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Abstract
Ensembles of simulations are generated to capture uncertainties in the simulation model and its initialization. When simulat-
ing 3D spatial phenomena, the value distributions may vary from region to region. Therefore, visualization methods need to
adapt to different types and shapes of statistical distributions across regions. In the case of normal distribution, a region is
well represented and visualized by the means and standard deviations. In the case of multi-modal distributions, the ensemble
can be subdivided to investigate whether sub-ensembles exhibit uni-modal distributions in that region. We, therefore, propose
an interactive visual analysis approach for region-based visualization within a hierarchy of sub-ensembles. The hierarchy of
sub-ensembles is created using hierarchical clustering, while regions can be defined using parallel coordinates of statistical
properties. The identified regions are rendered in a hierarchy of interactive volume renderers. We apply our approach to two
real-world simulation ensembles to show its usability.

1. Introduction

Volume data ensembles are generated when models of 3D phe-
nomena are applied to simulate respective fields, examples being
climate simulations [SD10], oceanographic simulations [TZG*17],
or simulating medical processes [RPHL14]. The ensembles are cre-
ated by varying initial configurations or parameters to the model
to capture the uncertainty in the outcome. This uncertainty intro-
duced into the data can lead to a more conclusive understanding of
the underlying phenomenon, but it also makes the analysis of the
data much more difficult. Several studies conclude that develop-
ing new visual analysis methods for such uncertain ensemble data
are an important challenge in visualization [WSJ*12; GSWS21].
In this paper, we focus on 3D single- or multi-field ensembles, i.e.,
the ensemble members consist of one or multiple volumetric scalar
fields.

Direct volume rendering [DCH88] is one of the main approaches
to visualizing 3D scalar fields. It allows for an interactive analy-
sis of the scalar field based on the configuration of a globally de-
fined transfer function. When analyzing 3D scalar field ensembles,
a common strategy is to visualize the volume based on a statistical
model such as assuming normal distributions of the scalar values
per voxel and analyzing derived fields of mean and standard devi-
ation. Such an analysis is based on the assumption that the same
statistical model applies to all voxels. However, the value distribu-
tions per voxel may vary substantially and a single statistical model
cannot match all distributions.
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We, therefore, propose to visualize ensembles based on regions
with similar distributions. While a region with normal distributions
can be well represented (and visualized) using the means and stan-
dard deviation of its voxels, the representation of multi-modal dis-
tributions is more complex. We propose to subdivide the ensemble
into sub-ensembles (subsets of the ensemble) in regions with multi-
modal distributions to investigate whether the sub-ensembles ex-
hibit distributions with simpler statistical models. This process can
be iterated by making use of a hierarchical clustering approach of
ensemble members. We propose and evaluate three different ways
of creating a hierarchy of sub-ensembles (see Section 3).

To define regions of similar distributions, we use several com-
mon statistical properties such as mean and standard deviation as
well as derived measures that can capture the characteristics of un-
certainty within spatial regions and enable the analysis of statis-
tical distributions (see Section 4). These measures form a multi-
dimensional data space, whose visualization and interactive selec-
tion we support by employing parallel coordinates [ID90].

The hierarchy of sub-ensembles can then be directly integrated
into the visual analysis process by translating it into a modifiable
hierarchy of direct volume renderers (see Section 5). This facili-
tates the visual analysis of ensembles by allowing the simultaneous
analysis of multiple sub-ensembles. It also quantifies the proba-
bility of different modes occuring within the ensemble as larger
sub-ensembles represent more likely events. Additionally, the hi-
erarchical structure also lends itself well to a proposed top-down
analysis approach.

Since the ensemble may exhibit different patterns in different
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regions of the volume, the user can define 1D and 2D transfer func-
tions for each of these regions individually, which are then com-
bined into a single rendering. Various brushing interactions are
available to the user to select regions of interest such as axis brush-
ing in parallel coordinates, region brushing in the volume renderers,
and region brushing in the scatter plot of the 2D transfer function
editor.

Our main contributions center around building a hierarchy of
sub-ensembles by identifying regions with similar statistical dis-
tributions and creating a hierarchical visualization of volume ren-
derers, all encapsulated within an integrated open-source tool
(https://github.com/hennesrave/reghievis). The
tool is aimed at helping simulation analysts find and explore multi-
modality within ensemble data.

2. Related Work

While direct volume rendering works well for individual volumes,
it lacks a straightforward generalization to ensemble data. Render-
ing a high number of ensemble members individually can lead to
mental overload when visualizing them sequentially, visual clutter
when visualizing them in superposition, and bad scalability when
visualizing them in juxtaposition. To solve this problem, one can
create a statistical model of the underlying data distributions, for
example, by calculating the mean and standard deviation in each
voxel. Kniss et al. [KKH02] showed that multi-dimensional trans-
fer functions can be used effectively when multiple features are of
interest in a given dataset, e.g., the original data value and the gradi-
ent magnitude, which can also be applied to the mean and standard
deviation for ensembles.

Fitting a single Gaussian distribution to the data by comput-
ing the mean and standard deviation results in a loss of detail in
most cases. Liu et al. [LLBP12] chose Gaussian mixture models
(GMM) to represent the input data because they allow complex
data to be fitted with relatively few parameters. When rendering
the volume, the GMM can then be sampled every frame to create a
fuzzy rendering, where narrower distributions produce a more sta-
ble image. Since this requires animation over time, which may be
undesirable, Liu et al. also suggest using Monte Carlo sampling
in a single frame to create still images. However, these approaches
perform worse when the underlying data cannot be accurately rep-
resented using a GMM. Athawale et al. [AMS*21] describe an
approach to direct volume rendering for cases in which the data
uncertainty is characterized by non-parametric distributions, fol-
lowing up on earlier work [SE17]. First, the authors estimate the
probability density function at each voxel and divide it into quan-
tiles. During the rendering process, they interpolate the quantile
representations of neighboring voxels and integrate the values. The
color is then applied using a multi-dimensional transfer function.
However, these approaches do not target the analysis of regionally
different distributions, which is what we propose. We make use of
parallel coordinates, which have previously been used in combina-
tion with volume visualizations to distinguish between regions of
interest [GXY12; RFA*22].

A recent survey on ensemble data visualization [WHLS19]
presents many approaches operating on 2D visualizations. These

reduce the problem of occlusion but do not represent the volumet-
ric shapes well. Some approaches include a linearization of the vol-
ume, e.g. along a space-filling curve, to accomplish such 2D visu-
alizations [DDW14; WFG*19]. An alternative volume visualiza-
tion approach are isosurface renderings which have been adapted
to include uncertainty [RLBS03; PWH11; ASJ21]. Confidence iso-
surfaces [ZWK10] have been generalized to cover uncertainty in
multi-variate data [SAJ21]. Again, none of these approaches allows
for a detailed investigation of the different statistical distributions.

Hierarchical clustering in feature space has been used for mul-
tivariate data [LVRR08; LVR09; ML18; DLL11]. However, we do
not cluster different features, but ensemble members. This has been
proposed as a first step in several approaches [EL22; FKRW17;
KBL19], but they do not make use of the hierarchy to analyze
the different sub-ensembles directly, e.g., by using a hierarchy of
volume renderers. Similar to He et al. [HTWL18], one could use
bicluster analysis to identify subsets of voxels that have a similar
value pattern among multiple ensemble members. However, we are
mainly looking into identifying regions where voxels have a uni-
modal distribution, independent of the order of ensemble members,
which is a less restrictive criterion. Also, their approach does not
yield disjoint sets, making it more difficult to assess the likelihood
of certain patterns to emerge just by looking at the resulting visual-
izations.

3. Hierarchical Sub-ensemble Analysis

Given an ensemble of volumes, our main goal is to identify modes
and variations within spatial regions of the ensemble and sub-
ensembles thereof. The main idea behind clustering the ensemble
members is to find smaller groups of members that belong to the
same mode, making them easier to analyze, but still providing a
comprehensive picture of the whole ensemble when combined.

Since it is not a priori known how granular the clustering of en-
semble members should be, hierarchical clustering is a good choice
for the clustering algorithm. It allows the user to follow a top-down
approach by starting with the ensemble as a whole and then gradu-
ally breaking it down into smaller sub-ensembles. The goal in each
iteration is to find a sub-ensemble in which all members belong to
the same mode in a large region of the volume. We propose three
methods for creating such a hierarchy of sub-ensembles: First, we
try complete-linkage agglomerative hierarchical clustering using a
suitable similarity measure between members, in our case the field
similarity [FL19]. We use complete-linkage to minimize variance
within our clusters since it increases the likelihood of finding a sub-
ensemble that forms a single mode of the ensemble. Second, we test
divisive hierarchical clustering using k-means clustering with k = 2
(to generate a binary tree) and the Euclidean distance as a distance
metric. Third, we sort the values in each voxel and compute the av-
erage rank of each ensemble member. Let A = (a1, ...,am) be the
ensemble members ordered by this average rank. We then split the
ensemble at index

j = arg max
1≤i≤m

i ·q({a1, ...,ai})+(m− i) ·q({ai+1, ...,am}),

where q is defined as the number of voxels where the Shapiro-Wilk
normality test [SW65] yields a non-significant result (p ≥ 0.05)
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for values of the given ensemble members. Note that we weight
the quality of a subset by its size to penalize small sub-ensembles.
The rationale behind this third approach is as follows: We want to
split the ensemble such that for both sub-ensembles, the number of
voxels exhibiting a normal distribution is maximized. Those voxels
can then be easily understood and visualized using, for example, the
mean and standard deviation by mapping them to color and opacity
respectively.

Since some spatial regions may have already been fully ana-
lyzed, the calculation of all of these methods may be restricted to a
user-selected subset of voxels to increase clustering quality. In Sec-
tion 6.5, we evaluate the effectiveness of these three approaches.

The result of such a hierarchical clustering can be visualized in a
dendrogram as shown in Figure 1. Since this dendrogram may be-
come unwieldy for a large number of ensemble members, we pro-
vide several mechanisms to ease interaction. There is a compressed
view, which saves horizontal screen space, the user can collapse in-
dividual nodes to hide entire sub-trees and, if clustering based on
field similarity was performed, there is also a slider to set a simi-
larity threshold, such that all nodes whose similarity is higher than
the threshold are automatically hidden. Interactions with the den-
drogram are shown in the accompanying video.

The main purpose of the hierarchical clustering is to help the
user to perform a top-down analysis. Therefore, the user can di-
rectly transfer the current tree into a hierarchy of volume renderers
(cf. Section 5). A node in the tree corresponds to a volume ren-
derer that displays the corresponding sub-ensemble of the under-
lying tree node. In this way, the user can analyze different levels
of the ensemble simultaneously, identify differences between sub-
ensembles, and estimate the likelihood of key patterns in the en-
semble.

4. Region-based Analysis

Parallel coordinates [ID90] are a common tool for multidimen-
sional data analysis. Here, they are used to identify correlations
between different derived quantities or to define regions inside the
volume that meet certain criteria such as a specific statistical data
distribution. Hence, they can be used to identify regions of voxels
with similar distributions. When the user selects a sub-ensemble,
various derived volumes can be calculated to observe statistical
properties or distributions. For each of these quantities, a parallel
coordinates axis is available. Given fields of multi-field ensembles
are added as further parallel coordinate axes whenever the user se-
lects them. Having configured the parallel coordinates axes, com-
monly used brushing operations support the definition of regions. A
region is represented as a binary volume, where the value of a voxel
is 1, if it is selected, and 0, otherwise. In this way, existing regions
can be combined using common Boolean operations to form new
regions. These regions can then be used, edited, and refined in the
1D and 2D transfer function editors and in the volume renderers
(cf. Section 5).

Several derived volumes are available to the user for use as paral-
lel coordinates axes, see Figure 2. In the following, we will explain
which features are available and how they are computed. All fea-
tures are computed per voxel and we chose them because they are

Figure 1: Directed graph of volume renderers (top) and corre-
sponding dendrogram (bottom) for a dataset representing three
spheres with 150 ensemble members. Green lines are edges of type
left child, red lines of type right child, and the dashed black line of
type sibling. The corresponding nodes are highlighted in dark blue
in the dendrogram. The node of the currently selected volume ren-
derer at the top is displayed larger.

Figure 2: Parallel coordinates of several derived volumes. The val-
ues of the Anderson-Darling test are all close to 0 and the z-score
histogram shows no straight lines, indicating that the values in
those voxels do not follow a normal distribution.

commonly used statistics that provide information about the data
distribution. This list is not exhaustive and more measures can al-
ways be added if required by the specific analysis task.

Minimum and Maximum. The derived volumes min and max
store at each voxel x the minimum or maximum value of all en-
semble members for voxel x, respectively.

Mean and Standard Deviation. The derived volumes mean and
stddev store at each voxel x the mean and standard deviation of all
ensemble members for voxel x, respectively.

Gradient Magnitude. The derived volume grad stores the magni-
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tude of the gradient of the mean volume at each voxel. The gradient
is computed using finite differencing and its magnitude using the
L2-norm.

Anderson-Darling Test. Determining whether the values of a
specified sub-ensemble conform to a normal distribution is an im-
portant analysis task in our approach. In the case of normal dis-
tribution, the corresponding voxels can be fully understood using
mean and standard deviation only. We do not use the Shapiro-Wilk
test from before because the computation of derived volumes hap-
pens on demand and must therefore be interactive. That is why the
Anderson-Darling test [AD54] is used to test for normality. Al-
though Razali et al. [MY11] showed that the Shapiro-Wilk test is
better for testing normality, the Anderson-Darling test was ranked
second in terms of statistical power (cf. Section 6 for a demonstra-
tion of its effectiveness) and its computation is much faster.

Z-Score Histogram. Another tool to determine normality is the
z-score histogram. The z-values are counted in five bins. For nor-
mal distributions, each bin should contain exactly 20% of the
values. Therefore, we chose the following intervals for the bins:
[−∞,−0.842], (0.842,−0.253], (−0.253,0.253], (0.253,0.842],
and (0.842,∞). The derived volumes hist1, . . . ,hist5 represent the
percentage of ensemble members that fall into the five bins. A
voxel whose values are normally distributed is then displayed as
a straight horizontal line along the five parallel coordinate axes for
the z-scores hist1, . . . ,hist5. While brushing is more intuitive on the
single axis of the Anderson-Darling test, we included the z-scores
in addition, as they provide more detailed insight into the distribu-
tion of the data.

Z-Score Deviation. The maximum deviation from the 20% z-score
among hist1, . . . ,hist5 provides another normality measure and is
computed for each voxel x by dev(x) = max1≤i≤5(|histi(x)−0.2|).

Principal Components. Principal component analysis is per-
formed on a data matrix where each row contains the values of
a single voxel across all ensemble members. Then, each voxel is
projected into a 2D space using the first two principal components.
The result is mapped to the unit square [0,1]2 using only translation
and uniform scaling, thus, maintaining the shape of the projection.
The two principal components per voxel are used as two derived
volumes. Their main purpose is to use the resulting scatter plot to
define a 2D transfer function, but the volumes can also be used as
parallel coordinates axes.

5. Region-based Sub-ensemble Volume Visualization

We are now in the position to describe the rendering of sub-
ensembles as defined in Section 3 for selected regions as defined
in Section 4 using transfer functions. The rendering process uses
a modified version of volume ray casting, to create a hierarchy of
volume renderers for the simultaneous analysis of multiple sub-
ensembles.

Region-based Ray Casting. Instead of using a global transfer
function for the entire volume, the user can select different transfer
functions for different regions within the volume. If several regions
overlap, the user can assign priorities to the regions. Then, the re-
gion with the highest priority that evaluates to an opaque color will

be used to color the corresponding sample. Additionally, the user
can select a separate 1D transfer function for the alpha channel,
separating the meanings of color and opacity.

The direct volume rendering follows the concept of ray casting,
where the colors of samples along each ray are lit using the Phong
reflection model for a point light source with no attenuation. The
gradient of alpha values is calculated by sampling around the cur-
rent position using central differences. The negative gradient is then
used as surface normal. The material properties in the form of the
reflection coefficients can be set by the user. Four common com-
position schemes are supported: First hit, maximum intensity, first
local maximum, and front-to-back composition.

The volume renderer also supports region brushing. By using a
lasso selection, voxels that are within the selection (when projected
to the screen) are added to or removed from the current region (de-
pending on which mouse button is used).

Directed Graph of Volume Renderers. Using multiple volume
renderers for simultaneously rendering multiple sub-ensembles
can improve the insight into the structure of the ensemble. The
sub-ensembles can interactively be selected from the dendrogram
(cf. Section 3). The user can transfer the current dendrogram di-
rectly into a hierarchy of volume renderers, where collapsed nodes
in the dendrogram are ignored. The layout of the volume render-
ers is then calculated automatically based on the number of leaves
and the level of the corresponding nodes. For fine-grained control
over the visualization, the respective volume renderers can be freely
rearranged and resized inside a grid of user-defined size. In partic-
ular, the user can create edges between volume renderers manu-
ally to form a hierarchy. Three types of edges can be added: left
child, right child, and sibling, which directly correspond to the re-
lationships of nodes in the dendrogram. Hence, the user can cre-
ate a directed graph, where the nodes represent volume renderers
of sub-ensembles corresponding to the dendrogram, see Figure 1.
Volume renderers without an inbound edge are called root volume
renderers. To define root volume renderers, the user must manually
select a node in the dendrogram. All other volume renderers are
then automatically assigned their corresponding sub-ensemble by
following the corresponding edges in the dendrogram. If an edge
in the volume renderer graph is not present in the dendrogram, the
respective volume renderer is disabled.

All visualization parameters, such as illumination parameters,
composition modes, camera position, and viewing direction, are
shared by all volume renderers to allow for direct comparisons.
The only differences between the various volume renderers in the
directed graph are the input volumes and (when desired) the trans-
fer functions. Note that two volume renderers when applied to dif-
ferent sub-ensembles can display differently shaped regions, since
the selection of regions by brushing on parallel coordinates axes is
evaluated individually for each volume renderer.

While the juxtaposed volume renderers already allow for visual
comparisons, we also support the explicit encoding of differences
by computing difference volumes of each node to its parent node
(if existent). Then, the difference volumes instead of the given vol-
umes are rendered in the directed graph of volume renderers, which
allows for detecting regions where the sub-ensembles mostly differ.
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6. Evaluation and Results

In the following, we will first describe the general analytical work-
flow, before presenting results for two real-world datasets (Red Sea
and Radiofrequency Ablation). Our goal within this analysis is to
explore the uncertainty by identifying modes and estimating the
likelihood of their appearance in the ensemble. Finally, we com-
pare the three methods proposed for the hierarchical clustering of
sub-ensembles. In the supplementary material, we provide further
results including synthetic datasets (Teardrop and Tangle). Finally,
we discuss the performance and scalability of our implementation.

6.1. Analytical Workflow

The presented methods are integrated into an interactive visual
analysis tool. A top-down analysis approach is recommended,
which starts by analyzing the ensemble as a whole, e.g. by search-
ing for patterns in the parallel coordinates widget. A common step
is also to look for regions where the values are normally distributed,
using the Anderson-Darling axis or the z-score histogram. The his-
togram can also help to find regions that follow a bi-modal distri-
bution. Once such regions of interest are identified, the users typi-
cally define one or more transfer functions that meet their analytical
needs. This may be a simple 1D transfer function, e.g., using the
mean, or a more complex 2D transfer function, e.g., using the first
two principal components. If a deeper understanding of a region is
required, the user may recalculate the dendrogram using only that
region. As a next step, the ensemble can be split into smaller sub-
ensembles – creating a hierarchy of volume renderers. Thus, the
problem can be broken down into smaller parts that are easier to
understand. By combining the insights from the visual analyses of
sub-ensembles, the user can gain a comprehensive understanding
of the ensemble. If a region is of particular interest, investigations
using the slice viewer provide exact values for a deeper understand-
ing. Of course, this general analytical workflow is not fixed and the
user can deviate from it if desired.

6.2. Red Sea Dataset

The Red Sea dataset [Hot] is a multi-field ensemble with 50 mem-
bers, 60 timesteps, and volumes of size 50×500×500. We analyze
the first timestep for all 50 members and the two fields temperature
(in °C) and salinity (in gm−3) to demonstrate the advantage of hi-
erarchical volume rendering. When looking at the whole ensemble,
regions of high variance, and thus uncertainty, can be identified by
visualizing the standard deviation volume of the salinity field, see
Figure 3. While it is easy to identify regions of high variance, there
is no way to determine the various factors that contribute to this
variance. Using hierarchical volume rendering, we visualize multi-
ple sub-ensembles simultaneously, which gives insight into the key
differences between ensemble members in these regions, see Fig-
ure 4. We conclude that this central region exhibits multiple modes
across the ensemble while surrounding regions are much more sta-
ble. These regional differences are caused by the large number of
unstable vortices in the center of the Red Sea and could not be iden-
tified by looking at a volume rendering of the whole ensemble.

Figure 3: Volume rendering of the Red Sea dataset using the stan-
dard deviation volume of the salinity field of all members. The re-
gions of high variance are clearly visible. However, the source of
this variance is unknown – no factors leading to the differences
among members can be identified from this visualization.

6.3. Radiofrequency Ablation Dataset

The radiofrequency ablation (RFA) dataset is an ensemble with 510
members and volumes of size 92× 92× 92 courtesy of Sandeep
Gyawali, David Sinden and Tobias Preusser (Fraunhofer MEVIS,
Jacobs University Bremen). The volumes contain temperature val-
ues in Kelvin that are the result of simulations of radiofrequency
ablation [HEG*22] of a liver tumor. The analysis begins by brush-
ing the parallel coordinates axis of the Anderson-Darling test to
find regions where the values follow a normal distribution. A vol-
ume hierarchy with a field similarity threshold of 0.9995 is created,
see supplementary material. Then, the mean difference volume is
used to see the differences between the sub-ensembles using a di-
verging color map in the transfer function editor, see Figure 5. The
differences are mostly located inside the tumor region, where dif-
ferences between the upper tumor region, where the tip of the abla-
tion needle is located, and the bottom tumor region, where the shaft
of the ablation needle is located, can be seen. It can be observed
that the first sub-ensemble on the left, which contains 275 volumes,
has lower values on average (blue colors), while the second sub-
ensemble containing the remaining 235 volumes has higher values
(red colors). This is confirmed by looking at the 1D histograms
in the 1D transfer function editor for these two sub-ensembles.
Looking only at voxels close to the tumor, our approach revealed
a level of bi-modality within the ensemble. Our collaboration part-
ners were surprised by this finding, stating that they were not ex-
pecting this bi-modality since the underlying parameter space was
sampled uniformly for this ensemble.

6.4. Performance and Scalability

We performed several performance measurements to determine the
scalability of our implementation. For the computation of derived
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Figure 4: Hierarchical volume rendering of the Red Sea dataset using the minimum volume of the salinity field of all members and the
transfer function on the right. The first three levels of the dendrogram were translated into a hierarchy of volume renderers. Clear differences
between sub-ensembles can be seen in regions previously identified as highly uncertain (see Figure 3). Salinity in the middle parts of the Red
Sea appears to differ significantly among ensemble members.

volumes and similarity measures, we tested different volume sizes
(1003, 2003, and 3003) and different numbers of ensemble mem-
bers (from 20 to 750). All tests were performed using an AMD
Ryzen 5 5600X CPU, an NVIDIA RTX 2060 graphics card, and 16
GB of main memory. Detailed results are included in the supple-
mentary material. Our results show that all derived volumes can be
computed on demand, with the Anderson-Darling volume taking
the most time with up to 11.37 seconds at volumes of size 2003 for
200 ensemble members. The computation of the hierarchical clus-
tering takes by far the most time. For k-means clustering, it takes
less than a minute to compute, for field similarity-based clustering,
it can take a couple of minutes. Clustering using the average rank
of ensemble members can take a few hours. These times are not
optimized and can still be greatly improved. However, clustering is
usually carried out once at the beginning as a pre-processing step,
so that these times do not hinder the interactive analysis later on.

For rendering times, we tested different volume sizes (1003,
2503, and 5003) and different numbers of volume renderers (1, 3,
7, and 15) on a 2560× 1440 screen with a ray sampling rate of 3
samples per voxel. As the parallel coordinates and volume render-
ers work on derived volumes, their rendering times grow with an
increasing number of voxels, but they do not depend on the num-
ber of members. For parallel coordinates, the performance can al-
ways be improved to interactive rates by only rendering a selected
number of random voxels. For volume rendering, the worst time of
59.44 ms still yields an interactive 16 frames per second and was
measured using a volume of size 5003 and 15 volume renderers.
Note that the rendering time does not scale linearly with the num-
ber of volume renderers, since they occupy the same total screen
space, so the number of rays cast remains roughly constant.

Figure 5: (a) Volume rendering of the label volume of the RFA
dataset: tumor (red), hepatic venous system (green), portal vein
(blue), and hepatic artery (yellow). (b, c) Volume renderings for
the two sub-ensembles after splitting the ensemble once. The dif-
ference in mean to the whole ensemble is color-coded. The first
sub-ensemble (b) has cooler temperatures compared to the whole
ensemble while the second one (c) has higher temperatures. The
1D histograms (insets) confirm this observation.
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Figure 6: Explainability of the sub-ensemble hierarchy for the tem-
perature, salinity, and velocity magnitude fields of the Red Sea
dataset. The explainability increases with the number of allowed
splits in the hierarchy. The three methods, kmeans, field_similarity,
and ranking perform very similarly.

6.5. Hierarchical Clustering

We wanted to compare the quality of our three hierarchical cluster-
ing methods. Therefore, we evaluate how well the clustering meth-
ods allow for dividing the ensemble into sub-ensembles with many
normally distributed voxels. We used the temperature, salinity, and
velocity magnitude fields of the Red Sea dataset.

For each dataset, we started with the whole ensemble and per-
formed the Shapiro-Wilk normality test for each voxel. If the p-
value is not significant (p ≥ 0.05), we mark the voxel as completed.
We then split the ensemble in two using the three different methods,
only considering non-completed voxels. This procedure is repeated
recursively until a sub-ensemble consists of less than six members
or until a maximum of four splits. We determined the quality of a
sub-ensemble clustering as follows: For each voxel, we count the
number of ensemble members in each sub-ensemble of our hierar-
chy where its values are normally distributed. This definition makes
sense from a visual analysis standpoint, as volume rendering using
the mean and standard deviation becomes an effective tool in this
case. Note that this number can never exceed the total number of
ensemble members because our clustering is disjoint and once nor-
mally distributed, voxels are marked as completed and therefore
ignored on the next tree level. We refer to the ratio between this
number and the total number of ensemble members as explainabil-
ity, which is a value in [0,1]. Computing the mean over all voxels
gives us explainability for the entire sub-ensemble hierarchy, see
Figure 6. This measure essentially represents the percentage of the
ensemble that we can model using normal distributions, thus mak-
ing it more easily explainable.

We can see that the explainability increases with the number of
allowed splits. The three methods perform mostly the same. Thus,
given the vastly different computation times described previously,
the k-means clustering seems to be a good compromise between
quality and speed and is used in the application.

7. Discussion and Conclusion

We presented an interactive visual analysis approach that is based
on defining a hierarchy of sub-ensembles and analyzing them si-
multaneously using a directed graph of volume renderers. The anal-
ysis is driven by deriving several statistical fields from the given
scalar field(s) to obtain insights into statistical distributions. By
brushing in parallel coordinates on those derived fields, one can
define regions of different behaviors such as regions with voxels
that exhibit a uni-modal normal distribution and those that exhibit
multi-modal distributions. The properties of regions can be visually
analyzed using 1D and 2D transfer function editors.

We proposed multiple methods for the construction of such sub-
ensemble hierarchies and demonstrated their effectiveness in in-
creasing the explainability of ensemble datasets. We applied our
approach to real-world data and obtained meaningful results. Of
course, the hierarchy of sub-ensembles is only meaningful, if clus-
ters of similar sub-ensembles exist. If the statistical distribution is
much simpler, it may not be possible to define meaningful sub-
ensembles, but then the ensemble as a whole can be analyzed eas-
ily using a single volume renderer in conjunction with the parallel
coordinates plot and the transfer function editors.

A potential pitfall for our approach could be that regions of sim-
ilar statistical distributions do not form connected regions in 3D
space, but are scattered across the volume. Such regions would
not allow for a meaningful analysis. However, our tool provides
enough interaction mechanisms to exclude not meaningful regions
from further analysis steps.

The computation of the hierarchical clustering is the most ex-
pensive part but can be performed in a pre-processing step. If re-
computing the clustering on selected regions during the interactive
analysis is desired, this can be performed significantly faster. The
computation of derived volumes is fast enough to be performed
on demand. All other operations are fully interactive including in-
teracting with the volume renderer hierarchy, the transfer function
editors, and the parallel coordinates.

Many ensembles describing real-world phenomena, such as the
Red Sea dataset [Hot], contain time-varying data. Supporting the
analysis of such ensembles, for example, by providing a similarity
measure for the hierarchical clustering that incorporates time, could
be a subject of future research. Also, although the analysis of multi-
field ensembles is supported, similarity is calculated using only the
currently specified field. It may be beneficial to use a multi-field
similarity measure [FL19] instead.
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