
Vision, Modeling, and Visualization (2024)
L. Linsen and J. Thies (Eds.)

Towards Practical Meshlet Compression

Bastian Kuth1 Max Oberberger2 Felix Kawala1,2 Sander Reitter1,2 Sebastian Michel1 Matthäus Chajdas2 Quirin Meyer1

1Coburg University of Applied Sciences and Arts, Germany 2AMD, Germany

(d) GTS-Reuse: 5.9 bpt(c) GTS: 9.5 bpt(b) Basic: 24 bpt(a) Vertex: 96 bpt

Figure 1: (a) The conventional vertex pipeline requires 3×32 bits per triangle (bpt), but, (b) meshlet-triangles only require 3×8 bpt. (c) We
compress mesh triangles to 9.5 bpt by encoding meshlets into optimal generalized triangle strips (GTSs). (d) We re-order vertices such that
their first appearance needs only one bit (green) and only store reused vertex indices (red) explicitly.

Abstract
We propose a codec specifically designed for meshlet compression, optimized for rapid data-parallel GPU decompression within
a mesh shader. Our compression strategy orders triangles in optimal generalized triangle strips (GTSs), which we generate by
formulating the creation as a mixed integer linear program (MILP). Our method achieves index buffer compression rates of
16:1 compared to the vertex pipeline and crack-free vertex attribute quantization based on user preference. The 15.5 million
triangles of our teaser image decompress and render in 0.59 ms on an AMD Radeon RX 7900 XTX.

Keywords: geometry compression, mesh shaders, real-time ren-
dering

1. Introduction

Mesh shaders are a recent addition to the set of programmable
shaders used for rendering. They replace the vertex, tessellation,
and geometry stages of the vertex shader pipeline. The resemblance

to a compute shader allows for greater flexibility. With meshes be-
coming more complex, compression methods keep their memory
footprint tangible. As decompression is usually a slow and serial
process, specialized techniques are required for massively paral-
lelized hardware like graphics processing units (GPUs). In this
work, we adapt and extend these techniques to the context of a mesh
shader. We make the following contributions:

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vmv.20241204 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-9473-8847
https://orcid.org/0000-0001-9648-3171
https://orcid.org/0000-0003-4689-2932
https://orcid.org/0000-0001-7073-442X
https://doi.org/10.2312/vmv.20241204


2 of 8 Kuth et al. / Towards Practical Meshlet Compression

• Meshlet topology compression schemes. We reduce the mesh-
let index buffer memory footprint to ca. 5.9 bpt. We propose a
slightly faster compression scheme at ca. 9.5 bpt.

• Mesh shader decompression. We propose real-time mesh-
shader-based decompressing algorithms that outperform the con-
ventional vertex pipeline.

• Self-contained, crack-free vertex attribute compression. By du-
plicating meshlet boundary vertices, we keep our meshlets self-
contained which allows for fast, spatially-local memory access.
We show a crack-free quantization for attribute compression.

• Optimal GTS construction. Finding the optimal GTS is NP-
complete. Nonetheless, we show that it is feasible to find the
optimum for common meshlet sizes using a MILP solver.

Our goal is to provide a mesh-shader-based meshlet decompres-
sion technique that is as least as fast the vertex-pipeline while sig-
nificantly reducing the GPU memory footprint. Our approach has
the following limitations: We only account for triangle rasterization
and omit other mesh types and render methods. Due to our tight
performance budget, we make limited use of attribute coherence
in a meshlet. Finally, methods for optimally compressible meshlet
generation remain future work.

2. Background and Previous Work

A vertex is an index Vi referencing an element in a vertex buffer.
Vertex-buffer elements contain vertex attributes like positions, nor-
mals, texture coordinates, etc. An index buffer is a sequence of
vertex indices Vi that describe the connectivity. For triangle lists,
triplets of indices from a triangle. They have a relatively high mem-
ory requirement, but are supported by GPUs.

Triangle strips describe a path over a mesh. A path enters a tri-
angle (Va,Vb,Vc) through the edge (Va,Vb). The next triangle can
either be across the right edge (Vb,Vc) or the left edge (Vc,Va).
For alternating triangle strips (ATSs), the path always alternates
between right and left edge. Then, three consecutive indices in an
index buffer form a triangle. Except for the first one, each triangle
requires only one new index. Generalized triangle strips (GTSs)
are more flexible: for each triangle, one so-called L/R-flag per tri-
angle discriminates whether the path continues across the left or
right edge [VdFG99]. Fig. 1 shows an example of a GTS.

While ATSs result in long triangle bands, GTSs avoid them
and allow layouts that better fit GPU run-time behavior [Kil08,
Sec. 7.2]. Further, typically GTSs require fewer strips than ATSs
and have a smaller memory footprint. Since GPUs do not support
GTSs directly, we build upon the algorithm proposed by Meyer et
al. [MKSS12] to decode them into triangle lists.

Geometry compression handles the massive and increasing
amount of data in real-time computer graphics. Several overview
reports cover this vast field [AG03,PKJ05,MLDH15]. While many
methods target offline decompression, we narrow our scope to mesh
representations suitable for GPU rendering.

Calver [Cal02] describes vertex shader attribute de-quantization
using 8- and 16-bit integers for each attribute channel. Purnomo et
al. [PBCK05] assign a fixed bit-budget for all vertex attributes. Ev-
ery attribute channel is quantized with an arbitrary number of bits

using a pre-process that compares the rendering error for different
bit-allocations. Kwan et al. [KXW∗18] store vertex attributes as 2D
block-compressed textures.

For positions, quantization levels are typically determined em-
pirically [Dee95], usually at 8 – 12 bits per component [PKJ05,
AG03]. To compactly represent positions, Lee et al. [LCL10] first
align a mesh on a global grid to prevent cracks. Next, they decom-
pose a mesh until each sub-mesh does not require more than 8 bits
along each spatial axis. Meyer et al. [MSGS11] dynamically add
and remove bits view-dependently.

For normals, various compression methods exist: Deer-
ing [Dee95] proposed spherical parameterization methods, which,
however, use expensive trigonometric functions. Meyer [Mey12]
carefully analyzes the error of various parameterization schemes.
Octahedron unit vectors turn out to be an effective method
for vertex-shader decompression [MSS∗10]. Cigolle and col-
leagues [CDE∗14] provide effective implementations. Keinert et
al. [KISS15] propose a fast and precise unit vector decompression
method based on a Fibonacci mapping.

Frey and Herzeg [FH11] convert three perpendicular tangent-
space unit-vectors used as vertex attributes required for normal
mapping to a quaternion. They decompress the corresponding
tangent-space in a vertex shader. Recently, methods for blend-
attributes compression were presented [KM21, PKM22].

In his pioneering work, Deering [Dee95] introduced real-time in-
dex buffer compression. Offline methods like Edgebreaker [Ros99]
or the Cut-Border Machine [GS98] compress close to the minimum
of ca. 1.62 bpt [Tut62]. Jakob et al. [JBG17] provide a fast, but non-
real-time, GPU-implementation of the Cut-Border Machine. Meyer
et al. [MKSS12] describe a real-time algorithm to quickly decom-
press a GTS using data-parallel scans. Karis et. al [KSW21] replace
these scans by faster bit-scans, but overall, do not consider their ap-
proach to be fast enough for frame-by-frame decompression.

Schäfer et al. [SPM∗12] simplify a mesh with edge-collapses.
The lost geometric information is re-sampled and compactly stored.
During run-time it is reconstructed using hardware-tessellation pat-
terns. Maggiordomo and coworkers [MMT23] use a lossy algo-
rithm to convert a highly detailed mesh into the recently introduced
micro-mesh [Nvi22] data structure. Both approaches significantly
reduce memory and rendering time, but change topology, which
might not be acceptable for all applications.

Laced Ring [GLLR11] is a compact data structure for triangle
mesh adjacency information. It targets mesh processing algorithms
that require finding triangle neighbors or fans around a vertex.
Hence, it bears some inherent overhead when only used for mesh
compression. However, Mlakar et al. [MSS24] showed that is also
suited for meshlet decompression and can achieve real-time rates.

3. Mesh-Shader

Amplification- and mesh-shaders provide a compute-shader-based
programming model to hand triangles to the raster stage. Pre-
viously, the vertex pipeline handled this task. From the central
processing unit (CPU), the programmer launches multiple mesh-
shader thread groups of up to 128 threads. Hardware internally

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Kuth et al. / Towards Practical Meshlet Compression 3 of 8

schedules the thread groups into waves of 32 or 64 threads, which
then run on a compute unit. Each shader thread-group outputs a
small mesh – called meshlet – to the raster stage. A meshlet con-
sists of a triangle list stored in a local vertex-buffer with per-vertex
attributes and an index-buffer whose elements point into the local
vertex-buffer. Each meshlet has a limit Ṽ vertices and T̃ triangles,
currently set to 256 in DirectX [Mic23]. An amplification shader
stage may run before the mesh-shader stage. It has the ability to
dispatch or suspend mesh-shader thread groups. We use the ampli-
fication shader for a cone culling optimization: the triangle normals
of a meshlet form a cone that we store using an axis and an open-
ing angle. Then, the amplification shader can quickly assess, if all
triangles are back-facing and then cull the entire meshlet.

Each mesh-shader work-group needs to read in a meshlet from
GPU memory. To obtain meshlets in a pre-process, a meshlet split
algorithm tries to find coherent groups of triangles such that the to-
tal number of vertices V and triangle T per such group, is smaller
than or equal to the given maximum Ṽ and T̃ . We observe that a
typical meshlet is a connected patch of 2-manifold triangles, where
V < T < 2V holds. Thus, for configurations where a meshlet split
algorithm is given limits of T̃ = Ṽ , the limiting factor for the mesh-
let size is T̃ , which is reached for most meshlets. Vice versa, for
configurations T̃ = 2Ṽ , the limiting factor for the meshlet size is Ṽ ,
which is reached for almost all meshlets, while the limit T̃ is rarely
reached. The workload per vertex, e.g., attribute transformations, is
usually greater than the workload per triangle, e.g., loading three in-
dices. Therefore, to achieve higher GPU utilization, it makes sense
to set the limits such that V is likely to reach a Ṽ that is a multiple
of the hardware’s wave size.

As a meshlet index only references up to 256 unique vertices,
the basic mesh-shading pipeline stores 8 bit per index, instead of
32 bits of a global index buffer of a vertex pipeline. To achieve this,
a meshlet stores a mesh-global offset to where its vertex attributes
start in the buffer. As a consequence, all the vertex attributes ly-
ing on the border between meshlets have to be duplicated, as each
meshlet needs it in its local attribute space. To reduce this data re-
dundancy, meshlet builders can try to minimize the average border
length of all meshlets. It is possible to avoid attribute duplication
entirely by using a secondary index buffer that references the at-
tributes shared over multiple meshlets [Kub18]. While this would
make the overall compression smaller, it makes the implementation
more complex. It also disrupts memory-locality of attributes, and
thus makes memory access less coherent. Further, it requires extra
indirect memory accesses and makes streaming of individual mesh-
lets more complex. Finally, we want to utilize the geometric coher-
ence between attributes of a meshlet to better quantize attributes in
Sec. 4.4. Therefore, we prefer self-contained meshlets, holding all
attributes tightly in memory. For our test cases, we found Ṽ = 128
and T̃ = 256 to be optimal. With Ṽ = 128, 7 bit indices would suf-
fice, but we choose 8-bit for faster byte-aligned memory access.

4. Compression

In this section, we formulate a MILP for finding the optimal GTS.
We then describe the strip encoding and parallel decoding. We close
this section with our crack-free attribute quantization.

4.1. Optimal Generalized Triangle Strip

To compress a meshlet’s index buffer, we represent triangles as
a GTS. For the best compression ratio, we need to find strips
over the whole meshlet with the minimum possible number of
restarts. This problem is, however, NP-complete [AHMS96] and
many approximations exist, but see Vaněček’s and Kolingerová’s
overview [VK07].

Many practical optimization problems can be modeled as

max∑
i

civi such that A⃗v ⪯ b⃗,vi ≥ 0, (1)

with A ∈ Rm×n ,⃗b ∈ Rm, c⃗ ∈ Rn, n the number of variables to be
optimized, m the number of constraints, and ⪯ the component-wise
≤ operator. If vi ∈ R, Eq. 1 is a linear program (LP), if vi ∈ Z an
integer linear program (ILP), and a mixed integer linear program
(MILP) when there is both. Estkowski et al. [EMX02] formulate
ATS computation as an ILP. We extend their approach to work for
GTSs. Consider the dual graph of the triangle mesh. A dual graph
edge connects two triangles, thus the dual graph nodes, that share
an edge. Let v⃗ = [⃗x, y⃗]⊤ in Eq. 1. For each such edge i, the variable
xi ∈ {0;1} defines, whether it is part of the strip (1) or not (0). The
xi are the relevant solutions to our MILP. To minimize the required
number of strip restarts, we need to maximize the number of edges
that are part of the strip: max∑i xi. As this condition alone does not
create valid triangle strips, we add two types of constraints:

No-fork Constraint Since a manifold triangle has at most three
neighboring triangles (one per edge) each dual-graph node has at
most three dual-graph edges xb,xl ,xr. If xb + xl + xr = 3, all dual-
graph edges would belong to the strip. In such a case the strip would
fork at this triangle, which is not possible. Therefore, similar to
Estkowski et al. [EMX02], we constrain

xb + xl + xr ≤ 2. (2)

Anti-cycle Constraint To avoid unwanted cycles, Estkowski et
al. [EMX02] add one constraint per potential cyclic ATS. For ATSs,
this is tangible because enumerating all cycles is O(n), but infea-
sible for GTSs. Instead, solvers like Gurobi [Gur23] use lazy con-
straints, which can be dynamically added once a potential solution
is found. We observed that lazy anti-cycle constraints do not yield
a solution within a reasonable time- or memory-frame. As an alter-
native approach, Cohen [Coh19] derived anti-cycle constraints for
common graph problems. For finding a non-cyclic GTS, we modify
and simplify them to the following: to each edge connecting some
nodes A and B, we assign two variables yab and yba on either side
of the edge, where yi ∈R≥0. We constrain the sum of the two edge
variables to an arbitrary constant value F ∈ R>0, e.g., F = 1:

yab + yba = F · xab. (3)

Thus, if the edge is part of the strip, so when xab = 1, the sum
yab + yba must be F . Otherwise, if the edge is not part of the strip,
both variables are zero. Additionally, at each node, we constrain the
sum of the adjacent edge flow variables, e.g., for a node A,

yab + yac + yad < F. (4)

As strict inequality are not allowed in LPs programs, we write

yab + yac + yad ≤ F − ϵ

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 8 Kuth et al. / Towards Practical Meshlet Compression

instead. Consider a strip section:

A B C
yab yba ybc ycb

,

which can be rewritten according to Eq. 3:

A B C
yab F − yab ybc F − ybc

.

With Eq. 4, it is given that yab > ybc, or the other way round
yba < ycb. As these inequalities cannot hold for a cyclic strip, we
successfully prevent cycles with these additional constraints.

Finally, we feed our MILP to the Gurobi [Gur23] and
SCIP [BBC∗21] solvers to find an optimal solution, as shown in
our supplemental code.

4.2. Strip Encoding

As established in Sec. 2, an L/R-flag per triangle marks the edge
reused from the previous triangle. As we decompress all triangles in
parallel, a thread cannot access the decompressed previous triangle.
Instead, each thread must find the correct indices from earlier in
the strip. See Fig. 2 for reference: the longer a GTS spins around a
vertex in a fan-like manner, the further back the required index lies:
here, triangle 8 requires the index of triangle 4, which is 0.

Meyer et al. [MKSS12] use a max-scan to find this offset. Initial
experiments with wave-intrinsics slowed our decompression. Thus,
we use GPUs-bit-level instructions on the L/R flags-for this search,
similar to Nanite [KSW21]: With firstbithigh [Mic20], we find the
index of the first set bit of a word, starting at the most significant
bit. To make use of it, we shift and combine the flag words in a way
that the most significant bit is the flag of the current triangle. The
next bit contains the flag of the triangle before the current triangle
and so on. In case the flag of the current triangle is set, we flip all
bits before calling firstbithigh, to search for the first unset bit. For
the rare case that the local fan exceeds 31 triangles, thus 32 bits of
a word are not enough, we iteratively check previous words of the
bit-flags. To enable hardware triangle-back-face culling, we flip the
triangle orientation depending on the L/R-flag.

Even our optimal GTS algorithm may need more than one strip
per meshlet. Then, we require a strip restart. Using an individual
restart bit per triangle would make the implementation more com-
plex, and, as restarts are rare, they increase the memory footprint.
Similar to Meyer et al. [MKSS12], we use four degenerate trian-
gles to emulate a restart. In our evaluation, we show that degenerate
triangles do not contribute much to the total run-time cost. This in-
creases the number of triangles in the strip. In rare cases, we exceed
the T̃ = 256 limit and we must split the meshlet.

4.3. Index Reuse Packing

As the vertex attributes referenced by the index buffer are local
per meshlet, we reorder them such that new vertices appear in
the strip in ascending order. This means a strip always starts with
(0,1,2 . . .). Thus, the first triangle of a meshlet does not have to
be stored explicitly. Furthermore, the majority of indices are just
increments of the previous index. Meyer et al. [MKSS12] make

use of this redundancy by storing one bit per triangle that indicates
whether the index appears before in the strip. Indices which are
increments of the previous index are marked with a 1 increment
flag. Indices which are not increments, thus already appeared in the
strip, are marked as reuse with a 0 increment flag. A prefix add scan
over all flags, which is a common per-wave intrinsic, allows us to
retrieved all incrementing indices. If the flag of the current triangle
t is 1, the result of the scan s is the current index. If the flag is 0, an
additional reuse array is accessed at location t + 1− s, see Fig. 2.
To speed up computation, we again use a bit instruction over the
increment flags and avoid synchronization between threads. Thus,
we count the number of set bits in a word, called countbits [Mic20].

4.4. Crack-Free Fixed-Point Vertex Attribute Quantization

While developing our compression scheme, we observed that mesh
shaders have a limited compute budget. There, we have little room
for sophisticated attribute compression. As our goal is to beat the
vertex pipeline, we settle with quantization. We must, however,
make sure that duplicate vertices along a meshlet boundary map
to the same values. Otherwise, we would get unwanted cracks.

The attributes of a vertex are organized as an attribute vector
A⃗ ∈ Rn. A component Ai is called attribute channel. For example,
if a vertex consists of a position ∈ R3, a normal ∈ R3, and a tex-
ture coordinate ∈ R2, A⃗ ∈ R8. For convenient vertex-processing,
attributes are usually floating-point quantized. But the logarithmic
quantization-curve of floating-point numbers does not concur with
typical distributions found for attributes. Therefore, it is memory-
wasteful. Instead, we use a simple uniform quantization with b bits
for each attribute channel. We find b = 16 bits for each attribute
channel a sensible choice, because it allows fast memory-aligned
attribute fetches and we found no visual deviations for our test
meshes. Further, the precision is higher than the 16-bit floating-
point format commonly used in practice.

To avoid cracks, we propose to first map the meshlets to a global
anisotropic grid with the following uniform spacings along each
axis: For each attribute channel i, such as the x coordinate of the
position, we find the meshlet with the largest extent wi. The sample
spacing of the global grid for channel i is then ∆i = wi/

(
2b −1

)
.

In general, the global grid requires more than b bits for channel
and is therefore more precise than the local grid. For each mesh-
let, we store its lowest value Li for each channel i with respect
to the global grid. The values of the attribute channel are stored
relative to Li. This guarantees that b bits are sufficient for each at-
tribute channel. For decompression, an integer addition reconsti-
tutes the attribute values to the global grid. Then we map the values
back to their original floating-point representation, used for stan-
dard vertex-processing. This scheme is simple and suits the tight
compute budget of mesh-shaders.

Assuming independent and identically distributed attributes, we
get a greater or equal information content for the attribute channel
i than b. Let the global mesh extent of the attribute channel i be Wi.
The information content of this channel is then log2 (Wi/∆i) ≥ b
bits for this channel, but see Tab. 3 for concrete values.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Kuth et al. / Towards Practical Meshlet Compression 5 of 8

Inclusively Add-Scanned Increment-Flag Buffer

(d) GTS Reuse Compression(a) Example Meshlet (c) GTS Compression

(b) Basic Mesh-Shading

Basic Index Buffer

0 2 3 4 5 6 7 8 91

L/R-Flag Buffer

Index Buffer

R R RL L L L L L

0 2 3 4 5 6 7 8 91

0 2 3 4 5 6 7 8 91

L/R-Flag Buffer

R R RL L L L L L
0 2 3 4 5 6 7 8 91

32 6 94 5 5 7 8 8
0 2 3 4 5 6 7 8 91

0 1

4+1-5=0 8+1-8=1

0 2 3 4 5 6 7 8 91

1 1 11 1 0 1 1 0

Increment-Flag Buffer

Reuse Buffer

Figure 2: Strip Encoding. (a) Example meshlet with vertex indices at the corners. The polyline denotes the triangle strip. (b) For Basic Mesh-
Shading, triangles use three indices stored in the Basic Index Buffer. (c) Our meshlet GTS Compression consists of one index per triangle
in an Index Buffer. The indices 0, 1, 2 are not explicitly stored. The L/R-Flag Buffer stores a flag denoting the direction of the strip. (d) Our
meshlet GTS-Reuse Compression makes use of incrementing vertex indices (green) stored in an Increment-Flag Buffer. In addition to the
L/R-Flag Buffer, the reused vertex indices (red) have to be stored in the Reuse Buffer. We compute Inclusively Add-Scanned Increment-Flag
Buffer during decompression. In case an index is reused, we compute the index location in the Reuse Buffer with additions and subtractions.

Hairball

V = 1,462,548, T = 2,850,000, M = 12,281

Cat

V = 2,371,089, T = 4,675,729, M = 22,665

Skull

V = 2,547,085, T = 5,041,363, M = 24,372

Dragon

V = 3,609,455, T = 7,218,906, M = 34,864

Rock

V = 7,835,494, T = 15,563,528, M = 75,409

Lucy

V = 14,028,307, T = 28,055,728, M = 135,558

Figure 3: Test Meshes. V denotes the number of vertices of the input mesh, T the number of triangles and M the number of meshlets coming
from Meshoptimizer. Meshlets are visualized with randomized colors.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 8 Kuth et al. / Towards Practical Meshlet Compression

Gurobi SCIP ETA

computation time 915.46 s 8,122.56 s 10.52 s

GTS render time 0.58 ms 0.58 ms 0.59 ms

GTS restarts 123,784 123,784 185,480

degenerate triangles 495,136 495,136 741,920

additional meshlets 3 / 75,412 3 / 75,412 4 / 75,413

Table 1: GTS comparison for the Rock mesh. We compare the op-
timal Gurobi and SCIP solutions against the sub-optimal ETA. The
CPU computation uses one thread per meshlet and was measured
on an AMD Ryzen 9 7950X (16C/32T).

5. Results and Discussion

We evaluate the performance of our methods on the meshes of
Fig. 3. Except for Hairball and Cat, our meshes come from scan-
ning procedures. Hairball demonstrates that the graphics pipeline
can be bound by other factors such as overdraw. Meshlets were gen-
erated using the Meshoptimizer library [Kap23] with Ṽ = 128 and
T̃ = 256. For the vertex pipeline experiments, we use vertex-cache
and vertex fetch-optimization from Meshoptimizer.

Tab. 1 compares our optimal GTSs achieved with our MILP
of Sec. 4.1 with Gurobi and SCIP against the sub-optimal strip
of our Enhanced Tunneling Algorithm (ETA) [PS06] implementa-
tion. As expected, the ETA is orders of magnitude faster, but yields
results worse than the globally optimal solution provided by the
MILP solvers. Although ETA requires about 1.5 times as many
strip restarts, and thus degenerate triangles, the difference in render
time is negligible. This also confirms the assumption that degener-
ate triangles do not contribute much to the run-time cost.

Tab. 2 compares the memory requirements for different compres-
sion scenarios. For the Index Buffer, the basic mesh shader already
achieves a compression ratio of ∼4 : 1 over the vertex pipeline.
With our GTS compression of Sec. 4.2, we achieve ∼10:1 By fur-
ther packing the triangles with GTS-Reuse of Sec. 4.3, we achieve
∼16 :1. With mesh-shaders, we store Meshlet Meta Buffer such as
buffer offsets (12 B) and cull information (16 B). Due to degen-
erate triangles encoding restarts, both GTS variants require extra
meshlets in rare cases, where the triangle count exceeds T̃ .

For Vertex Buffer, we use eight attributes. To leverage the advan-
tages of self-contained meshlets described in Sec. 3, we duplicate ∼
20% of the vertices. As expected, Fixed-point quantization reduces
the memory consumption by a factor of ∼2% over Floating-point
quantization. Tab. 3 shows that our crack-free global-quantization
increases the precision for the positions. On the other hand, no pre-
cision is added to normal vectors, as a single meshlet with normal
vectors cluttered to all directions is enough to mitigate the benefit.

Fig. 4 shows our rendering performance measurements on dif-
ferent GPUs. To emphasize the performance impact of the geome-
try stage, our Direct3D12 implementation renders to a 500 by 500
pixel framebuffer with texture mapping and Phong Shading. For
more complex shading, the performance impact of the geometry
stage on the total render-time decreases. As expected, the render-
time grows linearly with the mesh size.

Hairball Cat Skull Dragon Rock Lucy
0.00

0.25

0.50

0.75

1.00

1.25

R
en

de
rT

im
e

(m
s)

0.
13 0.

20

0.
22 0.

30

0.
65

1.
16

0.
13

0.
15

0.
15 0.

22

0.
47

0.
84

0.
13 0.
15

0.
16 0.

23

0.
51

0.
91

0.
13 0.
17

0.
17 0.

25

0.
55

0.
98

0.
13 0.
15

0.
16 0.

23

0.
53

0.
95

0.
13 0.
17

0.
18 0.

25

0.
58

1.
04

AMD Radeon RX 7900 XTX

Hairball Cat Skull Dragon Rock Lucy
0.0

0.5

1.0

1.5

R
en

de
rT

im
e

(m
s)

0.
18 0.
24 0.
27 0.

37

0.
84

1.
46

0.
10 0.
17

0.
17 0.
23

0.
58

0.
94

0.
10 0.
17

0.
17 0.
24

0.
58

0.
97

0.
10 0.

20

0.
21 0.

29

0.
65

1.
13

0.
11 0.
16

0.
16 0.

25

0.
58

0.
99

0.
11 0.
18

0.
19 0.

31

0.
68

1.
20

NVIDIA GeForce RTX 4090

Vertex Pipeline
Mesh-Shading Pipeline

GTS
GTS-Reuse

GTS w/ Fixed
GTS-Reuse w/ Fixed

(a) Render Time without Cone-Culling.

Hairball Cat Skull Dragon Rock Lucy
0.00

0.25

0.50

0.75

1.00

1.25

R
en

de
rT

im
e

(m
s)

0.
13 0.

20

0.
22 0.

30

0.
65

1.
16

0.
14

0.
13

0.
13 0.
17

0.
48 0.
52

0.
14

0.
13

0.
14 0.
18

0.
53 0.
58

0.
14

0.
15

0.
15 0.
19

0.
57 0.
63

0.
14

0.
14

0.
14 0.

22

0.
54 0.
60

0.
14

0.
15

0.
16 0.

23

0.
59 0.
65

AMD Radeon RX 7900 XTX

Hairball Cat Skull Dragon Rock Lucy
0.0

0.5

1.0

1.5

R
en

de
rT

im
e

(m
s)

0.
18 0.
24 0.
27 0.

37

0.
84

1.
46

0.
11

0.
12

0.
12 0.
16

0.
48 0.
54

0.
11

0.
12

0.
13 0.
17

0.
53 0.
58

0.
12 0.
18

0.
19 0.
25

0.
69 0.
74

0.
11

0.
10

0.
11 0.
15

0.
54 0.
60

0.
13 0.
16

0.
17 0.
23

0.
70 0.
76

NVIDIA GeForce RTX 4090

Vertex Pipeline
Mesh-Shading Pipeline

GTS
GTS-Reuse

GTS w/ Fixed
GTS-Reuse w/ Fixed

(b) Render Time with Cone-Culling.

Hairball Cat Skull Dragon Rock Lucy
0

10

20

30

40

Tr
ia

ng
le

T
hr

ou
gh

pu
t

(B
ill

io
ns

pe
rS

ec
on

d)

21
.4

6

23
.4

8

23
.3

9

24
.0

5

24
.0

8

24
.1

8

21
.4

5

31
.3

0

32
.7

9

33
.1

0

32
.9

0

33
.5

8

21
.8

9

31
.5

1

30
.8

4

31
.0

0

30
.7

7

31
.0

1

21
.8

4 27
.7

4

29
.0

9

28
.7

1

28
.2

6

28
.5

6

21
.8

5

30
.6

1

31
.3

5

32
.0

7

29
.3

5

29
.6

4

21
.7

6 28
.0

9

28
.5

8

28
.9

5

26
.8

3

27
.0

4

AMD Radeon RX 7900 XTX

Hairball Cat Skull Dragon Rock Lucy
0

10

20

30

40

Tr
ia

ng
le

T
hr

ou
gh

pu
t

(B
ill

io
ns

pe
rS

ec
on

d)

15
.6

7 19
.8

9

18
.7

1

19
.6

6

18
.5

0

19
.2

1

27
.8

8

28
.1

4

30
.0

5

31
.0

1

26
.9

3

29
.8

3

27
.1

6

27
.6

1

28
.8

7

29
.5

5

26
.9

7

28
.9

7

27
.1

5

23
.5

2

24
.0

0

24
.6

3

23
.8

1

24
.7

2

27
.1

0

30
.0

1

32
.3

1

28
.9

5

26
.6

5

28
.2

2

26
.6

5

26
.0

9

26
.6

6

23
.4

1

22
.7

3

23
.4

7

NVIDIA GeForce RTX 4090

Vertex Pipeline
Mesh-Shading Pipeline

GTS
GTS-Reuse

GTS w/ Fixed
GTS-Reuse w/ Fixed

(c) Triangle Throughput without Cone-Culling.

Figure 4: We compare the performance of different versions of our
compression with (a) and without (b) cone-culling against the ver-
tex pipeline (lower is better). (c) To normalize for different mesh
sizes, we compare the triangle throughput per second of our com-
pression against the vertex pipeline (higher is better).

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Kuth et al. / Towards Practical Meshlet Compression 7 of 8

Mesh Index Buffer Meshlet Buffer Vertex Buffer

Vertex
Pipeline

Basic Mesh
Shading

GTS
GTS

Reuse
Basic Mesh

Shading
GTS &

GTS Reuse
Vertex

Pipeline
Basic Mesh

Shading

GTS & GTS Reuse

Float Fixed

Hairball 32.6 (96) 8.15 (24) 3.21 (9.4) 2.11 (6.2) 0.328 0.336 44.6 48.0 48.1 25.3
Cat 53.5 (96) 13.4 (24) 5.33 (9.6) 3.32 (5.9) 0.605 0.605 72.4 88.5 88.5 46.4
Skull 57.7 (96) 14.4 (24) 5.71 (9.5) 3.55 (5.9) 0.651 0.651 77.7 95.2 95.2 49.9
Dragon 82.6 (96) 20.7 (24) 8.17 (9.5) 5.07 (5.9) 0.931 0.931 110 136 136 71.4
Rock 178 (96) 44.5 (24) 17.7 (9.5) 11.0 (5.9) 2.01 2.01 239 295 295 154
Lucy 321 (96) 80.3 (24) 31.8 (9.5) 19.7 (5.9) 3.62 3.62 428 529 529 278

Table 2: Memory Requirements. We compare the sizes in MiB of the Index, Meshlet, and Vertex buffers for the conventional Vertex Pipeline
and our mesh-shading pipelines (Basic Mesh Shading, GTS, GTS-Reuse) for the respective Mesh. The values in parentheses are bpt. Column
Vertex Buffer lists the memory consumption when using 8×32 bit Floating-point values per-vertex, except for column Fixed, where attributes
have 8×16 bit fixed-point values. Fixed also includes the per-meshlet constants required for dequantization.

Positions Normals Texture Coords.

X Y Z X Y Z U V

17.6 17.6 17.1 16.0 16.0 16.0 16.1 16.0

Table 3: Information content of our crack-free global-quantization
on the Rock mesh. We test each attribute channel of our meshlets
with a fixed number of bits b, here b = 16. This allows for fast
memory-aligned access. Mapping the resulting sample-spacings
from the meshlet-local grid to the global grid results in the shown
global information content for the attribute values.

To normalize different mesh sizes, Fig. 4c compares the triangle
throughput per second. Our basic mesh-shading pipeline outper-
forms the vertex pipeline. When adding decompression, rendering
is still faster than the vertex pipeline. As expected, this is not always
the case for the hairball, which is bound by pixel overdraw.

Fig. 4b is the same measurement as Fig. 4a, but with cone culling
enabled. As, on average, every second meshlet faces away from
the camera, the performance can improve by up to a factor of two.
However, this does not work for our rock mesh, as almost all mesh-
lets face towards the camera.

With our index and vertex buffer compression, the rendering
performance is faster than the original vertex pipeline, when the
pipeline is not bound by overdraw, but the memory footprint is sig-
nificantly smaller. More compression would only degrade perfor-
mance, which counteracts our goal of beating the vertex pipeline
in speed and size. We observe that the compute capabilities of a
mesh-shader are limited.

We compare against the meshlet compression scheme "Laced
Wires (LW)" [MSS24]. For connectivity, LW requires 16 bpt. With
ca. 5.9 bpt, our method is almost three times smaller. LW only re-
ports numbers for positions, while we support an arbitrary number
of attributes. Therefore, we average index-, position-, and meshlet-
buffer sizes over all models and obtain 38 bpt for our method. LW
compress on their test corpus at an average of 37.5 bpt. Note that
LW quantizes positions to an average of 3×15 = 45 bits per vertex
(bpv), whereas our approach is more precise with 3×16 = 48 bpv.
When configuring our quantization algorithm to achieve LW’s pre-

cision of 45 bpv for the Rock mesh, we need 13.4, 13.4, and 13.9
bits for the three position components, totaling 40.7 bpv. Due to
better memory-alignment, we prefer power-of-two quantization.
LW encoding timings range from "tens of minutes to hours for
large scenes." We encode the Rock mesh in 24 s (ETA) and 15 min-
utes (Gurobi) including meshlet generation and quantization. On an
Nvidia RTX 4090, LW decompresses and renders at 13.3 Giga tri-
angles per second (Gtps) with frustum and cone culling optimiza-
tion, only three attributes, and no textures. Our slowest approach
without meshlet culling, with eight attributes, and textures achieves
22.7 – 26.7 Gtps and up to 36.8 Gtps with cone culling. To con-
clude the comparision, without culling, our approach is twice as
fast, with cone-culling three times faster, it is more precise, and
achieves comparable compression ratios.

6. Conclusion and Future Work

We proposed meshlet codecs. To compress the topology of a mesh-
let, we find the optimal GTS. Index coherence within the strip is
then used for further compression. Our method compresses the in-
put index buffer of the conventional vertex pipeline at a ratio of up
to 16:1. Furthermore, we demonstrated how to perform memory-
aligned and crack-free attribute quantization, while making use
of the limited local value range within a meshlet. Our evaluation
shows that our decompression runs faster than the vertex pipeline.
As future work we see specialized meshlet builders and more com-
pact attribute representations. We include code for GPU decoding,
quantization, and our MILP in the supplemental material.

Acknowledgments

We thank Dominik Baumeister.

References

[AG03] ALLIEZ P., GOTSMAN C.: Recent advances in compression of
3D meshes. In Advances in Multiresolution for Geometric Modelling
(2003), Springer Berlin Heidelberg. 2

[AHMS96] ARKIN E. M., HELD M., MITCHELL J. S. B., SKIENA
S. S.: Hamiltonian triangulations for fast rendering. The Visual Com-
puter 12, 9 (1996), 429–444. 3

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 8 Kuth et al. / Towards Practical Meshlet Compression

[BBC∗21] BESTUZHEVA K., BESANÇON M., CHEN W.-K., CHMIELA
A., DONKIEWICZ T., VAN DOORNMALEN J., EIFLER L., GAUL O.,
GAMRATH G., GLEIXNER A., GOTTWALD L., GRACZYK C., HALBIG
K., HOEN A., HOJNY C., VAN DER HULST R., KOCH T., LÜBBECKE
M., MAHER S. J., MATTER F., MÜHMER E., MÜLLER B., PFETSCH
M. E., REHFELDT D., SCHLEIN S., SCHLÖSSER F., SERRANO F.,
SHINANO Y., SOFRANAC B., TURNER M., VIGERSKE S., WEGSCHEI-
DER F., WELLNER P., WENINGER D., WITZIG J.: The SCIP Opti-
mization Suite 8.0. Technical report, Optimization Online, December
2021. URL: http://www.optimization-online.org/DB_
HTML/2021/12/8728.html. 4

[Cal02] CALVER D.: Vertex and Pixel Shader Tips and Tricks. Wordware
Publishing, 2002, ch. Vertex Decompression in a Shader, pp. 172 – 187.
2

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A survey of efficient representations for
independent unit vectors. Journal of Computer Graphics Techniques
(JCGT) 3, 2 (April 2014). 2

[Coh19] COHEN N.: Several Graph problems and their Linear Program
formulations. working paper or preprint, Jan. 2019. URL: https:
//hal.inria.fr/inria-00504914. 3

[Dee95] DEERING M.: Geometry compression. SIGGRAPH ’95. 2

[EMX02] ESTKOWSKI R., MITCHELL J. S. B., XIANG X.: Optimal
decomposition of polygonal models into triangle strips. In Proceedings
of the Eighteenth Annual Symposium on Computational Geometry (New
York, NY, USA, 2002), SCG ’02, Association for Computing Machinery,
p. 254–263. 3

[FH11] FREY I. Z., HERZEG I.: Spherical skinning with dual quaternions
and qtangents. In ACM SIGGRAPH 2011 Talks (2011), SIGGRAPH ’11,
Association for Computing Machinery. 2

[GLLR11] GURUNG T., LUFFEL M., LINDSTROM P., ROSSIGNAC J.:
Lr: compact connectivity representation for triangle meshes. ACM Trans.
Graph. 30, 4 (2011). 2

[GS98] GUMHOLD S., STRASSER W.: Real time compression of triangle
mesh connectivity. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (1998), Association for
Computing Machinery. 2

[Gur23] GUROBI OPTIMIZATION, LLC: Gurobi Optimizer Reference
Manual, 2023. URL: https://www.gurobi.com. 3, 4

[JBG17] JAKOB J., BUCHENAU C., GUTHE M.: A parallel approach
to compression and decompression of triangle meshes using the GPU.
Comput. Graph. Forum 36, 5 (Aug. 2017). 2

[Kap23] KAPOULKINE A.: meshoptimizer, 2023. URL: https://
github.com/zeux/meshoptimizer. 6

[Kil08] KILGARD M.: Modern OpenGL usage: Using vertex buffer ob-
jects well. Tech. rep., NVIDIA Corporation, 2008. 2

[KISS15] KEINERT B., INNMANN M., SÄNGER M., STAMMINGER M.:
Spherical fibonacci mapping. ACM Trans. Graph. 34, 6 (Oct. 2015). 2

[KM21] KUTH B., MEYER Q.: Vertex-blend attribute compression. In
High-Performance Graphics - Symposium Papers (2021), Binder N.,
Ritschel T., (Eds.), The Eurographics Association. 2

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive into nanite
virtualized geometry. In ACM SIGGRAPH (2021). 2, 4

[Kub18] KUBISCH C.: Introduction to Turing Mesh Shaders,
09 2018. URL: https://developer.nvidia.com/blog/
introduction-turing-mesh-shaders/. 3

[KXW∗18] KWAN K. C., XU X., WAN L., WONG T., PANG W.: Pack-
ing vertex data into hardware-decompressible textures. IEEE Transac-
tions on Visualization and Computer Graphics 24, 5 (2018). 2

[LCL10] LEE J., CHOE S., LEE S.: Compression of 3D Mesh Geometry
and Vertex Attributes for Mobile Graphics. JCSE 4 (09 2010). 2

[Mey12] MEYER Q.: Real-Time Geometry Decompression on Graphics
Hardware. PhD thesis, 08 2012. 2

[Mic20] MICROSOFT: High-level shader language (HLSL), 08 2020.
URL: https://learn.microsoft.com/en-us/windows/
win32/direct3dhlsl/dx-graphics-hlsl. 4

[Mic23] MICROSOFT: DirectX-Specs, 2023. URL: https://
microsoft.github.io/DirectX-Specs/. 3

[MKSS12] MEYER Q., KEINERT B., SUSSNER G., STAMMINGER M.:
Data-parallel decompression of triangle mesh topology. Computer
Graphics Forum 31, 8 (2012), 2541–2553. 2, 4

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3d
mesh compression: Survey, comparisons, and emerging trends. ACM
Comput. Surv. 47, 3 (2015). 2

[MMT23] MAGGIORDOMO A., MORETON H., TARINI M.: Micro-mesh
construction. ACM Trans. Graph. 42, 4 (2023). 2

[MSGS11] MEYER Q., SUSSNER G., GREINER G., STAMMINGER M.:
Adaptive level-of-precision for GPU-rendering. In Vision, Modeling, and
Visualization (2011) (2011), The Eurographics Association. 2

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAMMINGER M.,
GREINER G.: On floating-point normal vectors. In Proceedings of the
21st Eurographics Conference on Rendering (2010), EGSR’10, Euro-
graphics Association. 2

[MSS24] MLAKAR D., STEINBERGER M., SCHMALSTIEG D.: End-to-
end compressed meshlet rendering. Computer Graphics Forum 43, 1
(2024). 2, 7

[Nvi22] NVIDIA: Displacement-MicroMap-Toolkit, 2022.
URL: https://github.com/NVIDIAGameWorks/
Displacement-MicroMap-Toolkit. 2

[PBCK05] PURNOMO B., BILODEAU J., COHEN J. D., KUMAR S.:
Hardware-compatible vertex compression using quantization and sim-
plification. HWWS ’05, Association for Computing Machinery. 2

[PKJ05] PENG J., KIM C.-S., JAY KUO C.-C.: Technologies for 3D
mesh compression: A survey. Journal of Visual Communication and
Image Representation 16, 6 (2005). 2

[PKM22] PETERS C., KUTH B., MEYER Q.: Permutation coding for
vertex-blend attribute compression. Proc. ACM Comput. Graph. Inter-
act. Tech. 5, 1 (may 2022). 2

[PS06] PORCU M. B., SCATENI R.: Partitioning Meshes into Strips us-
ing the Enhanced Tunnelling Algorithm (ETA). In VRIPHYS (2006),
pp. 61–70. 6

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity compression for tri-
angle meshes. IEEE transactions on visualization and computer graph-
ics 5, 1 (1999), 47–61. 2

[SPM∗12] SCHÄFER H., PRUS M., MEYER Q., SÜSSMUTH J., STAM-
MINGER M.: Multiresolution attributes for tessellated meshes. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games (2012), Association for Computing Machinery. 2

[Tut62] TUTTE W. T.: A census of planar triangulations. Canadian Jour-
nal of Mathematics 14 (1962), 21–38. 2

[VdFG99] VELHO L., DE FIGUEIREDO L. H., GOMES J.: Hierarchical
generalized triangle strips. The Visual Computer 15, 1 (1999), 21–35. 2

[VK07] VANĚČEK P., KOLINGEROVÁ I.: Comparison of triangle strips
algorithms. Computers and Graphics 31, 1 (2007), 100–118. 3

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://hal.inria.fr/inria-00504914
https://hal.inria.fr/inria-00504914
https://www.gurobi.com
https://github.com/zeux/meshoptimizer
https://github.com/zeux/meshoptimizer
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://microsoft.github.io/DirectX-Specs/
https://microsoft.github.io/DirectX-Specs/
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit

