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Figure 1: Enhanced alluvial diagram (A) complemented with component (B) to compare a selected partition with all other partitions
regarding splits and merges, and components (C) to provide projected similarities of all partitions and sets, respectively. The figure depicts
different clustering results obtained by varying the number of clusters in k-means. Partition 5 is selected and determines the coloring.

Abstract
Data items arranged into groups form partitions, and across time or through variation of grouping criteria, those partitions
may change. While alluvial diagrams, showing the flow of data items as streams, visually capture such changes in partition
sequences, their focus on showing similarities between neighboring partitions limits their application. Our paper introduces
novel augmentations of alluvial diagrams with interactive visualizations and linked analysis, explicitly targeting the comparison
of non-neighboring partitions without sacrificing the sequential nature of the data. Juxtaposed visualizations with the alluvial
diagram’s timeline provide a comparison of a selected partition to all other partitions, while additional scatterplot views
provide an overview of the partition and set similarities. Connecting the set representations across views, we propose a coloring
approach of sets and interactive selection mechanisms. The usefulness and generalizability of the approach are demonstrated
through examples with application in supervised and unsupervised machine learning, as well as work collaboration analysis.
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1. Introduction

In this paper, we analyze sequences of partitions of data items in
different applications. In a partition, all considered data items—
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called population in set theory—are divided into sets. More pre-
cisely, it is a division of the items into non-empty sets, ensuring
that each item of the population is precisely included in one of
these sets. Clustering algorithms, such as k-means, produce par-
titions automatically from characteristics of the data items, trying
to group similar items in each set of the partition. However, usu-
ally, various valid partitions exist. For instance, in the context of
k-means, adjusting the hyperparameter k—the desired number of
clusters—produces partitions on different levels of granularity. Or-
ganizing these partitions in ascending order of k forms a specific
sequence, providing insight into multiple levels of valid groupings
of the data items. Alternatively, sequences of partitions might stem
from dividing the population at different points in time, according
to a given data attribute or by clustering.

To visualize sequences of partitions, alluvial diagrams can be
used. Bars denote sets within a partition, and edges connect the bars
to related sets in the neighboring partitions. The height of the bars
and edges reflects set size, contributing to the metaphor of branch-
ing and merging streams carrying different quantities of items. Fig-
ure 2 provides an example showing the evolving partition of seven
data items across three steps. Alluvial diagrams clearly reveal pat-
terns in the sequence of partitions and thereby support a 111× . . .×111
comparison of the partitions. However, key limitations revolve
around the diagram’s focus on neighboring partitions, which can
overshadow relationships between non-neighboring ones. For in-
stance, in Figure 2, despite the small size of the dataset, it takes
quite some effort to find, for the green set in the first partition,
the most similar one in the third partition (solution: there are two,
{2,6} and {4,0}). Supplementary visualization techniques may be
required to draw a more comprehensive picture of similarities of
partitions and contained sets across the whole sequence, also tak-
ing perspectives of 111×NNN and NNN ×NNN comparisons.

Recognizing these limitations, in this work, we enhance allu-
vial diagrams by infusing interactive selections and linked views
as shown in Figure 1, thereby broadening their capacity to sup-
port 111× . . .× 111, 111×NNN, and NNN ×NNN comparison modes. First, we
optimize the alluvial diagram, at the center in Figure 1(A), by a
similarity-based coloring approach, which also supports selecting a
partition of interest to determine the colors of the streams. Second,
shown in Figure 1(B), a bar chart, juxtaposed below, provides fur-
ther information on splits and merges, comparing the selected par-
titions with all other partitions. Third, two scatterplots, displayed
in Figure 1(C), explicitly project similarities of partitions and sets
to a two-dimensional space, still hinting at their sequential posi-
tion. Since our approach is not specific to certain applications, we
demonstrate its generalizability and value through three application
examples from different domains with varying data characteristics.
Hence, our main contributions are to introduce and apply a gener-
alizable, interactive, multi-view approach for extending alluvial di-
agrams towards more comprehensive support for comparative anal-
ysis of data partitions.

2. Related Work

The term alluvial diagram was coined in 2010 [RB10], but the
concepts it builds on are older. Such diagrams link to Sankey dia-
grams—visualizations of branching and merging streams of quanti-

Figure 2: Alluvial diagram representing a sequence of partitions,
here, the remainder of integers 0 to 6 divided by 2, 3, and 4.

ties encoded in the width of streams—, which date back to the 19th
century [Min69, KS98]. However, while not necessary in Sankey
diagrams, alluvial diagrams organize the different data partitions in
sequential states (typically drawn from left to right as columns).

Main Approaches and Applications: The original alluvial dia-
grams were suggested to visualize evolving clusters in network
structures [RB10] and have been extended for this use case in dif-
ferent directions [RTJ∗11, VBAW14]. Moreover, similarities to al-
luvial diagrams can be found in many stream-like, linearly arranged
visualizations including, but not limited to ThemeRiver [HHWN02]
and other topic stream visualizations [LYW∗16, BMBW15,
CLT∗11, XWW∗13, CLWW14], Parallel Sets [KBH06] and other
sequential set visualizations [AB20], different types of aggregated
event visualizations [PW14, KABB23], as well as evolving hier-
archies [BNRB21, VBW16, TA08, CLWW14]. Application areas
span from scientific and social network analysis [RB10, VBAW14,
RTJ∗11,AB20] to supporting topic extraction [CLT∗11,XWW∗13,
CLWW14] and machine learning [AB20]. Further, storyline repre-
sentations [TM12,THM15,OM10,TRL∗19,LWW∗13] are related,
which typically visualize the groupings of characters in stories, but
can be applied also, for instance, to software evolution [OM10].
While a review of all such visualizations is beyond the scope of
this paper, we discuss in the following those works and aspects that
specifically link to our suggested extensions of alluvial diagrams.

Alluvial Diagram Layout: Leveraging the metaphor of streams
and rivers, alluvial diagrams usually connect the linearly arranged
groups in smoothly curved bands or ribbons. Some approaches
vary the width of the streams according to quantification of con-
tributions [HHWN02, BMBW15], however, our focus is on qual-
itative changes and approaches where items have constant width,
but streams branch and merge. If elements are not present in all
sequential states, they can be indicated as in- and outflows from
the top or bottom of the diagram [AB20, BMBW15]. Although we
use a constant set of items, such in- and outflows would be a fea-
sible extension. Vertically, the groups can be ordered by a char-
acteristic property (e.g., size [RB10], overlap properties [AB20]).
Alternatively, they can be arranged to avoid clutter caused by edge
crossings, for instance, based on the Sugiyama layout for hierar-
chically drawn directed acyclic graphs [VBAW14]. Our solution
heuristically computes shortest paths applying set-similarity-based
distances, implicitly also avoiding edge crossings.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Poddar & J.-T. Sohns & F. Beck / Not Just Alluvial: Towards a More Comprehensive Visual Analysis of Data Partition Sequences 3 of 8

Enriched Visual Encodings: Additional visual encodings may
enrich alluvial and stream diagrams in different regards. Many ap-
proaches choose colors based on a set or item property [VBAW14,
BZSD21, CLWW14, RTJ∗11, TA08, KBH06]. However, the avail-
ability of such properties is application-specific. In a more gen-
eralizable way, colors can be assigned to sets based on cluster-
ing [VBAW14, RB10, ELAS21]. Inspired by these, our solution
maps color by set similarity, but more directly using set-based
similarities for a projection to the color space. We further borrow
the idea of interactively applying color to streams across the se-
quence when selecting a specific partition [KBH06]. In some appli-
cations, it is important to place labels inside the sets, for instance,
for topic streams and related visualizations [LYW∗16, BMBW15].
Storyline visualization might annotate each stream with a la-
bel [OM10, THM15]. If the alluvial diagrams show groups within
networks, providing network context is relevant, drawn as links
within and between groups or items [VBAW14, ELAS21], or vi-
sualized as adjacency matrices in the columns [VBW16]. As we
study the general case of unlabeled and unconnected items, we do
not integrate any of such labeling or network-based solutions.

Multi-view Approaches: Other views might complement alluvial
and stream diagrams to contribute additional perspectives beyond
details-on-demand views or selection panels. For instance, Wu et
al. [WZW∗16] suggest additional cluster and map views along
with an alluvial diagram that summarizes urban mobility data.
For game analytics, Chen et al. [CLK∗17] visualize player status
transitions in alluvial diagrams accompanied by different statisti-
cal diagrams. Visually summarizing sets of call graphs, Kesavan
et al. [KBB∗23] link their Sankey diagrams with scatterplot, dis-
tribution, and projection views. While this demonstrates the po-
tential of enrichment through additional views, these solutions are
application-specific. Our approach makes use of additional visual-
izations for complementing visual comparison of non-neighboring
partitions and sets—we are not aware of another general approach
with similar extensions to alluvial diagrams.

3. Visualization Design

In our proposed approach, the alluvial diagram is linked with a
111×NNN and two NNN ×NNN comparison views. Selections made in the
alluvial diagram extend their influence to the associated views.
We implemented the proposed approach as a multi-view system in
Python using the Bokeh library [Bok18]. The source code [PSB24]
is available under an open license, and a video demonstration is
included as supplementary material.

3.1. Data Model

Our approach visualizes a sequence of partitions of data items.
Formally, let D = {d1,d2, . . . ,dn} denote a population of data
items. Then, a partition sequence of D is formalized as P =
(P1,P2, . . . ,PN) where each Pi = {Si,1,Si,2, . . . ,Si,ki} is a parti-
tion of D. This means sets Si, j in each partition Pi are nonempty
(∅ ≠ Si, j ∈ Pi) and disjunct from each other (Si, j,Si, j′ ∈ Pi, j ̸= j′ ⇒
Si, j ∩Si, j′ = ∅), as well as all sets in Pi together represent the whole
population (

⋃
Si, j∈Pi

Si, j = D). Hence, n refers to the number of data
items and N to the length of the sequence. Additionally, ki denotes

the number of sets in the ith partition and can be different for each
partition in the sequence. Partitions Pi might be assigned labels li
(or li = i). Data items or sets do not carry labels.

3.2. Alluvial Diagram

The alluvial diagram serves as the core of our approach and pro-
vides the basis for a sequential 111× . . .×111 comparison of partitions
and sets. The diagram is made of two visual elements. First, rect-
angular bars indicate sets Si, j, and second, edges each connect two
sets in neighboring partitions that have common data items. The
height of the bars indicates the cardinality of the set |Si, j|. Inherited
from the bars, the strength (height) of the edges denotes the cardi-
nality of the intersection of the two sets it connects (|Si, j ∩Si+1, j′ |).
Whereas the alluvial diagrams visualize changes between neigh-
boring partitions, they do not explicitly support comparisons of
non-neighboring partitions. Addressing this already partly within
the diagram, we extend it and offer two perspectives.

Overview Perspective: Providing an overview is the default per-
spective of an alluvial diagram—trying to show all relevant infor-
mation in a single static view. Colors can be used to improve the
viewers’ ability to follow the set changes and better compare sets
from different partitions. Moreover, the vertical ordering of sets and
edges is generally relevant to give the sets a meaningful structure
and avoid unnecessary edge crossings. As illustrated in Figure 3,
we suggest specific solutions to both aspects that prepare and align
with the comparison of non-neighboring partitions that the further
views support. Figure 6 shows an example of the resulting alluvial
diagram in the overview perspective.

Assigning colors to each set is important, as color can serve as a
visual cue when interpreting an alluvial diagram. Appropriate color
allocation can highlight stable patterns or transitions effectively.
Moreover, non-neighboring sets can be compared if colors relate
to their similarity. Hence, sets with similar members should carry
similar colors, which we implement through the following heuris-
tic approach, exemplified in Figure 3 (top). Based on the Jaccard
similarity coefficient, we define a distance metric between sets

d(Sa,Sb) = 1− Sa ∩Sb
Sa ∪Sb

.

By using the distance matrix for all pairs of sets Si, j as input, we
run multi-dimensional scaling (MDS) [Tor52] to compute a two-
dimensional embedding. As far as possible, the embedding places
similar sets nearby, and in turn, dissimilar sets farther apart. The
embedding space is then mapped to a two-dimensional perception-
based CIELAB color space (with constant luminance L). A conse-
quence of this approach is that sets with some common members
with most other sets tend to lie in the center of the color space,
being assigned low saturation colors (gray or close to it). This is
a desirable side effect, giving those in a sense central sets always
similar color shades, for instance, some larger sets in Figure 6.

The vertical ordering of the sets directly impacts the number of
edge crossings, which in turn affects the readability of the allu-
vial diagram. To address this issue, we determine a sequence of
sets based on a heuristic solution [Chr22] of the traveling salesman
problem on the two-dimensional embedding of the sets, which is
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Figure 3: Illustration of the set-similarity-based algorithm for
color assignment and vertical ordering in the alluvial diagram.

computed for color assignment. This places similar sets closely and
thereby helps reduce edge-crossings. Moreover, within the sets, the
edges are subsequently ordered vertically to reduce the number of
edge crossings further. Between every pair of connected neighbor-
ing partitions, we first draw the edges based on the vertical order of
sets in the left partition. For edges originating from the same set in
the left partition, the edges are drawn based on the vertical order of
the sets in the right partition. Figure 3 (bottom) illustrates that this
set and edge ordering makes the alluvial diagram less cluttered.

Selected Partition Perspective: While, through colors, the
overview perspective already allows identifying similar sets in non-
neighboring partitions, it is still difficult to compare partly similar
sets and quantify their difference. To address this, users can select a
specific partition (column) or sets (bars), and see the changes across
the sequence from the perspective of the selected partition or sets.

A click on the partition’s label selects it. While the set col-
ors in the selected partition Ps remain unchanged, the ones of the
non-selected partitions adapt to reflect the selection. To this end,
edges are subdivided into differently colored sub-edges based on
the membership of corresponding data items in the selected parti-
tion. Sets from the selected partition Ss, j keep their appearance, but
sets from non-selected partitions become transparent. When sub-
edges pass through a set, we group them by color and get a part-
to-whole representation of set membership regarding the selected
partition. By this assignment of colors based on the selected parti-
tion, we allow tracing where the item members of sets Ss, j move.

Within this perspective, we added support for filtering based on
one or more sets from the same partition to reduce visual complex-
ity and focus on sets of interest. Filtering is triggered by clicking on
the bars of the sets and draws only the sub-edges associated with
them (as shown in Figure 8). Note that we do not support selection
of multiple sets from different partitions to avoid complications,
like whether to consider union or intersection between overlapping
sets and additional issues concerning the linking of views.

With the division of edges into sub-edges, an additional algo-
rithm is required to avoid sub-edge crossings. As we group the sub-
edges based on color (dependent on the selected partition Ps), we
cannot keep the edge layout of the overview perspective and just
subdivide them into different colors. The sub-edges are computed,
and their order needs to be recomputed every time a new partition
(or sets within a partition) is selected. We append a sorting key to
the previously discussed edge sorting in the overview perspective
to do this. For sub-edge sorting, we first place edges based on the
vertical order of the selected partition, followed by the order of the
left partition, and finally based on the order of the right partition.

3.3. 111×NNN Comparison View

To provide more support for 111 × NNN comparisons beyond assign-
ing colors and filtering, we add a view to summarize the set mem-
bership change across the sequence from the perspective of one
specific partition. It aligns with the sequential axis of the alluvial
diagram and is placed below as shown in Figure 1(B).

We define a merge measure δ
+ and a split measure δ

−. From the
perspective of a selected partition Ps, they indicate to what extent
sets from another partition Px can be considered as merges or splits
of sets in Ps.

δ
+(Ps,Px) =

Ps

∑
Ss,i

Px

∑
Sx, j

|Sx, j|− |Ss,i ∩Sx, j|
|Sx, j|

·
|Ss,i ∩Sx, j|

n

δ
−(Ps,Px) =

Ps

∑
Ss,i

((
1−

Px

∑
Sx, j

(
|Sx, j ∩Ss,i|

|Ss,i|

)2
)
·
|Ss,i|

n

)
Both measures are asymmetric and produce values in the range of
[0,1), with higher values indicating higher degrees of merges or
splits, respectively. The merge measure δ

+ is based on the weighted
sum of overlap fraction for pairs of sets with non-empty intersec-
tion |Ss,i∩Sx, j|> 0. The split measure δ

− is based on the weighted
sum of (a slightly modified) Gini Coefficient [Gin12]. It considers,
for the splits of a set Ss,i, not just into how many splits exist for it
in Px, but rather how the splits are distributed.

The two measures are visualized as a butterfly bar chart, with the
merge measure δ

+ pointing up and the split measure δ
− pointing

down. This also allows reading the sum of the two, giving a sense
of overall dissimilarity with the selected partition. Figure 4 illus-
trates the interpretation of δ

+ and δ
− for an artificial dataset. The

butterfly bar chart clearly hints at sets from the selected partition
P3 merging in P1, P2, and P6, and splitting in P4, P5, and P6. For
merge events, δ

+ is higher when larger sets merge in P1 ( ∪ ),
compared to when a large set merges with a smaller set in P2 ( ∪
). For split events, the middle set ( ) splitting into three subsets in
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Figure 4: Butterfly bars indicate the merge measure δ
+ (upwards)

and split measure δ
− (downwards) in relation to the selected par-

tition P3 of an artificial example.

P4 has a slightly lower value for δ
− than splitting into two subsets

in P5, reflecting the consideration of the cardinality of the split sets.

Comparisons can also be made on a filtered version of the se-
lected partition to focus on specific subsets. This filtering, trig-
gered by interaction in the alluvial diagram, temporarily removes
the filtered-out data items from all partitions and computes the
measures on the filtered population. Finally, the 111×NNN Compari-
son View shows nothing if the overview perspective of the alluvial
diagram is active.

3.4. NNN ×NNN Partition Comparison View

To go beyond the perspective of a selected partition, but to provide a
holistic view of partition similarities, it is necessary to compare all
partitions simultaneously. The NNN ×NNN Partition Comparison View
shown in Figure 1(C, top) was designed to not only identify clusters
of similar partitions, but also to reveal patterns in the change of par-
tition similarity across the sequence. To achieve this, we compute
the pairwise dissimilarity distance between each pair of partitions
using the adjusted rand index (ARI) [HA85].

d(Px,Py) = 1− ARI(Px,Py)+1
2

This distance between the partitions lies in the range of [0,1). Next,
similar to our solution of the coloring of sets, using the distance
matrix for all pairs of partitions, we run multi-dimensional scaling
(MDS) [Tor52] to compute a two-dimensional embedding. In this
embedding, similar partitions are placed nearby, and dissimilar par-
titions are placed farther apart. This embedding is visualized as a
scatterplot with each point (partition Pi) labeled by li. Subsequent
partitions are connected by an edge for the perception of sequence.
For instance, in Figure 1(C; top), partitions 3, 4, and 5 are further
apart than the partitions 5, 6, and 7, which form a dense cluster.

3.5. NNN ×NNN Set Comparison View

Finally, in the NNN ×NNN Set Comparison View shown in Figure 1(C,
bottom), the focus is on a holistic comparison of sets. This view

builds on an MDS projection of sets for color assignment in the al-
luvial diagram and shows further details. Similar to the NNN×NNN Par-
tition Comparison View, it visualizes this 2D projection with sets
represented as points in a scatterplot. However, labels are not avail-
able and sequential paths cannot be drawn due to changing sets. In-
stead, a circular sector centered around each point visually encodes
the partition index i through its angle. The sector and point are col-
ored corresponding to the set, with the sector’s opacity denoting
selection status (selected: ; not selected: ). Additionally, on fil-
tering due to set selection, the glyphs corresponding to sets with
none of its items in the filtered population are temporarily hidden.

4. Application Examples

Next, we investigate how the suggested approach could be used
to find insights in real-world data. We selected three examples to
cover different domains and data characteristics. They include ap-
plications in supervised and unsupervised machine learning, as well
as social network analysis. Partition sequences are derived from the
variation of a parameter or stem from temporal changes.

4.1. Projection Ambiguity of High-Dimensional Clusters

Dimensionality reduction is an established approach to simplify
high-dimensional data with N ≫ 3 dimensions to a more assess-
able dimensionality n < N. Due to the necessarily lossy reduction,
it is unclear how the procedure preserves the original data. Com-
paring the high-dimensional data to the reduced n-dimensional data
through clustering, a dimension-independent technique, allows us
to assess the impact of dimensionality reduction. We analyze a
partition sequence where each partition corresponds to a cluster-
ing result, and the dimensionality n of the projected data serves as
the label of the partition. As an example, we consider the MNIST
dataset [LeC98] with N = 784 dimensions and apply principal
component analysis (PCA) to reduce it to different n-dimensional
spaces (n = 2,4,14,24, . . . ,784). The MNIST dataset consists of
images representing 10 handwritten digits (classes) and hence is
expected to have inherent clusters. Rather than clustering into 10
clusters, we utilize k-means clustering with k = 25 clusters. This
approach aims to form smaller clusters, trying to avoid a large clus-
ter containing two classes of digits. To compare how the class labels
of the dataset are distributed in the different clustering partitions,
we add the ground-truth labeling as a first partition.

In the alluvial diagram (Figure 5 top), we observe that k-means
clustering is significantly affected by outliers, especially for n >
400. Also, due to the massive information loss at low dimensions,
we observe substantial changes in neighboring partitions, particu-
larly when shifting from 4 to 2 dimensions. Additionally, we notice
that the red stream representing one class does not merge much
with other classes across all dimensions, suggesting it is the most
separable class when using PCA projections. Conversely, the up-
permost two classes are assigned similar colors, although they are
disjoint sets. The similarity in color indicates that they are often
grouped into the same cluster and may have a higher similarity. The
merge measure regarding the original classes in the 111×NNN compar-
ison view (Figure 5 bottom) is decreasing almost monotonically
from 784 to 24 dimensions, then increasing again—class separa-
bility might be highest in the 24-dimensional PCA projection.

© 2024 The Authors.
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Figure 5: MNIST data clustered at various PCA-projected dimen-
sions, with the ground truth as the first partition being selected.

4.2. Contact Cliques Change over Time

As alluvial diagrams were initially introduced to visualize how so-
cial network cliques change over time, we demonstrate our tool on
contact cliques at a workplace [GB18]. At the French Health Obser-
vatory in 2015, RFID chips registered over two weeks whether two
persons had a face-to-face contact longer than 20 seconds. To focus
on prevalent patterns, we aggregated the resulting contact network
over daily time windows via spectral clustering on the adjacency
matrix with 16 clusters.

In the alluvial diagram (Figure 6), some large clusters stand
out, particularly on the first day, the first Friday, and the last day
(mon_1, f ri_1, and f ri_2, respectively). These clusters could in-
dicate co-located events. Additionally, we observed that data items
belonging to the red-colored clusters rarely come into close contact
with those in the green clusters, except on the three days mentioned.
This observation was confirmed through set-based filtering. Over-
all, the vertical ordering and coloring of the sets helped indicate
communities among the participants. Furthermore, in the NNN ×NNN
Partition Comparison View (Figure 7), a clear margin can be drawn
between mon_1- f ri_1 and mon_2- f ri_2, indicating that the contact
patterns of the first week were significantly different from those in
the second week. Further, the Wednesdays, Thursdays, and Fridays
each are arranged close to their counterparts; hence, there are re-
curring similarities between these days in the two weeks.

4.3. Multi-label Classifier across Training Epochs

As our final example, we examine the changes in prediction dur-
ing training of a multi-label classifier. Agarwal and Beck [AB20]
also analyzed this dataset using a stream-based visualization. Their
method is tailored to labeled sets (i.e., which allows tracing of spe-
cific sets over time), while our approach is limited to non-labeled
sets. Nevertheless, we aim to determine if additional insights can
be obtained from the same dataset through our approach.

Similar to the original analysis [AB20], we focus on the last
training epochs, 22 to 30, where the classifier’s accuracy remained

Figure 6: Contact clusters in the French Health Observatory data
shown in the overview perspective.

Figure 7: Similarities of workday contacts in the French Health
Observatory data shown in the NNN ×NNN Partition Comparison View.

relatively stable, fluctuating between 68% and 70%. From the allu-
vial diagram in Figure 8, we observed that, for the larger selected
sets in Epoch 27, there are substantial changes across the epochs in
both directions, consistent with the original findings [AB20]. Ad-
ditionally, the NNN ×NNN Set Comparison View (Figure 9 left) with a
few sets selected from the last epoch, shows interesting patterns (

) that indicate that many sets toggle back and forth between
memberships. These sets represent data items for which the clas-
sifier frequently changes the assigned labels, indicating areas that
may warrant further investigation. Lastly, to verify if the toggling
behavior in sets also applies to partitions, we examine the NNN ×NNN
Partition Comparison View (Figure 9 right), which demonstrates
that the partitions do not exhibit this behavior.

5. Discussion and Future Work

The three application examples illustrate that our approach helps
uncover valuable insights about the data partition sequence, but also
hint at limitations. In this section, we critically reflect how the solu-
tion meets its intended purpose and identify areas for improvement.

Alluvial Diagram: The alluvial diagram itself was central to all
three application examples. Enhancements such as color allocation
of sets and partition/set selection helped detect insights, particu-
larly in non-neighboring partitions. The vertical ordering of sets,
edges, and sub-edges facilitated tracking streams across the dia-
gram. However, the MDS algorithm used for color allocation does
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Figure 8: Multi-label classifier data depicted as alluvial diagram
with several larger sets in Epoch 27 selected.

Figure 9: Multi-label classifier data shown in the NNN×NNN Set Com-
parison View (left) with selected sets in the last epoch and NNN ×NNN
Partition Comparison View (right).

not account for set cardinality, leading to smaller sets having equal
weight as larger ones as seen in our first application example (Fig-
ure 5). Additionally, this coloring approach can cause dissimilar
sets to appear similar due to information loss in the projection.
While the former issue is realistic to address in an enhanced al-
gorithm, the latter one is an inherent problem of projection-based
approaches. Moreover, in some cases, it might be desirable to se-
lect sets across different partitions for comparison, but this would
require a complex interaction mechanism and visual encoding to
consider multiple intersections, unions, or a combination of both.

Comparison Views: Each of the augmenting comparison views
helped reveal, in different application examples, patterns that might
have been overlooked with the alluvial diagram alone. Each view
offers a distinct perspective on the data, but their usefulness de-
pends on the data. Enhancements could include improved interac-
tive linking, for instance, enabling selections from the scatterplots,
which would be particularly beneficial for selecting sets exhibiting
interesting patterns in the NNN ×NNN Set Comparison View.

Applicability: Our approach visualizes any data expressed as a
sequence of partitions. However, there are related dataset and spe-
cial dataset characteristics that would call for modifications. For in-
stance, to handle named sets, we could vertically align sets with the
same name. Further adjustments are necessary to address scenar-

ios involving noise points in clustering results or points lacking set
membership in some partitions. This entails changes in visual en-
codings and similarity calculations between sets or partitions. Ad-
ditionally, adjustments are needed for fuzzy partitions or partitions
that change continuously, rather than in discrete steps. In addition,
there is potential for improvement in item-level tasks, for example,
implementing highlighting or filtering based on the selection of one
or more items.

Visual Scalability: While the approach is decoupled from the
number of data items, its visual scalability [RPA∗24] can be af-
fected by the number of sets (across all partitions) and the num-
ber of partitions in the sequence. The application examples dis-
cussed involve up to a few hundred sets (539 in the third exam-
ple). However, as the number of sets increases to the order of thou-
sands, views that visualize each set individually, particularly the
NNN ×NNN Set Comparison View, will become ineffective. Addition-
ally, frequent and numerous changes in data partitions can lead to
numerous edge crossings in the alluvial diagram, making it harder
to distinguish the streams. In such cases, the NNN ×NNN Set Compar-
ison View still helps identify some patterns. Moreover, increasing
the number of partitions to more than 30 would necessitate sub-
stantial modifications to the alluvial diagram’s visual encoding and
interactivity. However, since the 111×NNN Comparison View and the
NNN ×NNN Partition Comparison View aggregate the data, they remain
more usable compared to the other two views in such scenarios.

6. Conclusion

With the idea of going beyond tracing partitions’ changes from
one step to the next, we have extended alluvial diagrams through
improvements in the diagram itself as well as linked views. The
former includes a similarity-based color encoding of sets and in-
teractive selections, already incrementally improving the tracing of
changes (111× . . .×111) and the comparison of non-neighboring sets
(111×NNN). The latter provide specific perspectives on visual compar-
isons that contrast a selected partition to all others (111×NNN) or all
partitions and their contained sets to each other (NNN ×NNN). Our ap-
plication examples not only demonstrate a broad applicability of
the technique, but also give an impression of how the different ex-
tensions work together to provide a more comprehensive analysis
of data partition sequences.
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