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Abstract
We introduce a novel versatile approach to enhance the quality of grid-based neural scene representations. Grid-based scene
representations model a scene by storing density and color features at discrete 3D points, which offers faster training and
rendering than purely implicit methods such as NeRF. However, they require high-resolution grids to achieve high-quality
outputs, leading to a significant increase in memory usage. Common standard grids with uniform voxel sizes do not account for
the varying complexity of different regions within a scene. This is particularly evident when a highly detailed region or object is
present, while the rest of the scene is less significant or simply empty. To address this we introduce a novel approach based on
frequency domain transformations for finding the key regions in the scene and then utilize a 2-level hierarchy of grids to allocate
more resources to more detailed regions. We also created a more efficient version of this concept, that adapts to a compact grid
representation, namely TensoRF, which also works for very few training samples.

CCS Concepts
• Computing methodologies → Volumetric models; Rendering; Reconstruction;

1. Introduction

Novel view synthesis (NVS) is a significant challenge in com-
puter vision and graphics. Given some input images of a scene
with known camera poses, the task is to render images of the
scene from unseen camera viewpoints. A popular approach for
NVS is Neural Radiance Fields (NeRFs) [MST∗21], which can
produce photo-realistic images of scenes with intricate geometry
and view-dependent appearance effects. NeRF and many of its
variants [BMT∗21, BMV∗22, RPLG21] use a Multilayer Percep-
tron (MLP) to implicitly represent a 3D scene. The MLP takes
the positional encoding of a 3D point along with the viewing di-
rection as input and outputs the corresponding density and color.
Although employing an MLP produces great results for novel
view synthesis, it also introduces a computational bottleneck. This
is because the MLP has to be evaluated for hundreds of points
along each ray during both training and rendering. Multiple pa-
pers [CXG∗22,FKYT∗22,GKJ∗21,HSM∗21,LGZL∗20,MESK22,
RPLG21, SSC22, YLT∗21] have investigated ideas to reduce this
computational cost. One idea is to avoid querying a large MLP
for every 3D point and to instead store density and colors explic-
itly in a 3D voxel grid. For example, DVGO [SSC22] and Plenox-
els [FKYT∗22] train a 3D grid to store density and color features at
discrete 3D points. By applying trilinear interpolation to the grid,
features can be obtained at any continuous 3D point. Then, with
the help of volume rendering the final color of the ray is computed.
Learning features explicitly in a grid rather than implicitly by an
MLP increases training and rendering speed significantly. How-

DVGO Ours

Figure 1: Our method allocates more resources to detailed regions
of the scene, which results in a higher quality for those regions.
In this example, our result reveals significantly more details of the
foreground objects compared to the DVGO result on the left. The
examined scene is taken from the LF dataset [YSHWSH16].

ever, this comes at the price of considerable memory consumption,
as high-resolution grids are needed to achieve high-quality results.

In this paper, we present a novel approach for enhancing grid-
based neural scene representations. Our approach utilizes the fact
that natural scenes usually include regions of varying complexity
and detail, which is not taken into account when using uniform
grids with a fixed resolution. Instead, we propose a two-step solu-
tion to handle this problem: In the first step we identifiy the regions
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DCT-based block selection
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Figure 2: We illustrate our method using a 6× 6× 6 voxel-grid and a 2× 2× 2 block size, resulting in NB = 27 blocks. The left diagram
shows the blocks in red and for better visual clarity, the 2× 2× 2 green grids inside each block are not shown. This figure only shows the
density grid, as the principle is the same for the multi-channel color grid. We apply DCT to compute the importance measure P for each
block, and then select the top NI = 2 blocks as the important ones, shown in black in the middle diagram. As expected these blocks have the
most details, in this example the microphone’s head and stand. The right diagram shows the process for the important blocks: Each block,
red or black, has an original 2×2×2 grid. For the important blocks (black), we add a finer grid to capture more details, as shown in the
bottom part of the right diagram. We sum the densities from both grids to get the final density at any point within an important block.

that contain more complex structures than others. To this end, we
partition the voxel grid into blocks and then introduce a novel nu-
merical measure for each block that reflects the complexity of its
content. Our measure applies Discrete Cosine Transform (DCT)
to each block and then uses a weighted mean of higher frequency
DCT coefficients as the final importance criterion. By examining a
function in the frequency domain, we can obtain useful information
about its degree of variation, which is the motivation behind using
DCT. In the second step of our method, the blocks are sorted ac-
cording to their complexity/importance, and then additional higher
resolution grids are allocated to the more complex blocks in a hier-
archical manner.

As Fig. 1 demonstrates, this method improves the reconstruction
quality on complex scenes, especially in detailed regions. We apply
our method to two state-of-the-art grid-based methods, DVGO and
TensoRF, and show that we can achieve better results, with minimal
memory cost and time overhead. To this end, we demonstrate that
our method accurately identifies regions of high importance and
that the allocation of additional higher-resolution grids improves
quality.

In summary, we make three main contributions:

• To the best of our knowledge, our method is the first that uses
3D DCT to find the intricate structures in a 3D scene. We pro-
pose a novel measure based on frequency coefficients to find the
important blocks.

• Our method uses hierarchical grids for representing blocks of
higher complexity. Our optimized implementation of these two-
layer grid leads to significant visual quality gain with minimal
memory and time overhead.

• We demonstrate that our method can be applied to existing
grid-based 3D scene representations, by showing both visual
and numerical improvements over DVGO [SSC22] and Ten-
sorRF [CXG∗22].

2. Related Work

Numerous approaches have been proposed for generating images
from novel viewpoints using a set of training images. One approach
is to capture the underlying 3D structure of the scene using dif-
ferent forms of representations. This includes meshes [WMG14,
WZL∗18], volumetric representations [SD99, KS00, LSS∗19], or
implicit functions, with NeRF [MST∗21] being the most promi-
nent example. NeRF can produce high-quality results as the 3D
consistency induced by its representation prevents the model
from overfitting to the training set. There are various papers try-
ing to extend NeRF to more complicated [MBRS∗21] or 360
scenes [BMV∗22, ZRSK20] or to enhance its quality [BMT∗21].
NeRF has also been adapted for applications other than Novel View
Synthesis (NVS). This includes combining generative models with
NeRF [CMK∗21, NG21], enabling image generation from multi-
ple viewpoints. Furthermore, several works use NeRF to render
the scene under novel illuminations [BXS∗20, SDZ∗21, RES∗22],
while Block-NeRF [TCY∗22] scales NeRF to large-scale urban en-
vironments. However, inferring 3D representation for NeRF from a
set of 2D images can still introduce complexity and computational
overhead.

NeRF is slow to train and render because the underlying MLP
needs to be queried multiple times along each ray to obtain its fi-
nal color through volume rendering. Many methods have attempted
to improve NeRF’s efficiency, among them one important group
of methods [SSC22, FKYT∗22, LGZL∗20, CXG∗22] concentrate
on using an explicit learnable voxel grid rather than an implicit
MLP. DVGO [SSC22] employs two separate grids for density and
color at discrete 3D points. These color features, together with the
viewing direction, are then provided to a much shallower MLP
than the one used in NeRF. This MLP produces the final color
for the given 3D point. Voxel grids and DVGO in particular, can
greatly speed up training and rendering, reducing the time from
days to minutes. However, a major challenge of their methods is
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TensoRF Ours

Figure 3: We use the T-Rex scene from LLFF [MSOC∗19] to compare our result on the right with TensoRF on the left. Our method preserves
thin structures such as the bones more accurately than TensoRF, while also reducing the memory consumption by more than 20%.

the excessive memory consumption, which results from the huge
size of their 3D grids that mostly contain empty space. This is be-
cause scenes frequently have considerable void regions. Plenox-
els [FKYT∗22] addresses this issue by using a sparse voxel grid,
which only stores the density and color features for the voxels that
exceed a density threshold. They also replaced neural features with
spherical harmonics, which makes their approach completely ex-
plicit without any neural networks. Instant-NGP [MESK22] uses a
multi-resolution hash grid to store the features, which, combined
with their custom cuda kernels, results in fast rendering and high-
quality outputs. TensoRF [CXG∗22] significantly reduced mem-
ory requirements by factorizing the 3D grid into low-rank 1D and
2D vectors through matrix-vector decomposition. This approach al-
lows for much lower memory consumption compared to previous
methods, enabling the use of larger grids and achieving improved
quality. The more recent version [HX23] further enhances these ca-
pabilities. A common limitation of these methods is their disregard
for the varying complexity across different regions, leading to a
uniform distribution of resources across all non-empty areas of the
scene. Instant-NGP, however, is an exception which utilizes a hash
grid structure that inherently allocates more resources to regions
with higher levels of detail. Some approaches seek to combine im-
plicit and explicit methods to harness the advantages of both. These
methods typically train an implicit representation, such as NeRF,
and then bake it into an explicit format to enable faster rendering.
Noteworthy contributions in this area include [RSV∗23,HSM∗21].

An alternative line of research aims to eliminate the need for 3D
representations and apply a neural network to directly estimate the
final color of any ray cast into the scene which is known as light
fields [LH96,DLD12,AHZ∗22,WRH∗22]. Light field is a straight-
forward and fast method, but it is limited to scenes with a dense
capture and a small camera baseline [LH96,DLD12]. To overcome
this limitation, some recent works have proposed to use subdivided
light fields [AHZ∗22] or to distill a NeRF into a light field model to
get both 3D consistency and fast rendering speed [WRH∗22]. Kerbl
et al. [KKLD23] recently proposed a novel representation for NVS
called 3D Gaussian Splatting. While their method boasts impres-
sive quality and rendering speed, it has limitations, including poor
geometry and issues with sparse training data.

3. Method

We now describe how to use adaptive grids for learning the density
and color features of a 3D scene from a collection of input images.
We start by reviewing the standard formulation of grid-based meth-
ods and then introduce two grid-based methods, DVGO [SSC22]
and TensoRF [CXG∗22], which we use as baselines for adaptive
grids in the next sections. We then explain how to utilize adap-
tive grids and finally we demonstrate an optimized version of our
approach, that integrates adaptive grids into the TensoRF compact
representation and achieves state-of-the-art results.

3.1. Grid Based Representations

Grid-based geometry reconstruction methods usually employ two
distinct 3D voxel grids for storing density and color features. The
density voxel grid has a size of Nx×Ny×Nz×1, where Nx, Ny, and
Nz are dataset-dependent hyper-parameters. The color voxel grid
has the same dimensions, but with C channels: Nx ×Ny ×Nz ×C,
where C is a hyper-parameter that controls the number of color fea-
tures. The density and color features of any 3D point in the grid
are obtainable by performing trilinear interpolation on each chan-
nel of the relevant grid. Based on this information, images can be
obtained using volume rendering, similar to how it is used in NeRF
[MST∗21]: 1. For a given camera view, rays are projected into the
scene. 2. Along each ray, multiple points are sampled and their
color features and densities are obtained by applying trilinear in-
terpolation on the grid values. 3. In case the color grid stores neural
features, a shallow multilayer perceptron (MLP) takes the features
together with a viewing direction and outputs the final color of the
desired point. If spherical harmonics are used for the color features,
as in Plenoxels [FKYT∗22], then the final color can be obtained by
evaluating the spherical harmonics at the appropriate viewing di-
rection without using any neural networks. 4. After obtaining the
colors and densities of the points along a ray, they are aggregated
to obtain the final color Ĉ(r) of the ray, as in NeRF [MST∗21]:
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Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci where Ti = exp

(
−

i−1

∑
j=1

σ jδ j

)
(1)

where σi and ci are the density and color of the point i and δi is the
distance to the next sample on the ray.

The density and color grids, as well as the shallow MLP are
jointly learned, as the process of obtaining features from the
grid, followed by volume rendering, is differentiable. Compared to
NeRF [MST∗21], the MLP for color synthesis in grid-based meth-
ods is much shallower, increasing the training and rendering speed.

3.2. Baseline Methods

To show the effectiveness of our approach we will apply our idea to
DVGO and TensoRF. DVGO is an example of a representation with
explicit 3D grids and TensoRF offers a compact representation of
3D grids with reduced memory footprint and improved quality. We
summarise these baseline methods briefly:

DVGO [SSC22] starts with a lower resolution grid capturing the
coarse geometry of the scene and then continues by training the
final fine-grained grid. With the coarse shape information, points
are only sampled in the occupied regions, enhancing efficiency and
assisting in defining the final grid to tightly enclose the scene. In
the coming sections, we will demonstrate how our adaptive grid
strategy can be incorporated into DVGO, to enhance its quality by
assigning additional resources to the more detailed regions.

TensoRF [CXG∗22] represents grids more compactly: Instead of
storing a 3D grid with cubically increasing memory (with respect
to resolution), TensorRF uses a matrix-vector decomposition (VM),
estimating a 3D grid with multiple vectors and matrices that are
one- or two-dimensional. This decreases memory usage signifi-
cantly and also allows higher resolution grids that would not be
feasible in standard 3D grid representations such as DVGO. VM
decomposition of the 3D grid G can be expressed as follows: For
vectors vx

i , vy
j and vz

k and matrices Mx,y
k , Mx,z

j ,My,z
i , with 1 ≤ i ≤ R1,

1 ≤ j ≤ R2 and 1 ≤ k ≤ R3, the grid tensor G is defined as

G =
R1

∑
i=1

vx
i ◦My,z

i +
R2

∑
j=1

vy
j ◦Mx,z

j +
R3

∑
k=1

vz
k ◦Mx,y

k (2)

where ◦ denotes the vector-matrix outer product. Thus, instead
of storing grid parameters at every grid point explicitly, TensoRF
computes them from the vectors and matrices, which are trainable
parameters of the model. The numbers of vectors and matrices to
be used, collectively referred to as “components”, are governed by
hyper-parameters R1, R2, and R3. More components lead to better
estimation but also require more memory. For the color grid, an
additional vector is added to Eq. (2), to adapt it to multiple chan-
nels. This results in a significantly more compact representation.
For more details, we refer to [CXG∗22]. In the following sections,
we describe how to incorporate our adaptive grids idea into this
representation and how this can improve results, by using fewer
components for approximating the smooth and simple regions and

using more components for representing the complex and fine de-
tails of the scene.

3.3. Identifying Important Blocks

We now describe how important blocks, i.e. regions of the scene
with high-frequency details, can be identified. Then we describe a
more elaborate version of our idea, designed for TensoRF.

3.3.1. Standard grid representations:

The grid consists of Nx ×Ny ×Nz ×F cells, where F = 1 for the
density grid and F = C (number of color channels) for the color
grid. We partition the set of grid cells into blocks, each comprising
Bx ×By ×Bz ×F cells. Let NB be the total number of blocks.

Our goal is to identify “important” blocks, i.e. blocks that con-
tain high-frequency details. To this end, we introduce a novel mea-
sure of block complexity based on the analysis of their frequency
spectrum. We only explain the process for the density grid, as the
one for the color grid is very similar:

The density grid inside block i is denoted by Di. We assume
that the blocks are cubic, i.e., Bx = By = Bz = B. We apply Dis-
crete Cosine Transform (DCT) to transform Di to the frequency
domain and obtain the DCT coefficients DCT (Di) = Ti ∈RB×B×B.
The formula for DCT of the ith block where 0 ≤ i < NB is given
by [MRIdVFB23]:

Ti[u,v,w] := α(u)α(v)α(w)
B−1

∑
m,n,p=0

Di[m,n, p]γ(m,u)γ(n,v)γ(p,w)

(3)
where

α(x) :=


1√
N

: x = 0√
2
N : otherwise

(4)

and

γ(a,b) := cos
(

π

2N
(2a+1)b

)
(5)

The Inverse Discrete Cosine Transform (IDCT) is given as fol-
lows [MRIdVFB23] where 0 ≤ i < NB:

Di[m,n, p] =
B−1

∑
u,v,w=0

Ti[u,v,w]α(u)α(v)α(w)γ(m,u)γ(n,v)γ(p,w)

(6)

By inspecting the IDCT formula, we can see that higher values
of u, v and w correspond to higher frequencies in the cosine func-
tions. Therefore, Ti having larger values for large u,v and w values
indicates that block i contains high-frequency details. Conversely,
if we have a smooth uniform region, then Ti would be nearly zero
for all large u, v and w values. We use this intuition to define our
novel importance measure Pi for block i:

Pi :=
B−1

∑
u,v,w=⌊ B

2 ⌋
W [u,v,w]×Ti[u,v,w] ∀ 0 ≤ i < NB (7)

where W [u,v,w] = (u−⌊B
2 ⌋)

2+(v−⌊B
2 ⌋)

2+(w−⌊B
2 ⌋)

2. Based on
Eq. (7), Pi is a weighted mean of the higher frequency coefficients
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Color variation Density variation

Figure 4: Most important blocks according to Eq. (7), are high-
lighted: For the chair, blocks with the greatest color varia-
tions are green, while for the ship, blocks with the highest den-
sity variations are white. Scenes taken from the Synthetic-NeRF
dataset [MST∗21]. Complex textures in the left and thin structures
in the right have the highest P values.

in Ti and W is a weight matrix that gives more importance to the
larger values of u, v and w. We can rank all NB blocks according to
their importance measure Pi and select the top NI ones to allocate
additional finer resolution grids to them. NI is a hyper-parameter
that depends on the scene and balances between quality gain and
memory cost. We can define the importance measure P on both
density and color grids: On the density grid it puts more weight
on the intricate geometry and structures, while on the color grid
it emphasizes complex color variations in the scene. We demon-
strate the effectiveness of the proposed measure by showing the
blocks with highest P values in two scenes from the synthetic-
NeRF dataset [MST∗21] in Fig. 4.

3.3.2. TensoRF

The process in Sec. 3.3.1 can also be applied to TensoRF, but slows
training down due to two factors: First, TensoRF does not store the
3D grid explicitly, and hence it requires some computation to trans-
form the vectors and matrices into the 3D grid. Second, TensoRF
also uses higher grid resolutions than DVGO, which is why iterat-
ing over the blocks is more time-consuming. Hence we propose a
more efficient approach for identifying the blocks with the highest
details: Our intuition is to analyze the frequency spectra of the ma-
trices My,z

i , Mx,z
j and Mx,y

k in Eq. (2) to estimate the variation in a
block. Applying DCT to a matrix M with dimensions d × d gives
us a set of coefficients, denoted by DCT (M). Then we define Q(M)
as the importance measure of M:

Q(M) :=
d

∑
i, j=⌊ d

2 ⌋
W ′[i, j]×T [i, j] (8)

where W ′[i, j] = (i−⌊ d
2 ⌋)

2+( j−⌊ d
2 ⌋)

2. Eq. (8), like Eq. (7), takes
a weighted average of high-frequency components, but for only two
dimensions. Based on Eq. (8) we estimate the importance Pi for
each block 1 ≤ i ≤ NB in the grid G as follows. Block i is a subgrid
of G with size B×B×B, starting from the voxels xi, yi and zi. We
estimate the total variation for block i by summing up the variations
of the matrices from Eq. (2), which gives us Pi:

Pi :=
R1

∑
i=1

Q(My,z
i [yi : yi +B,zi : zi +B])

+
R2

∑
j=1

Q(Mx,z
j [xi : xi +B,zi : zi +B])

+
R3

∑
k=1

Q(Mx,y
k [xi : xi +B,yi : yi +B])

(9)

Once we have the importance values for all the blocks, we can
follow the method in 3.3.1 and select the NI blocks with the highest
PI values as the most important blocks in the scene.

3.4. Higher resolution grid for Important Blocks

3.4.1. Standard grid representations

Given the NI blocks of interest from the previous section, we allo-
cate two supplementary grids of higher resolution to each of these
blocks: one grid for the density with a single channel, and another
grid for the color with C channels. While the original density block
has a size of B×B×B× 1, we allocate a finer density grid with
a block size of BI × BI × BI × 1, where BI > B. During training
and rendering, we sum the density values from both grids to obtain
the final density at any point within the important blocks. Thus, the
finer grid serves as a correction term to the original grid, and en-
ables the representation of finer details that the original grid cannot
capture. The same process applies to the color grid, except that it
has C channels. An overview of our approach can be seen in Fig. 2.
This methodology can be applied to any standard voxel grid repre-
sentation such as DVGO. However, TensoRF employs a distinctive
approach by estimating the 3D grid using vector-matrix decompo-
sition.

3.4.2. Extending TensoRF

TensoRF estimates a 3D grid using vector-matrix decomposition
as specified in Eq. (2). Increasing the numbers of components (R1,
R2, and R3) leads to improved estimation accuracy at the expense
of a larger memory footprint. We propose a selective approach that
only increases the numbers of components for those blocks that are
deemed important in the scene, rather than naively adding more
components for the entire scene. Using a higher resolution grid is
not very effective in this case, since TensoRF already employs very
fine grids. Instead we add more components for estimating blocks
with high frequency details: Any point within an important block is
given two terms for its density and color. The first term is common
to all the points in the scene, and is derived from Eq. (2). The sec-
ond term is based on the additional R′

1 +R′
2 +R′

3 components but
is only defined for important blocks instead of the whole grid.

This method enables us to optimize resource utilization and
achieve higher or similar quality with lower memory consumption.

© 2024 The Authors.
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Methods Synthetic-NeRF LF BlendedMVS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DVGO [SSC22] 31.95 0.957 0.053 25.01 0.80 0.32 28.02 0.922 0.075
Ours 32.50 0.961 0.051 25.8 0.831 0.32 28.5 0.934 0.069

Table 1: Quantitative comparison of our approach to the baseline DVGO on three datasets. Scores are averaged over all scenes in each
dataset. Our method consistently improves quality on both synthetic and real-world datasets.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Gaussian Splatting [KKLD23] 23.03 16.2 22.24 22.79 23.81 18.03 23.22 15.98 21.89
Ours 28.07 20.4 22.96 31.16 30.01 21.88 27.02 24.01 25.69

Table 2: PSNR scores across different scenes from NeRF-Synthetic dataset with only 10 training images. Gaussian Splatting fails to work on
such sparse training data while our approach can produce significantly better results.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean Size
Plenoxels [FKYT∗22] 33.98 25.35 31.83 36.43 34.1 29.14 33.26 29.62 31.71 780M

NSVF [LGZL∗20] 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93 31.75 -
Instant-NGP [MESK22] 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.176 -

DVGO [SSC22] 34.06 25.4 32.58 36.77 34.65 29.58 33.15 29.02 31.90 610Mb
Large DVGO 34.71 25.59 33.07 36.96 35.31 29.58 33.65 29.56 32.30 1.2Gb
Ours-DVGO 35.08 25.67 33.21 37.14 35.35 29.57 34.30 29.81 32.50 850Mb

TensoRF [CXG∗22] 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14 71.8M
Ours-TensoRF 35.94 26.03 34.17 37.39 36.81 30.53 34.91 30.67 33.31 66M

Table 3: We compare our PSNR scores to state-of-the-art explicit approaches on the Synthetic-Nerf dataset [MST∗21]. We observe that all
those approaches are outperformed by Ours-TensoRF on almost all scenes, even though our model uses less memory than TensoRF. Our
method also can improve DVGO with a moderate increase in memory and outperform the “Large DVGO”, which has 1.25 grid size and uses
twice the memory of the original version.

Figure 5: We compare our method (right) to DVGO (left) with grid
size 2003, on the microphone scene from Synthetic-NeRF. Our ap-
proach improves the resolution of fine details in the microphone
head while using 29.2% less memory(850Mb vs 1.2Gb).

4. Experimental Results

4.1. Datasets

We evaluate our approach on both synthetic and real-world
datasets. We use Synthetic-Nerf [MST∗21], a widely used dataset
for novel view synthesis methods, which consists of 8 dif-
ferent scenes with complex view-dependent effects and intri-
cate structures. We also test on four objects from the Blend-
edMVS [YLL∗20] dataset, following the protocol provided
in [LGZL∗20]. For real-world datasets, we use LLFF [MSOC∗19],
a challenging dataset with 8 different scenes that have very sparse

training samples, and LF [YSHWSH16], a dataset with 5 different
realistic scenes that have a foreground object in a cluttered back-
ground.

4.2. Implementation Details

Our method based on DVGO: We integrated our idea with the
DVGO model to show the effectiveness of our approach on stan-
dard grid representations. After training DVGO for 5000 steps,
when it has learned the overall structure and texture of the scene,
we identify the important blocks: First we partition the entire grid
into 16× 16× 16 blocks and apply DCT to the color grid, yield-
ing the importance measure Pi for each block 0 ≤ i < NB. Then we
sort all the NB blocks in descending order based on Pi and select
the top NI = 64 blocks. In the next step, we allocate an additional
32× 32× 32 grid to each of these 64 important blocks and con-
tinue training the main grids and the additional higher-resolution
grids for 20k steps. For a point in a normal block, the process is
the same as the baseline approach, but for a point in an important
block, we add the density and color values from both the original
and the higher-resolution grid to obtain a fine-grained density and
color value. The remaining steps follow the DVGO [SSC22] paper.

Our method based on TensoRF: We adapted our idea to Ten-
soRF, resulting in a compact, state-of-the-art model with adaptive
grids. The process is similar to DVGO, but we use larger blocks of

© 2024 The Authors.
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size 64×64×64 due to the larger grid in TensoRF. Additionally, we
identify the important blocks after training TensoRF for 7000 steps.

4.3. Comparisons

Speed is a key advantage of grid-based representations, so we only
consider methods that have training and rendering speeds compa-
rable to ours. We leave out implicit methods such as [MST∗21,
BMT∗21, BMV∗22], that require hours/days of training, while our
model can be trained in less than 30 minutes, or even less than 10
minutes with the DVGO baseline. Gaussian Splatting, one of the
recent state-of-the-art representation for NVS, achieves a PSNR
comparable to ours on the Nerf-Synthetic dataset (33.36dB vs.
33.35dB) and performs better in unbounded scenes. However, it
has the drawback of not functioning well in sparse settings with
few training images, as shown in Tab. 2. We note that our method
is implemented entirely in PyTorch code, unlike approaches such
as Instant-NGP, Plenoxels and Gaussian Splatting, which rely on
custom CUDA kernels.

Our method based on DVGO: Table 1 compares the quality
of our method to that of the bare DVGO by averaging PSNR,
SSIM [WBSS04] and LPIPS [ZIE∗18] scores over three different
datasets: The added precision of our additional blocks leads to a
small, but consistent improvement in all scores. The time overhead
of our approach is also minimal, as the baseline DVGO training
takes 5 minutes and ours takes 6 minutes with a single NVIDIA
3090 GPU. Table 3 compares methods on the Synthetic-NeRF
dataset: "Ours-DVGO" consistently outperforms the Large DVGO
model while using 30% less memory. This highlights the effective-
ness allocating resources where they are most needed. We note that
our method is designed for scenes that have certain areas of inter-
est, while other regions are less important. For these scenes, such as
the microphone (Fig. 5), we obtain the largest quality improvement
over DVGO, as the microphone head has many fine details, while
the microphone stand is smooth. Therefore, our method achieves
a significant improvement both visually (Fig. 5) and in terms of
PSNR (Tab. 3).

Methods LLFF

PSNR↑ SSIM↑ LPIPS↓ Size↓

Plenoxels 26.29 0.839 0.210 2.54Gb
TensoRF-VM-48 26.51 0.832, 0.217 90Mb
TensoRF-VM-96 26.73 0.839 0.204 180Mb
Ours-TensoRF 26.75 0.848 0.209 95Mb

Table 4: Quantitative comparison of our method with other grid-
based approaches on the LLFF [MSOC∗19] dataset shows that in-
tegrating our idea into the TensoRF model yields superior quality
compared to TensoRF with 96 components, while utilizing only half
as much memory.

Our method based on TensoRF: Also in Tab. 3, we evaluate our
method on the basis of TensoRF. Despite reducing the memory con-
sumption to half, compared to standard TensoRF, we still outper-
form it in terms of PSNR in almost all the scenes of the Synthetic-
NeRF dataset. Our approach reconstructs the intricate details and
thin structures better while using less memory as shown in Fig. 3.

Our method based on TensoRF also can handle training data as
sparse as 10 images for simple scenes. The recent 3D Gaussian
splatting paper [KKLD23], however, fails to produce satisfactory
results under such sparse settings, see Tab. 2. For more qualitative
results please see our supplemental video.

5. Limitations

While our approach clearly uses memory more efficiently and en-
hances the quality of grid-based methods, it cannot compete with
implicit methods such as Mip-NeRF [BMV∗22] or Gaussian Splat-
ting [KKLD23] in more complex, realistic and unbounded scenes.
This limitation primarily stems from the inherent shortcomings of
grid-based approaches, which make them less suitable for such sce-
narios. Adapting hierarchical representations to implicit methods
with the aid of DCT scores could potentially improve these implicit
approaches, which we leave for future work.

6. Conclusion

We have presented a method that uses adaptive grids for neural
scene representations. Our method has the benefit of being appli-
cable to various grid-based neural scene representations. We have
tested our method using two main state of the art representations,
showing that it improves their tradeoff between model size and out-
put quality by assigning more resources to regions with complex
structures. We also compared against the most recent method of 3D
Gaussian Splatting, demonstrating that our method can achieve bet-
ter results in a few-shot setting. Future work could investigate the
idea of hierarchical representations based on frequency spectra for
other scene representations, such as Gaussian Splatting [KKLD23]
or Mip-NeRF [BMV∗22]. We also believe that the concept of hi-
erarchical grids can be useful in interactive applications, when the
user requests more accuracy in a chosen part of the scene.

Acknowledgments. This work was supported by ERC Consolida-
tor Grant 4DReply (770784).
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