
Vision, Modeling, and Visualization (2024)
L. Linsen and J. Thies (Eds.)

A Framework for Axis Breaks in Charts

Rasmus Thorsøe1 , Peter Locher1 , Harith Rathish1 , and Hans-Jörg Schulz1

1Department of Computer Science, Aarhus University, Denmark

Figure 1: A parallel coordinates plot without axis breaks (left) and with axis breaks as computed by our framework (right). The difference
shows how axis breaks help to better distribute the highly skewed data across the axes, so that more details and nuances become visible.
Shown dataset: Properties of chemical elements [Wea22].

Abstract
Axis breaks are used in charts, for example, to reduce whitespace, to accommodate outliers, or to show data at different scales.
Proposed in the 1980s, axis breaks have not gotten much attention since then in terms of what characterizes “good” breaks,
how many of them to introduce, and where to best place them? To answer these questions, we propose a five-step framework that
specifies (1) the number of breaks, (2) their position, (3) the scaling of the resulting subaxes, (4) the “niceness” of the breaks,
and (5) the formatting of the breaks. To apply this framework, we introduce a new metric, called skew, to quantify how unevenly
distributed points are along an axis. Skew is then used as a cost function to formulate the search for optimal axis breaks as a
clustering problem, which we solve by applying a dynamic k-means algorithm. We apply our framework specifically to Parallel
Coordinate Plots and compare our algorithmic solution to established methods like percentile breaks and Jenks natural breaks.
An interactive testbed to try our framework as well as its source code are made freely available.

CCS Concepts
• Human-centered computing → Visualization techniques; Information visualization;

1. Introduction

The axes of a chart play a hugely important role as they enable
the reader to read off absolute values and to gauge relative dis-
tances with respect to data items’ positions. It is hence no sur-
prise that for many aspects of axis design, sophisticated algorithms
have been proposed in the past – including, but not limited to
the scaling [WF02] and rescaling [FCW21] of axes, their label-
ing [TLH11], and their ordering [LHZ16].

One aspect of axis design that is not as common are axis breaks.
Axis breaks are deliberately introduced subdivisions of an axis into
two or more subaxes for various reasons. For example, when visu-
alizing highly skewed data, data points can tend to group so closely
together that they are indistinguishable to the naked eye (see Fig. 1
left). Introducing axis breaks can “un-skew” the data and provide a
view into the otherwise very condensed regions of the data space.

Other reasons can include the accommodation of outliers within
the same view, the reduction of unused whitespace, the display of
data at different scales, or the handling of data at different orders of
magnitude (cf. Fig. 2).

While having been formally introduced by Cleveland as early as
1984 [Cle84], to this date only a few specialized approaches exist
that introduce axis breaks automatically according to given con-
straints, but otherwise without user input or intervention. Among
them, notable mentions are Hao et al.’s variable binning approach
for scatter plots [HDS∗10] and Andrienko & Andrienko’s quartile-
based axis normalization for parallel coordinate plots [AA01].
Apart from these, the literature on this topic is scarce. Isenberg
et al. conducted a user study on dual-scale charts [IBDF11] that
compares line charts in which the horizontal axes are distorted
and broken in various ways (see Fig. 2 middle). For bar charts,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vmv.20241198 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0002-6787-8996
https://orcid.org/0009-0000-3419-7882
https://orcid.org/0000-0002-1452-1814
https://orcid.org/0000-0001-9974-535X
https://doi.org/10.2312/vmv.20241198

2 of 8 R. Thorsøe et al. / A Framework for Axis Breaks in Charts

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

10.0 10.5

Figure 2: Axis breaks used in three different charts for three different reasons. Left: An axis break in a scatterplot that removes unused
whitespace, but keeps the scaling of both subaxes the same. (Recreated from [Cle84] using Vega-Lite). Middle: A broken horizontal axis
of a line chart to use different scaling on each resulting subaxes. (Reproduced with permission from [IBDF11], ©IEEE 2011). Right: A
perspective bar chart with two axis breaks along the vertical axis to accommodate values at different orders of magnitude. (Reproduced with
permission from [MESW21], ©MacTavish et al. 2021)

which are widely known not to lend themselves to axis breaks, in-
ventive representations like MacTavish et al.’s Stepped Perspective
Charts [MESW21] still find ways to make axis breaks work (see
Fig. 2 right). Yet none of these approaches give any heuristic or
algorithm to automatically determine the breaks.

We propose a framework for automatically introducing breaks in
axes. Through its general nature, our framework is able to cater to
a variety of different scenarios and constraints for axis breaks:

• It can observe a predetermined, manually provided number of
breaks or automatically determine an optimal number itself.

• It can scale the resulting subaxes to the same size or make their
size proportional to the number of contained data items/values.

• It can accommodate different styles of breaking the data range
(tights vs. nice) and its visual representation (concatenated vs.
broken).

Our framework is introduced in the following section and spe-
cific improvements to its steps are discussed in the sections there-
after. We exemplify our framework for different axis-based chart
types throughout the paper and specifically introduce, evaluate, and
discuss axis breaks for Parallel Coordinate Plots.

2. A General Framework for Axis Breaks

To capture the whole process of generating axis breaks, we propose
a five-step framework in which each step deals with one specific
consideration. Each of these steps has its own set of currently used
methods that can be combined in various ways to achieve different
outcomes. For the first two steps (in combination) as well as for the
fourth step, we will furthermore propose improved algorithms in
Sections 3 and 4, respectively. In case of multiple axes, the frame-
work is applied to each axis individually.

Step 1: Determine Break Number. This step determines the
number of subaxes k into which an axis will be broken by intro-
ducing k− 1 axis breaks. Current methods either rely on a manu-
ally adjusted or fixed choice for k. An example of the former are
Hao et al’s variable binned scatterplots [HDS∗10] that use rather
high numbers of k (between 6 and 10) to create a fine-grained bin

structure. An example for the latter is Andrienko & Andrienko’s
quartile-based normalization using fixed k = 4 to yield one subaxis
per quartile [AA01]. This approach is exemplified together with a
quintile-based normalization in Figures 3(c+d).

Step 2: Determine Break Positions. Given the number k of sub-
axes, this step determines for each data point which subaxis it be-
longs to. This is done by assigning the dataset X to k disjoint seg-
ments C1, ...,Ck ∈ C each representing a section of the broken axis
– i.e., a subaxis. A straightforward approach is to use, for example,
k-means for finding the k − 1 largest gaps among the data values
and break the axis there (see Figure 3(e)). Other approaches are
those used for classification in thematic mapping, such as the Jenks
/ Fisher Natural Breaks method [Jen77, Fis58]. Interactive, user-
driven classification as suggested by Andrienko et al. [AAS01] is
also possible – effectively constituting a manual positioning of the
breaks that is informed by the underlying data distribution. Another
alternative proposed by Unger and Schumann [US09] is the hierar-
chical merging of data values into intervals until the given number
of k intervals is reached.

Step 3: Scaling of Subaxes. This step determines how much vi-
sual space is assigned to each of the subaxes C1, ...,Ck. For exam-
ple, Hao et al.’s variable binned scatterplots [HDS∗10] use equal
size scaling of all subaxes on the x-axis, and data size scaling of
all subaxes on the y-axis. The former scales all subaxes to the same
size regardless of how many data items each shows, while the latter
scales all subaxes to a size proportional to the number of data items
shown per axis. Andrienko & Andrienko’s quartile-based axis sub-
division uses a fixed scaling, but allows users to interactively adjust
the scaling of the subaxes to their needs. It is also possible to pre-
serve the original linear scaling of the subaxes. This is used for
cutting empty whitespace (i.e., gaps in the data value distribution)
using the trimming in the next step, while keeping the subaxes on
par. Cleveland [Cle84] uses this method in his original paper on
axis breaks in some figures.

Step 4: Trimming of Subaxes. This step deals with the inter-
val between two consecutive subaxes. One option is removing the
range between the maximum of one subaxis Cn and the minimum

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://vega.github.io/editor/#/url/vega-lite/N4IgJAzgxgFgpgWwIYgFwhgF0wBwqgegIDc4BzJAOjIEtMYBXAI0poHsDp5kTykBaADZ04JAKyUAVhDYA7EABoMUOVCSY0AbVAATdSlShiSQQzgQtoAB5oADJQDMSgJ53HAXwXW3Ylz8-eqPYA7L4grkGUYgEgNqgAjH6RoTFx8ZQALEn2ABzRXrFo6WER6QBM+YHpOUnpDu4Aup4gyABOANZoIFA0rVCCcIogcLIqOjSyZGiBoABmNHCCOl02SpjOOIPoAI4MSLKYdOo0pEOHmANdQ9AmW7psyBNatgplTc0RcwtLXa5rG1sQLt9udjqc1nRLuhrmoofdHvJUJoXm93GiYnpMAYjCYzBYkVUXuEipRgqkivYKrVKABORrNADuNB09DQADYiW1Ougen1LkoRmMJlNDIVRfNFst0KsQOtNl1gQcjodwbLIYCYbdpiAdA8kE8kTTKDV4vYxE0lEgrDR8aBDlB2gBZCYAZUwcBw-g+2olP3Qf1lAIVeyVWJVgwhFw1ShucJ1eoNyNeFpAVpt2vt7XxsxMEDgSkESCYi2zubg6MaShUsnmItA1bUGlFEBwSB6kzQ+VT1ttIDIrWZaBzgjzSl1CIAwmxBGxWl0mIWHUNC8XBAAxOSYF00ABeW3iWTVDqnM7n6AXbc6zWICwZ2ogmFabHagIvS5jj+fcAA8q2eusig-J8XwAdWZVkEnRIA

R. Thorsøe et al. / A Framework for Axis Breaks in Charts 3 of 8

of the subsequent subaxis Cn+1 (tight ranges) as Cleveland [Cle84]
does or to round ranges off to more readable numbers with fewer
digits (nice ranges). Another option is to keep subaxes continuous,
as in the approach by Andrienko & Andrienko [AA01].

Step 5: Formatting of Subaxes. This final step governs the
appearance of the subaxes with their scaling and range bounds.
For this, a number of practical details must be considered that also
depend on the axis breaking process. They include density and
style of the tick marks of each axis section, and visual representa-
tion of the breaks. Representational choices include, for example,
the use of full scale breaks (i.e., small gaps between subaxes) vs.
concatenation of axes with an adjustment of the spacing of the tick
marks to indicate the different granularities of different subaxes,
similar to Isenberg et al.’s use of grid lines [IBDF11].

Breaking up the problem into these five steps allows us to mix

Figure 3: Different options for showing the highly skewed dis-
tribution of chemical elements in the universe along a parallel
coordinates axis: (a) linear scaling shows merely that two ele-
ments (hydrogen and helium) dwarf all the other elements; (b)
log-scaling [Fie17] brings out the next two elements (oxygen and
carbon); (c) quartile-based axis breaks [AA01] distribute the data
more uniformly and show more details of the lower quartiles; (d)
generalizing the quartile-based breaks into percentile-based axis
breaks – here showing quintiles; (e) breaking the axis at the largest
gaps using a k-means clustering to reclaim some empty space
brings out the long tail of the distribution, but still condenses the
bulk of data at the bottom of the axis; (f) axis breaks produced by
our novel dynamic optimization approach.

& match different methods with each other depending on the data,
the plot type, and the usage scenario. An example of this is given
in Figure 4, which combines the look&feel of Hao et al.’s variable
binned scatterplots with the quartile-based axis breaks from An-
drienko & Andrienko and explores two different scaling options
side-by-side. To try some of these combinations interactively, one
can use our interactive web-based testbed at https://vis-au.
github.io/axisbreaks/

In addition, this stepped approach to axis breaks also enables
us to selectively improve methods for some of these steps. In the
following two sections, we do so for the combination of step 1 and
2 by introducing an optimization for computing the number and
position of axis breaks, as well as for step 4 by extending Talbot
et al.’s tick mark algorithm [TLH11] to produce human-readable,
“nice” cutoffs for the subaxes.

3. A Method to Compute Break Number (Step 1) and
Positions (Step 2)

There are two main issues addressed by axis breaks: One are highly
skewed value distributions along an axis where a few extreme val-
ues compress all other data values into a very small axis interval.
The other are value distributions across multiple orders of mag-
nitude, which can be understood as a generalization of the skewed
distributions: Where for the skewed distributions, the axis is broken
into a subaxis containing the extreme values and another subaxis
containing the remaining bulk of the data, doing this for the orders
of magnitude will just lead to the same problem reoccurring at the
next lower level of magnitude. This is illustrated in Fig. 5, showing
why simple solutions for determining axis breaks, such as seeking
the largest gaps do not necessarily lead to better visualizations.

So, instead of seeking local features like gaps in the data to place
axis breaks, we advocate for a more holistic view of the axis. What
we would like from an axis break is that the axis is afterwards less
skewed and more uniformly distributed than before. Hence the fun-
damental idea of our computational method for axis breaks is sim-
ple: increase the number of subaxes k until the skew of an axis no
longer sufficiently decreases. In the following, we describe

• how we formally capture this notion of skew and use it in a cost
function,

• how we use this cost function to define a stopping condition for
this process – i.e., what it means to no longer sufficiently de-
crease, and

• how we use both in a dynamic optimization algorithm to find
suitable axis breaks.

3.1. Cost Function: Skew

We use the term skew γ for describing how much the data distribu-
tion differs from a uniform distribution when applying a given map-
ping to the data. This is different from statistical skewness that de-
scribes how asymmetric a distribution is around its average, but has
the same property that a uniform distribution of points has skew-
ness and skew of 0.

Concretely we look at the distance of a point to its uniform posi-
tion as defined by the following mapping:

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://vis-au.github.io/axisbreaks/
https://vis-au.github.io/axisbreaks/

4 of 8 R. Thorsøe et al. / A Framework for Axis Breaks in Charts

Figure 4: Two variable binned scatterplots (middle, right) created using the quartile-based breaks from Andrienko & Andrienko’s ap-
proach [AA01] on the original scatterplot (left). The plot in the middle uses subaxes of equal size, which is sensible for quartiles, but hides
the “variable” property of the binning. The plot on the right does not rescale the subaxes, but maintains the original linear overall scale.
This shows much better how the quartiles are distributed across the value ranges with the long tail for both attributes resulting in the big bin
at the top right, but it also makes it harder to identify and interact with the data points in the lower quartiles.

Definition 1 The uniform mapping of the i-th point of X sorted by
increasing value, xi ∈ X with respect to X is

πu(X ,xi) =
i
|X |

The uniform mapping πu maps xi ∈ X to its location in [0,1]
when X is distributed uniformly. This is done simply by mapping
points to their sorted-order indices and normalizing. Skew can then
be defined w.r.t. the uniform mapping in the following way:

Definition 2 The skew of mapping π : X → R on x ∈ X is

γπ(X ,x) = |π(x)−πu(X ,x)|

For point sets Y ⊆ X we define

γπ(X ,Y) = ∑
y∈Y

γπ(X ,y)

Figure 5: Introducing axis breaks (1 ≤ k ≤ 5) for data across or-
ders of magnitude will recursively put extreme values on their own
subaxis with new extremes appearing at the next lower level of mag-
nitude that still condense the bulk of data at the bottom.

After analyzing different ways in which to use skew in our ap-
proach, we ended up using the squared skew:

Definition 3 The squared skew of mapping π : X → R on x ∈ X is

γ
2
π(X) = ∑

x∈X
(π(x)−πu(X ,x))2 = ∑

xi∈X

(
π(xi)−

i
|X |

)2

We use the squared skew as a cost function cost as it better bal-
ances skew reduction with the incurred displacement from the un-
broken, linearly scaled axis. For example, when deciding between
two possible axis breaks – one that displaces a single data point by
10 pixels and one that displaces five data points by 2 pixels each
to get them closer to their position on the uniformly distributed
axis – the linear skew would weigh both options equally, but the
squared skew would clearly favor the second option with many
smaller changes instead of one big change. This is also intuitively
what we want: to create a better distribution of data points without
displacing them too far from their original positions.

3.2. Stopping Condition: Skew vs. Fragmentation

We can then use the squared skew as a cost function to measure the
“goodness” of an axis – i.e., how well it distributes the data values
along the axis – regardless of whether it is broken and rescaled or
not. This leads to the following stopping condition in which the
costs are normalized by the number of data items n, so that the
same threshold θ can be applied regardless of dataset sizes:

cost(k−1)− cost(k)
n

≤ θ (1)

We set θ = (1−φ)2 +0.001 · k, where φ is the degree of frag-
mentation ranging from 0 (no breaks) to 1 (many breaks). This
makes the threshold θ dependent on the number of breaks, as each
break introduces additional visual clutter, which is only warranted
if it yields in return a large enough skew improvement. How large
that improvement has to be is adjusted through the parameter φ.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

R. Thorsøe et al. / A Framework for Axis Breaks in Charts 5 of 8

3.3. Dynamic Optimization: Axis Breaks through Clustering

Our optimization algorithm places the axis breaks by minimizing
the cost function of the squared skew (Section 3.1) and determines
the number of axis breaks through the stopping condition weigh-
ing improved skew vs. incurred axis fragmentation (Section 3.2). It
thus carries out steps 1 & 2 of our framework in one go. If a pre-
defined number of k−1 breaks are to be placed – i.e., carrying out
only step 2 – this is simply done by setting the stopping condition
accordingly.

To carry out this optimization, our algorithm is based on a
dynamic algorithm for the k-means problem developed inde-
pendently by different researchers [WS11, Wu91]. An overview
of the dynamic approaches was given by Grønlund et al. in
2017 [GLMN17]. Our algorithm is based on the O(n2k) version
that uses prefix sums to improve the recursive computation of the
basic O(n3k) dynamic algorithm.

Using a dynamic algorithm requires the use of induction to up-
grade a clustering for n points with k clusters to a clustering with
more points or more clusters without recomputing everything. This
is done by dynamically computing the optimal clustering w.r.t.
skew of the first i points Xi into m clusters using solutions of sub-
problems. To find the optimal solution for i and m, the subproblems
with the first j < i points and m−1 clusters are used.

Such optimal clustering of Xi restricted by its last cluster starting
in j + 1 is denoted by us as Fm[j, i]. It is computed by combining
the skew of the new cluster m with the optimal cost of the m− 1
clustering of X j.

Fm[j, i] = (i− j)2 · γ2
π0(X j+1,i)+ j2 ·D[m−1, j]

With this we can compute the cost of the m, i-sub problem D[m, i]:

D[m, i] = min
C

γπC (Xi) =
1
i2
· min

1≤ j<i
Fm[j, i]

As a base case D[1, i] = γ
2
π0(Xi) is computed directly for all i in

O(n2) time. This gives us the ingredients for a dynamic algorithm
of time complexity O(n3k) that simply fills out a n× k table C us-
ing the recursion formula. The algorithm is upgraded to O(n2k)
time complexity by using prefix sums to compute γ

2
π0(X j+1,i) in

constant time for each Fm[j, i]. This is captured in Algorithm 1,
which proceeds just like the dynamic 1D k-means algorithm pre-
sented in [GLMN17, WS11].

The D table provides the skew of the optimal solution. To yield
the clustering C, we also maintain a size n× k table T containing
all the break points j for which Fm[j, i] is minimal. This can be
traversed to extract the clustering (see Algorithm 2). The stopping
conditions can be integrated by computing D row by row and for
each row m use D[n,m] to decide whether to continue or to output
the clustering for D[n,m−1].

The result of our algorithm is a balanced, density-based position-
ing of axis breaks, as it is exemplified in Figure 3(f). A benchmark
comparing its output quality for Parallel Coordinate Plots is given
in Section 5.1.

Algorithm 1 Optimal Clustering by Skew
1: Init D and T as arrays of length n× k with 0 in all cells
2: Init length n array A with cumulative sums of xi
3: Init length n array A2 with cumulative sums of x2

i
4: Init length n array H with cumulative sums of i · xi
5: for i = 1 to n do
6: D[1, i] = γ

2
π0(Xi)

7: for m = 2 to k do
8: for i = 1 to n do
9: best_so_far = ∞

10: for j = m to i do
11: cost_X j = D[m−1, j]
12: cost_X j+1,i = γ

2
π0(X j+1,i)

13: cost = j2· cost_X j + (i− j)2 · cost_X j+1,i
14: if cost < best_so_far then
15: best_so_far = cost
16: break_index = j+1
17: D[m, i] = 1

i2 · best_so_far
18: T [m, i] = break_index
19: return C,T

Algorithm 2 Report Clusters(T)
1: row = k
2: col = n
3: while col > 0 do
4: j = T [row, col]+1
5: report cluster [x j,xcol]
6: col = T [row, col]
7: row = k−1

4. A Method to Yield Sensible Subaxis Boundaries (Step 4)

Having established the number and position of the break points for
the axis breaks does not yet yield the start- and endpoints of the
corresponding subaxes. Naïvely, one can trim subaxes to start with
the lowest value contained and end with the highest, but that usu-
ally results in very awkward interval boundaries that are not easy
to label, read, and remember. To solve this issue, we propose a new
method for determining simple and readable boundaries for sub-
axes. The difference between tight and “nice” subaxis boundaries
is exemplified in Figure 6 for a beeswarm plot.

Figure 6: A beeswarm plot showing the ionization energies of the
chemical elements on four differently scaled subaxes. (a) shows
axis breaks with tight ranges – i.e., exact boundaries; (b) shows
axis breaks with “nice” ranges – i.e., slightly rounded boundaries
to make them more human-readable.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 8 R. Thorsøe et al. / A Framework for Axis Breaks in Charts

Our method to compute sensible subaxis boundaries takes inspi-
ration from the Extended Wilkinson’s algorithm proposed by Tal-
bot et al. [TLH11] for the placement of tick marks along axes. Nice
values for range bounds are slightly simpler to define than for tick
marks, as there are no dependencies between one range bound on
other range bounds, as there is for tick mark numbers. Our only
constraints are that all points of a cluster must fall within its range
bounds and that the range bounds cannot overlap the bounds of the
neighboring cluster ranges. Wilkinson’s density objective and sys-
tem of generating nice values from offsets and skips are therefore
not necessary in our case.

We generate our candidates independently for each range bound
using a list of divisors Q = [1,2,5]. With these, we divide de-
creasing powers of 10 starting with the nearest power of 10 be-
low the bound. For example, the number 363 would have 100 as
its nearest power of 10 followed by 10, 1, which gives the list
of numbers [100,50,20,10,5,2,1]. Each of these numbers is then
turned into a candidate by repeating it until it hits the range bound:
[300,350,360,360,360,362,363] – that is the closest multiples of
[100,100/2,100/5,10,10/2,10/5,1] to 363.

More formally, we denote a range bound C with min(C) =
r1,max(C) = r2 so that its data range is [r1,r2] and its length
||C|| = r2 − r1. We define its magnitude to be m = ⌊log10 ||C||⌋.
The list of candidate nice numbers C is generated by dividing 10i

by the elements of Q = {1,2,5} for i descending from m. This pro-
duces a list of step sizes

G = 10m,
10m

2
,

10m

5
,10m−1,

10m−1

2
,

10m−1

5
, ... (2)

For each of these step sizes g1, ...,g j, ..., we have a sequence
0,g j,2g j,3g j, From g j, we produce a candidate nice lower
bound l j of r1. l j will be the first number in that sequence to the
left of r1. Similarly for r2, we have a candidate nice upper bound
u j that is the first number in the sequence of g j that is to the right
of r2. They are computed fast with floor and ceiling division.

l j = ⌊r1/g j⌋ u j = ⌈r2/g j⌉ (3)

To pick the best boundary from the candidates, we minimize two
objectives dependent on the choice of candidate. First, we prioritize
the candidates with the simplicity objective, which is defined in the
same way as in Wilkinson’s algorithm. Let |C| be the number of
candidates and j be the index of candidate b j in the list. Then the
“simplicity” of a number can be introduced as follows:

Definition 4
simplicity(b j) = 1− j

|C|
It is clear from the example that the higher simplicity a candidate
has, the larger the gap between the range bound and the closest data
point. Such a gap is introducing white space into the display space
dedicated to the cluster, thereby pushing the points in the cluster
closer together. To counterbalance this, we also use a simpler ver-
sion of Wilkinson’s coverage objective that we call “tightness” as it
rewards choosing a bound that fits the data tightly. As we are now
optimizing the bounds independently, tightness does not need the
squared difference to balance Wilkinson’s coverage on both sides
of the range, as it was reasoned for by Talbot et al. in their Extended
Wilkinson’s algorithm [TLH11].

Definition 5 Denote the length of the range of cluster C by ||C||.
The tightness of a nice bound b j for a range bound r1 or r2 is then

tightness(b j) =

(
1−

|b j − r1|
||C||

)
· |C|
|X |

We can optimize these two objectives together by balancing them
with a tightness weight w. Our objective becomes the following:

(1−w) · simplicity(b j)+w · tightness(b j) (4)

Since the number of candidates is limited, the objective can be
optimized naïvely by computing the score from Equation 4 for each
candidate and picking the one with the highest score. The choice of
w = 0.9 worked well for the datasets tested in this project.

5. Use Case: Axis Breaks for Parallel Coordinates

Parallel Coordinate Plots represent data points as lines [Ins09,
HW13]. When there are no axis breaks, a skewed data distribution
may cause multiple lines to converge in a small space, as shown in
the abundance and discovered year axes in Figure 7 (top-left). Such
overplotting makes it difficult to trace an individual line across mul-
tiple axes and to observe patterns hidden in those regions.

While the problem of overplotting in Parallel Coordinate Plots
has been addressed in various ways in the literature – from sam-
pling [EBD05] to aggregation [RSL∗19], axis breaks are rather un-

Figure 7: Introducing axis breaks into Parallel Coordinates. In the
plot with no axis breaks (top-left) there is significant overplotting
on the “abundance/universe” and “discovered/year” axes. Jenks
natural breaks (top-right) cuts the largest gap on the abundance
axis – between 23 and 75, but also introduces multiple breaks
on the year-discovered axis. Percentile breaks (bottom-left) assign
each quartile its own subaxis. However, we can still see overplotted
lines going from “discovered/year” to the lower subaxis in “den-
sity/stp”. Our dynamic optimization (bottom-right) separates these
lines even further, while keeping the same number of breaks.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

R. Thorsøe et al. / A Framework for Axis Breaks in Charts 7 of 8

common for Parallel Coordinates. To the best of our knowledge,
the only published approach is by Andrienko & Andrienko [AA01]
who proposed to center the median on the axis and to position the
lower and the upper quartiles equidistantly below and above this
center point, respectively. Then each of the resulting four subaxes
is scaled linearly to the minimum and maximum values contained
in each. This has the effect that outliers will only compress the first
and fourth quartile, while the interquartile range occupies a guar-
anteed space in the middle of the axis.

By using our dynamic programming approach for positioning
axis breaks, we extend beyond Andrienko & Andrienko’s approach
by allowing a flexible number of breaks at flexible positions so as
to minimize the number of breaks, while maximizing their effect.
We call the resulting plots Split Parallel Coordinates (SPC). The
following section compares them to Jenks natural breaks and to
Percentile breaks – i.e., Andrienko & Andrienko’s approach.

5.1. Benchmarking

To gauge the results w.r.t. the trade-off between improved data dis-
tribution and introduced distortion (as compared to the original lin-
ear scaling without breaks), we measure two characteristics:

• Overplotting: The overplotting metric was introduced by Das-
gupta and Kosara in their work on pargnostics [DK10, Sec.3.8].
It basically measures how many lines are drawn on top of each
other in the space between the axis in question and its neigh-
bor(s). The lower this metric, the better the plot.

• Distortion: The distortion metric quantifies how much the axis
breaks displace the data points on the axes respective to their
original position. The lower this metric, the better the plot as it
requires less mental effort to use it.

We applied both metrics to each axis of the Parallel Coordi-
nate Plot independently and averaged their results. All plots had
a maximum height of 1400 pixels, with axis breaks having a gap
of 30 pixels. The data used were the properties of chemical el-
ements [Wea22] that are also shown in Figure 7. We compared
against Jenks natural breaks and Andrienko & Andrienko’s ap-
proach (percentile breaks at 25%, 50%, and 75%), since both ap-
proaches introduce axis breaks and re-scale the resulting subaxes at
the same time, making them most similar to our approach.

The results shown in Figure 8 indicate that at the cost of intro-
ducing slightly less distortion than percentile breaks, our algorithm
reduces the number of overplotted lines by the largest margin, fol-
lowed by percentile breaks and Jenks natural breaks. This observa-
tion holds also for other tested datasets [Raj18, Num22] with the
difference being more pronounced in highly skewed data attributes
and less so in more uniformly distributed ones.

5.2. Discussion/Limitations

Our algorithm improved the overplotting score of Parallel Coordi-
nates, making it easier to trace individual data points and reveal pat-
terns in overplotted regions. The per-axis computation of the breaks
makes the found breaks indifferent to the order of the axes as well
as to how often individual axes are shown. Thus, common basic in-
teractions with Parallel Coordinates are expected to translate well

Figure 8: Benchmark results for Parallel Coordinates with differ-
ent axis break strategies. (top) Overplotting scores showing how
much different approaches and different numbers of breaks reduce
overplotting and thus increase the readability and traceability of
the data points. (bottom) Distortion scores showing how much dif-
ferent approaches and different numbers of breaks increase the in-
evitable distortion introduced by them.

to Split Parallel Coordinates, as the breaks do not have to be recom-
puted. Interactions such as brushing lines along a part of an axis are
likewise expected to carry over to Split Parallel Coordinates, as the
brushing can easily span across axis breaks.

However, interactions that rely on the slopes of the lines, such
as angular brushing [HLD02, SGMS21], are challenging on Split
Parallel Coordinates. This is because the correlation denoted by the
slope of lines is lost when axis breaks are introduced. Thus, for
tasks dependent on the slope of the lines, we recommend using axis
scaling methods instead of axis breaks. Our Split Parallel Coordi-
nates have this limitation in common with other parallel coordinate
variants that do not use continuous, linearly scaled axes that run
strictly parallel to each other – like Weidele’s Conditional Parallel
Coordinates [Wei19], which also use disjoint axes, but for different
dimensions altogether.

In addition, an early study (N=147) by Carvalho and McMil-
lan [CM92] indicates that larger distortions can impede reading of
charts with broken axes. While the study did not include Parallel
Coordinates, they observed that different chart types (line charts vs.
bar charts) have different effects on how axis breaks affect reading
behavior. Thus, further studies are needed to find thresholds where
acceptable distortions become unacceptable, so as to provide upper
bounds to the degree of fragmentation φ used in the cost function.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8 of 8 R. Thorsøe et al. / A Framework for Axis Breaks in Charts

6. Conclusion

We have introduced a five step framework for automatically intro-
ducing axis-breaks in charts. We have argued that the complexity
of the problem warrants such a framework, and we have shown
how several existing approaches fit within this framework. We have
demonstrated the usefulness of this framework by benchmarking a
configuration of the framework against a standard linear scaling.

We have also introduced a new algorithm, Dynamic Optimiza-
tion by Skew, for automatically determining the number and po-
sition of axis breaks, and an algorithm to determine readable sub-
axis boundaries. First benchmarks indicate a slightly better perfor-
mance in terms of reducing overplotting and distortion than the ex-
isting approaches. The whole framework has been implemented in
a proof-of-concept application where the different techniques for
each step can be tried out on some selected datasets.

Acknowledgements

We gratefully acknowledge partial funding support of this work
through Aarhus University Research Foundation (AUFF) project
VADE – VISUAL ANALYTCIS OF DATA ERRORS.

References
[AA01] ANDRIENKO G., ANDRIENKO N.: Exploring spatial data with

dominant attribute map and parallel coordinates. Computers, Envi-
ronment and Urban Systems 25, 1 (2001), 5–15. doi:10.1016/
S0198-9715(00)00037-5. 1, 2, 3, 4, 7

[AAS01] ANDRIENKO G., ANDRIENKO N., SAVINOV A.: Choropleth
maps: Classification revisited. In Proceedings of the International Car-
tographic Conference (2001). 2

[Cle84] CLEVELAND W. S.: Graphical methods for data presentation:
Full scale breaks, dot charts, and multibased logging. The Ameri-
can Statistician 38, 4 (1984), 270–280. doi:10.1080/00031305.
1984.10483224. 1, 2

[CM92] CARVALHO C. R., MCMILLAN M. D.: Graphic Representa-
tion in Managerial Decision Making: The Effect of Scale Break on the
Dependent Axis. Master’s thesis, Air Force Institute of Technology, Air
University, 1992. URL: https://apps.dtic.mil/sti/pdfs/
ADA258989.pdf. 7

[DK10] DASGUPTA A., KOSARA R.: Pargnostics: Screen-space metrics
for parallel coordinates. IEEE TVCG 16, 6 (2010), 1017–1026. doi:
10.1109/TVCG.2010.184. 7

[EBD05] ELLIS G., BERTINI E., DIX A.: The sampling lens: mak-
ing sense of saturated visualisations. In CHI’05 Extended Abstracts on
Human Factors in Computing Systems (2005), ACM, pp. 1351–1354.
doi:10.1145/1056808.1056914. 6

[FCW21] FISHER J., CHANG R., WU E.: Automatic Y-axis rescal-
ing in dynamic visualizations. In Proceedings of the IEEE Visualiza-
tion Conference (VIS’21) (2021), IEEE, pp. 116–120. doi:10.1109/
VIS49827.2021.9623319. 1

[Fie17] FIELD J. A.: Some advantages of the logarithmic scale in sta-
tistical diagrams. Journal of Political Economy 25, 8 (1917), 805–841.
doi:10.1086/253026. 3

[Fis58] FISHER W. D.: On grouping for maximum homogeneity. Journal
of the American Statistical Association 53, 284 (1958), 789–798. doi:
10.1080/01621459.1958.10501479. 2

[GLMN17] GRØNLUND A., LARSEN K. G., MATHIASEN A., NIELSEN
J. S.: Fast exact k-means, k-medians and Bregman divergence cluster-
ing in 1D. CoRR abs/1701.07204 (2017). doi:10.48550/arXiv.
1701.07204. 5

[HDS∗10] HAO M., DAYAL U., SHARMA R., KEIM D., JANETZKO H.:
Variable binned scatter plots. Information Visualization 9, 3 (2010), 194–
203. doi:10.1057/ivs.2010.4. 1, 2

[HLD02] HAUSER H., LEDERMANN F., DOLEISCH H.: Angular brush-
ing of extended parallel coordinates. In Proc. of the IEEE Symposium
on Information Visualization (InfoVis’02) (2002), IEEE, pp. 127–130.
doi:10.1109/INFVIS.2002.1173157. 7

[HW13] HEINRICH J., WEISKOPF D.: State of the art of parallel co-
ordinates. In Eurographics 2013 – State of the Art Reports (2013),
Sbert M., Szirmay-Kalos L., (Eds.), Eurographics, pp. 95–116. doi:
10.2312/conf/EG2013/stars/095-116. 6

[IBDF11] ISENBERG P., BEZERIANOS A., DRAGICEVIC P., FEKETE J.-
D.: A study on dual-scale data charts. IEEE TVCG 17, 12 (2011), 2469–
2478. doi:10.1109/TVCG.2011.160. 1, 2, 3

[Ins09] INSELBERG A.: Parallel Coordinates: Visual Multidimensional
Geometry and Its Applications. Springer, 2009. doi:10.1007/
978-0-387-68628-8. 6

[Jen77] JENKS G. F.: Optimal data classification for choropleth maps.
Occasional Paper No.2. Tech. rep., University of Kansas, Department of
Geography, Lawrence, KS, 1977. 2

[LHZ16] LU L. F., HUANG M. L., ZHANG J.: Two axes re-ordering
methods in parallel coordinates plots. Journal of Visual Languages &
Computing 33 (2016), 3–12. doi:10.1016/j.jvlc.2015.12.
001. 1

[MESW21] MACTAVISH M., ETEMAD K., SAMAVATI F., WILLETT
W.: Perspective charts. In Proceedings of the Graphics Interface
2021 (2021), Canadian Information Processing Society, pp. 246–255.
doi:10.20380/GI2021.28. 2

[Num22] NUMBEO: Dataset: Quality of life and cost of living. retrieved
01-JUN-2023. URL: https://www.numbeo.com. 7

[Raj18] RAJKUMAR S.: Dataset: UN country data. retrieved
01-JUN-2023. URL: https://www.kaggle.com/datasets/
sudalairajkumar/undata-country-profiles. 7

[RSL∗19] RICHER G., SANSEN J., LALANNE F., AUBER D., BOURQUI
R.: HiePaCo: Scalable hierarchical exploration in abstract parallel coor-
dinates under budget constraints. Big Data Research 17 (2019), 1–17.
doi:10.1016/j.bdr.2019.07.001. 6

[SGMS21] SAHANN R., GAJIC I., MOELLER T., SCHMIDT J.: Selec-
tive angular brushing of parallel coordinate plots. In Short Paper Proc.
of EuroVis 2021 (2021), Eurographics, pp. 109–113. doi:10.2312/
evs.20211064. 7

[TLH11] TALBOT J., LIN S., HANRAHAN P.: An extension of Wilkin-
son’s algorithm for positioning tick labels on axes. IEEE TVCG 16, 6
(2011), 1036–1043. doi:10.1109/TVCG.2010.130. 1, 3, 5, 6

[US09] UNGER A., SCHUMANN H.: Visual support for the under-
standing of simulation processes. In IEEE Pacific Visualization Sym-
posium (2009), IEEE, pp. 57–64. doi:10.1109/PACIFICVIS.
2009.4906838. 2

[Wea22] WEAVER S.: Dataset: Periodic table of chemical ele-
ments. retrieved 01-JUN-2023. URL: https://github.com/
sweaver2112/periodic-table-data. 1, 7

[Wei19] WEIDELE D. K. I.: Conditional parallel coordinates. In Short
Paper Proc. of the IEEE Visualization Conference (VIS’19) (2019),
IEEE, pp. 221–225. doi:10.1109/VISUAL.2019.8933632. 7

[WF02] WU L., FALOUTSOS C.: Making every bit count: Fast nonlinear
axis scaling. In Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2002), ACM, pp. 664–
669. doi:10.1145/775047.775146. 1

[WS11] WANG H., SONG M.: Ckmeans.1d.dp: Optimal k-means clus-
tering in one dimension by dynamic programming. The R Journal 3 (12
2011), 29–33. doi:10.32614/RJ-2011-015. 5

[Wu91] WU X.: Optimal quantization by matrix searching. Journal of Al-
gorithms 12, 4 (1991), 663–673. doi:10.1016/0196-6774(91)
90039-2. 5

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1016/S0198-9715(00)00037-5
https://doi.org/10.1016/S0198-9715(00)00037-5
https://doi.org/10.1080/00031305.1984.10483224
https://doi.org/10.1080/00031305.1984.10483224
https://apps.dtic.mil/sti/pdfs/ADA258989.pdf
https://apps.dtic.mil/sti/pdfs/ADA258989.pdf
https://doi.org/10.1109/TVCG.2010.184
https://doi.org/10.1109/TVCG.2010.184
https://doi.org/10.1145/1056808.1056914
https://doi.org/10.1109/VIS49827.2021.9623319
https://doi.org/10.1109/VIS49827.2021.9623319
https://doi.org/10.1086/253026
https://doi.org/10.1080/01621459.1958.10501479
https://doi.org/10.1080/01621459.1958.10501479
https://doi.org/10.48550/arXiv.1701.07204
https://doi.org/10.48550/arXiv.1701.07204
https://doi.org/10.1057/ivs.2010.4
https://doi.org/10.1109/INFVIS.2002.1173157
https://doi.org/10.2312/conf/EG2013/stars/095-116
https://doi.org/10.2312/conf/EG2013/stars/095-116
https://doi.org/10.1109/TVCG.2011.160
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1016/j.jvlc.2015.12.001
https://doi.org/10.1016/j.jvlc.2015.12.001
https://doi.org/10.20380/GI2021.28
https://www.numbeo.com
https://www.kaggle.com/datasets/sudalairajkumar/undata-country-profiles
https://www.kaggle.com/datasets/sudalairajkumar/undata-country-profiles
https://doi.org/10.1016/j.bdr.2019.07.001
https://doi.org/10.2312/evs.20211064
https://doi.org/10.2312/evs.20211064
https://doi.org/10.1109/TVCG.2010.130
https://doi.org/10.1109/PACIFICVIS.2009.4906838
https://doi.org/10.1109/PACIFICVIS.2009.4906838
https://github.com/sweaver2112/periodic-table-data
https://github.com/sweaver2112/periodic-table-data
https://doi.org/10.1109/VISUAL.2019.8933632
https://doi.org/10.1145/775047.775146
https://doi.org/10.32614/RJ-2011-015
https://doi.org/10.1016/0196-6774(91)90039-2
https://doi.org/10.1016/0196-6774(91)90039-2

