view. Both approaches inspired our
adjustment of the color map to the view-dependent changes of the
visible geometry.

3. Color and Visibility Optimization of Dense Line Sets

In this paper, we aim to visualize a vector field in conjunction with
a scalar field, as shown in Fig. 1. For this, streamlines are employed
to depict the flow field and the scalar field information is encoded
through the use of color. To begin, it is necessary to extract line data
from the flow field. Streamlines are generated by numerically solv-
ing the initial value problem for a set of random seed points. Subse-
quently, scalar field values are sampled at each line vertex and are
added to the line data. These scalar values are used to determine
the opacity and coloring of a given line segment and are henceforth
referred to as importance and coloration scalar, respectively. Next,
an agglomerative hierarchical clustering technique is applied to the
set of lines. It involves computing pairwise distances between in-
dividual lines, performing clustering through a bottom-up merging
process, and then selecting representatives for each resulting clus-
ter. The opacity optimization method is employed to assign trans-
parency values to each line, aiming to maximize the visibility of
important lines. It entails solving an energy minimization problem,
which encourages high opacity for all lines while penalizing occlu-
sion or cluttering of important lines by accordingly adjusting the
transparency values. Finally, color values are assigned to all lines
in a manner that maximizes the utilization of the colormap. This is
accomplished by performing a histogram equalization on the his-
togram of visible coloration values. Thereby, a subset of the color
map can be fixed by the user, such that value ranges of semantic
structures can be preserved, e.g., the zero reference in a diverging
color map, or a specific structure receiving an exclusive color.

3.1. Line Extraction

First, we extract streamlines to represent the vector field. Along the
lines, two scalar fields are user-defined, which are later used for
deciding the opacity and for assigning a line color.

(a) 3 clusters (b) 30 clusters (c) 2000 clusters

Figure 3: Different number of clusters in agglomerative hierarchi-
cal clustering in the TREFOIL data set. With too few or too many
clusters, structures are missed or redundant, respectively.

Streamline Tracing. Given is a vector field v(x) : D → R3 de-
fined over the domain D. Streamlines x(t) : R→R3 are curves that
follow the flow tangentially:

d
dt

x(t) = v(x(t)), x(0) = x0 (1)

where x0 is the seed point. We seed the streamlines uniformly in
the domain to achieve a high line density. A suitable subset is later
selected by clustering. The lines are integrated forward and back-
ward using a fourth-order Runge-Kutta integrator and trajectories
are terminated once they reach a source or sink, exit the domain, or
reach a maximum length.

Scalar Selection. The user provides two scalar fields. One scalar
field denotes the line importance g(t) : R → [0,1], the other is a
scalar that is later mapped to color c(t) : R → [0,1]. Both func-
tions are chosen according to the needs of the application. Follow-
ing Günther et al. [GRT13], we provide a number of defaults that
can be computed from the vector field, such as the arc length of
the line, the line curvature, or the vorticity magnitude. In the ab-
sence of the vector field, the measures above could be computed
from trajectories directly [FTG24]. Both functions, g(t) and c(t),
are normalized to map to [0,1]. For the importance, g(t) = 0 means
low importance and g(t) = 1 means high importance.

3.2. Line Clustering

Line clustering requires a notion of distance between lines to de-
cide which ones to group together. To account for the two scalars
g(t) and c(t) in the similarity metric, we append them with a user-
weighted scale (λg,λc) to the curve x(t) = (x(t),y(t),z(t))T:

x(t) =
(
x(t),y(t),z(t),λgg(t),λcc(t)

)T (2)

Given two discretized lines xi, x j, a number of distance metrics
d(xi,x j) are available. We utilize the reduced mean closest point
distance (rMCPD) [OLK∗14], which is:

d(xi,x j) = min
(
d′(xi,x j),d

′(x j,xi)
)

(3)

d′(xi,x j) = meansi∈xi min
s j∈x j

∥∥si − s j
∥∥

2 (4)

Given the collection of m lines, the symmetric distance matrix
D ∈ Rm×m stores all pairwise distances. For clustering, we apply
agglomerative hierarchical clustering using ALGLIB [Boc23].
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Linkage. During clustering, sets of lines are merged and the dis-
tance matrix is updated accordingly. How this is done is determined
by the linkage method. In the supplemental material, we discuss
and demonstrate two different linkage methods, i.e., single link-
age and complete linkage. We conclude that the complete linkage
served us well and is the recommended default choice.

Representative Selection. Once the clusters are formed, each
cluster contains a possibly varying number of lines from which a
representative needs to be chosen as stand-in for the other lines in
the cluster [KFW16]. In the supplemental material, we discuss and
compare three different representative selection methods, including
the mean line, the line with least distance to all others, and the most
important line. Empirically, we found that the latter is most aligned
with the goals of the opacity optimization and we thus recommend
this as the default choice.

3.3. Opacity Optimization

In the third step of the pipeline, the transparency is calculated for all
line segments using decoupled opacity optimization [GTG17]. The
aim is to maximize the visibility of important lines in screen space
by adjusting opacity values of rasterized fragments such that oc-
clusion and cluttering of important structures is reduced. See Fig. 1
(b) and (c) for an example. The algorithm is conceptually organized
into three steps. First, each input line is divided into a fixed num-
ber of line segments, which allows for an optimization independent
of the underlying number of vertices per line. Second, all line ge-
ometry is rasterized and the fragments that are visible in a pixel
are recorded in fragment linked lists [YHGT10]. Third, the frag-
ments are sorted and the sum of importance values in calculated in
front and behind each fragment. From this, the transparency values
αi ∈ [0,1] are calculated per fragment i by minimizing the follow-
ing per-fragment energy, cf. [BRGG20]:

Ei(αi) =
1
2
(αi −1)2 +α

2
i (1−gi)

2λ

(
q
2

i−1

∑
j=1

g2
j +

r
2

n

∑
j=i+1

g2
j

)
(5)

The first term is a regularizer that generally encourages high opac-
ity values. The q-term penalizes the occlusion of important seg-
ments by lesser important ones. The r-term fades out unimportant
segments behind more important ones. The parameters q,r,λ were
introduced to control the extent by which importance variations in-
fluence the opacity optimization. The minimization has a closed-
form solution, as was shown by Ament et al. [AZD17]. As this
optimization algorithm alone leads to discontinuous opacity values
at line crossings, Laplacian smoothing is applied across the line
segments to obtain smooth transparency transitions [GTG17].

3.4. Color Optimization

In the final stage of the pipeline, all lines are colored such that the
color space is optimally utilized. Each line vertex has a coloration
value c(t) ∈ [0,1], which is used to sample color values from a
selected colormap T (c) : [0,1] → [0,1]3. However, using the col-
oration values directly for color mapping may lead to overused
and underutilized color regions depending on the distribution of
the scalar values, see Fig. 4. Furthermore, when the camera moves,

(a) Direct color mapping (b) Adjusted color mapping

(c) Original coloration distribution (d) Histogram equalized distribution

Figure 4: Visualization of the effect of histogram equalization on
color mapping. The TORNADO dataset is displayed and curvature
is used for the coloration value s(t). (a): Directly applying the color
map does not convey that values near the core are elevated com-
pared to far away regions. (b): Color mapping after redistributing
the colorization values shows the difference. (c): The distribution
of visible curvature values is plotted. (d): The distribution of cur-
vature values is plotted after applying histogram equalization.

the visible geometry changes due to the opacity optimization lead-
ing again to an uneven colormap usage. In value ranges that are not
fixed by the user, we first redistribute the coloration values based on
the visibility of line segments before applying the color mapping.

Histogram Calculation. The opacity optimization delivers a
front-to-back sorted list of fragments Fp per pixel p ∈ P in the set
of all pixels P . Let ck,p ∈ [0,1] be the colorization scalar value of
the kth fragment of pixel p and let αk,p be its opacity value as cal-
culated by the opacity optimization. In front-to-back alpha blend-
ing, the total contribution of a fragment k to the final pixel color
is given by the product of its transmittance Tk,p = ∏

k−1
i=1 (1−αi,p)

and its own alpha value αk,p. To assess how well the color ranges of
the color map are utilized, we form a visibility-weighted histogram
over all pixels P . Let N be the total number of histogram bins, then
the histogram entry Hb of bin b ∈ {1, . . . ,N} is:

Hb = ∑
p∈P

∑
k=1...|Fp|,

ck,p∈[ b−1
N , b

N ]

Tk,p ·αk,p (6)

The first sum loops over all pixels and the second sum loops per
pixel over all the fragments whose colorization scalar is within the
value range of the bin. The resulting histogram for an unoptimized
colorization is shown in Fig. 4(c). Note that the majority of the
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color map is unused, since most fragments are either in the dark
blue range or are saturated at bright yellow. To make good use of
the color map, we want this histogram to become more uniform.

Histogram Equalization. Histogram equalization [GW06] takes
the discrete histogram Hb with its bins b and first turns it into a
probability density p : [0,1] → [0,1] via normalization and after-
wards integrates it to arrive at the cumulative density F(c):

p(c) =
H⌊c·N⌋+1

∑b Hb
F(c) =

∫ c

0
p(c′) dc′ (7)

The cumulative density F(c) of the discrete histogram is calculated
by computing the prefix sum followed by the division of all ele-
ments by the largest prefix sum value. An equalization by applying
F(c) to the colorization scalar is shown in Fig. 4(d). Note that the
bins are not perfectly equal if duplicate values occur in scalar c(t).

Exponential Decay. During camera navigation, both the opacity
and the view-dependent color mapping are changing. Directly us-
ing the newly calculated transfer function F(c) results in notice-
able temporal discontinuities in the color mapping, as geometries
emerge or vanish from the view. To ensure continuous color transi-
tions, we add a blending between the currently used transfer func-
tion and the newly calculated one. For this purpose, we utilize ex-
ponential decay of some quantity q over time τ:

q(τ) = q0 · e−λ·τ (8)

where q0 is the initial amount and λ > 0 is the decay rate. The
decay rate can be expressed via the half-life τ1/2 =

ln(2)
λ

, which
characterizes the point in time at which the quantity has halved.
Inserting the half-life into Eq. (8) gives the following formula:

q(τ) = q0 · e
− ln(2)

τ1/2
τ

= q0 ·2
− τ

τ1/2 (9)

With this, we linearly blend between the current discrete CDF value
fb and its target value f̂b to produce a smooth transitory value f ′b:

f ′b = fb · (1−α)+ f̂b ·α with α = 1−2
− ∆τ

τ1/2 (10)

where ∆τ is the time that has elapsed since the last draw call.

4. Implementation Details

In the following, we explain how our algorithm is integrated into
the decoupled opacity optimization [GTG17] pipeline.

1. Construct a fragment linked list [YHGT10] per pixel containing
the depth and importance of each rasterized fragment. To speed
this up, this is done at half resolution.

2. For each pixel, sort the fragment linked list from front-to-back.
3. Calculate the alpha value for each fragment via the closed-form

formula given in [GTG17].
4. Smooth the opacity values in object space.
5. Apply a fading to obtain temporally smooth results.
6. For rendering, construct fragment linked list at full resolution,

containing depth, alpha and coloration values of all fragments.
7. Sort the fragment lists for each pixel from front-to-back.
8. Calculate the histogram of coloration values given their visibil-

ity by rasterization and additive blending.

Figure 5: All datasets used in this paper, named in order of occur-
rence: BENZENE, BORROMEAN, TORNADO, TREFOIL (timesteps
10 and 140), ECMWF, DELTA WING, HELI and CTBL.

9. Compute the cumulative density function via a parallel prefix
sum [HS86] in a compute shader.

10. Apply exponential decay to the cumulative density function
(CDF) to ensure smooth color transitions.

11. Render the final image to screen using the sorted fragment
linked list and the color mapping by the CDF.

Compared to [GTG17], now step 6 includes the storage of the col-
oration values, and the steps 8-10 are added. Step 11 includes the
color mapping. The rest is unchanged and follows the open source
implementation of [GTG17].

5. Results

For evaluation, we used the datasets shown in Fig. 5, applying the
perceptually uniform color maps of Kovesi [Kov15]. In the follow-
ing, we study the effect of the number of bins N and of the lifting
weights λg,λc. Further, we demonstrate the exponential decay, and
provide a performance analysis of the visualization pipeline. For
further experiments on the options for cluster linkage, represen-
tative selection, and the effect of bin size and cluster size on the
performance, we refer to the supplemental material.

5.1. Number of Bins

First, we analyze the influence of the number of bins N on the trans-
fer function and the final image itself. We extracted streamlines in
the BORROMEAN dataset and compare the results of color mapping
for a variety of bin sizes in Fig. 6. It is desirable to determine a rea-
sonable default value for the number of bins. We increased the num-
ber of bins by powers of two and calculated the SSIM [WBSS04]
between two subsequent images to find a suitable number of bins
for which a further increase no longer makes a difference. We au-
tomatically terminate the increase when the SSIM is above 0.999,
which occurred here for N = 256, which we likewise used for the
other data sets.

5.2. Parameter Study of Lifting Weights

For the line clustering, we lifted the 3D curves into 5D by append-
ing the importance g(t) and the coloration scalar c(t) with cus-
tomizable weights λg and λc, cf. Eq. (2). In Fig. 7, we demonstrate
the results for different parameter choices in the BORROMEAN data
set. Line length was selected as importance, while vorticity was

© 2024 The Authors.
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Figure 6: Variations of the bin size N. In the second column, we
plot the histogram of the initial coloration values. In the third col-
umn, the coloration values are plotted after applying the histogram
equalization. Increasing the number of bins results in a more uni-
form distribution of values.

picked as the coloration value. All lines were clustered into 25 clus-
ters using complete linkage, showing the least distance representa-
tive. Setting the value of the importance scaling factor λg above
0.5 leads to the appearance of the characteristic rings. Varying the
value of λc did not make a noticeable difference in this experiment.

5.3. Exponential Decay

The color mapping is dynamically adjusted based on the currently
visible line geometry. Due to the interactivity, the visibility of lines
can change rapidly through minimal changes of the camera posi-
tion or viewing direction. This causes sudden changes in the trans-
fer function, as well. To ensure smooth and continuous temporal
transitions for the color mapping, we apply an exponential decay.
Subsequent frames of an exponential decay are presented in Fig. 8.

λg = 0 λg =
1
2 λg = 2

λ
c
=

0
λ

c
=

1 2
λ

c
=

2

Figure 7: Visualizations of the clusters created by varying the
weighting factors for the importance λg and coloration values λc.

τ1 = 0 τ2 = τ1/2 τ3 = 2 · τ1/2 τ4 = 4 · τ1/2

Figure 8: Visualization of temporal color transition due to expo-
nential decay. At τ1, the camera jumps to the position shown on the
left. With exponential decay, the currently used CDF smoothly ap-
proaches the target values. At time τ4, the current transfer function
has reached the target. In this example, τ1/2 = 1, meaning the color
mapping fully converged after about four seconds.

We empirically found a half-life of τ1/2 = 0.8 to be sufficient to
create smooth color transitions without being too slow.

5.4. Performance

In this section, we measured the computation time (in millisec-
onds) for each rendering stage, as introduced in Section 4 using
an AMD Ryzen 9 5900X and an NVIDIA GeForce RTX 3070 TI.
All datasets are clustered to have 1,000 lines and the line widths
are adjusted to a sensible value, depending on the spatial extent of
each data set. The coloration value is set to the line length and the
opacity optimization parameters are set to q = 80,r = 80,λ = 1
for all datasets. Lastly, the most important representative method is
used and the camera is positioned such that it captures all lines of a
dataset. We found that across all datasets the most expensive step is
the creation of the fragment linked lists, sorting the lists, and com-
puting the histogram. At the cost of small visual errors, the linked
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Stage Benz. Borro. Delta ECM. Trefoil CTBL
Create list (LR) 0.26 2.08 0.63 1.05 2.84 3.52
Sort list (LR) 87.54 13.61 1.35 1.11 23.15 188.78
Comp. alpha 1.34 2.22 0.31 0.15 3.09 2.18
Smoothing 0.14 0.03 0.08 0.03 0.03 0.02
Fade alpha 0.01 0.01 0.01 0.05 0.03 0.08
Create list 0.21 1.52 0.62 1.02 2.55 2.00
Sort list 28.84 8.83 1.62 0.47 25.42 109.82
Histog. 0.42 12.66 2.33 0.43 12.96 3.58
Histog. CDF 0.02 0.06 0.11 0.02 0.12 0.01
Exp. decay 0.01 0.01 0.01 0.01 0.01 0.01
Render image 0.30 0.69 0.21 0.09 1.24 0.98
Total time 122.02 43.87 10.00 8.00 73.55 311.04

Table 1: Compute time in ms per rendering stage, see Section 4.

list construction can be avoided entirely using order-independent
transmittance approximations [BRGG20, ZRPD20], which is or-
thogonal to the colorization done in this paper. The other pipeline
steps have a negligible impact on the frame time. The BENZENE

and CTBL datasets have the longest fragment linked list creation
and sorting time, which is due to the high overdraw in those scenes.
In the case of BENZENE, all extracted streamlines are grouped into
similar and small areas while most of the domain is empty. Con-
sequently, a high number of lines passes through individual pixels,
which leads to long linked lists. In CTBL, the whole domain is
densely covered with streamlines, which cover the entire viewport
in our experiments, as shown in Fig. 5 (bottom right). For this rea-
son, there are few empty fragment linked lists and higher overdraw.
The exponential decay is unaffected by the dataset choice. This is
to be expected, since the compute shader solely depends on the
number of bins in the histogram.

5.5. Limitations

The color adjustment is only suitable for emphasizing relative dif-
ferences (i.e., the order of values). The view-dependent adjustment
loses the absolute expression of values (i.e., the magnitude of val-
ues). A shared limitation of all transparency-based methods is that
excessive use of transparency inhibits the depth perception. In the
future, we would like to include global illumination cues that can
help to improve the perception [KRW18]. At the moment, our clus-
tering is view-independent. Kanzler et al. [KFW16, KW18] ex-
plored view-dependent clustering, which could be utilized instead.

6. Conclusions

In this paper, we described an interactive visualization of a vector
field together with a scalar field. While the vector field is visual-
ized by streamlines, the scalar field is encoded by color. We utilized
and extended the decoupled opacity optimization [GTG17] in two
ways. First, we performed an agglomerative hierarchical clustering
to lower the number of lines. Second, we calculated visibility his-
tograms [CM10] using the transmittance of individual fragements.
The histogram was equalized to uniformly distribute the used color
map range in the final image. In the future, we would like to im-
prove the rendering of the lines, for example by including global

illumination effects [KRW18, GG21]. Further, the clustering could
be optimized to further maximize the scalar value range, which
would couple the two approaches. Lastly, the influence of cluster-
ing and binning parameters on different views could be studied.
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