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Figure 1: Example sequence (top), tone-mapped without (middle) and with our temporal stabilization extension (bottom).

Abstract

In this paper, we present an approach for temporal stabilization of depth-based underwater image tone mapping methods for
application to monocular RGB video. Typically, the goal is to improve the colors of focused objects, while leaving more distant
regions nearly unchanged, to preserve the underwater look-and-feel of the overall image. To do this, many methods rely on
estimated depth to control the recolorization process, i.e., to enhance colors (reduce blue tint) only for objects close to the
camera. However, while single-view depth estimation is usually consistent within a frame, it often suffers from inconsistencies
across sequential frames, resulting in color fluctuations during tone mapping. We propose a simple yet effective inter-frame
stabilization of the computed depth maps to achieve stable tone mapping results. The evaluation of eight test sequences shows
the effectiveness in a wide range of underwater scenarios.

CCS Concepts
• Computing methodologies → Perception; Image processing;

1. Introduction

Imagery of underwater scenes often appears blurry and noisy due to
light scattering from turbidities in the water, and suffers from strong
color shift that occurs in underwater images, because colors are
attenuated depending on their wavelength. Long wavelength light
(red) is already absorbed at a water depth or distance of about 3 m.

Light of shorter wavelengths (green and blue) is only absorbed at
greater distances or deeper depths, yielding the typical blue-green
color cast known from most underwater images. There are many
works in the literature that improve the visual quality of such under-
water scenes. Part of these approaches is based on the evaluation of
depth information, to improve the colors of focused objects, while
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maintaining the blue tint for more distant regions. The drawback of
such approaches, however, is the heavy dependency on valid and
temporally stable depth information. While approaches for single
frame depth estimation are continuously improving, and can be as-
sumed to be sufficiently consistent for such a guiding task, temporal
stability is often an issue. Many such techniques suffer from in-
consistencies across sequential frames, e.g., because the employed
depth estimation is based on image sharpness, which can easily be
distorted by motion blur. This can cause the tone mapping to pro-
duce unwanted color fluctuations when processing video.

To achieve results without visible flicker in generated videos,
we propose an extension for existing single frame recoloring meth-
ods, that rely on depth estimation to enhance underwater images
[PZC15; PC17]. The basic idea is to optimize depth maps of indi-
vidual frames according to the corresponding optical flow of pre-
ceding and subsequent frames. Using the optical flow information,
i.e., how pixel positions move across frames, we can keep the com-
puted depth maps temporally coherent with previous frames. We
achieve improvements both for individual frames, which obtain
more accurate depth information, as well as for the entire image
sequence, by diminishing disturbing temporal artifacts.

Using 8 different video sequences showing various underwater
scenarios, we test our approach with two single-frame methods. We
test both methods as they are, and extended with our stabilization
approach. We assess the results according to Panetta et al. [PGA15],
using established metrics for underwater image quality (UISM and
UICM) via Krahn et al. ’s evaluation framework [KM16].

The results show that our approach noticeably reduces inconsis-
tencies in color between consecutive frames. Furthermore, it ob-
tains comparable or better results with respect to colorfulness and
image sharpness.

In the following, we will first give an overview of the research
field in section 2, followed by a description our approach, and how
it is used to extended single-frame methods for more stable results
on videos in section 3. Finally, we compare two exemplary single-
frame methods with and without our multi-frame temporal stabi-
lization extension, with respect to their effect on underwater image
quality in section 4.

2. Related Work

The problem of underwater video enhancement has been addressed
in several previous works, which can roughly be divided into two
classes: prior-based and learning-based methods. The latter have
gained a lot attention in recent years, also in the field of underwa-
ter image enhancement, mostly in the form of convolutional neu-
ral networks (CNNs) and generative adversarial networks (GANs)
[ZYZ23; HWZ*22].

Regarding learning-based methods, UIE-Net by
Wang et al. [WZCW17] is an example of CNN-based ap-
proaches, that consists of two subnets dedicated to color correction
and haze removal, respectively. Similarly, Fu and Cao [FC20] also
combine two subnets for color and contrast optimization, but com-
pliment this with a classical hand-crafted histogram equalization at
the end of their pipeline. The UWCNN by Li et al. [LAP20] is a

single model trained to directly improve the quality of underwater
footage in just one model. Lu et al. [LLU*18] present a specialized
CNN for degraded low-light underwater images.

Approaches based on GANs include the UGAN by
Fabri et al. [FIS18], that employs the approach of the Cy-
cleGAN by Thu et al. [ZPIE17] to generate training pairs
instead of manually creating training data. The WaterGAN by
Li et al. [LSEJ17] generates underwater images from in-air
RGB-D images, to then train an appropriate correction network in
a second step. Islam et al. [IXS20] generate a dataset of more than
30000 images, that is used to train a model, dedicated to improve
underwater object detection and human body-pose estimation
performance.

Many prior-based methods are based on the so-called dark chan-
nel prior (DCP) for haze-reduction, assuming that, typically, each
pixel (except for the sky) has at least one color channel with
very low intensity. Chiang et al. [CC12] exploit that to estimate
the distance of objects to the camera, to compensate for respec-
tive color distortions. A specialized version, called underwater
DCP (UDCP), is proposed by Drews et al. [DNM*13] to specif-
ically focus on green and blue channels. To overcome limitations
of DCP, Carlevaris-Bianco et al. [CME10] propose haze removal
based on scene depth, derived from the strong difference in atten-
uation between the three image color channels in water. Ember-
ton et al. [ECC15] presents a method that specifically avoids the
typical oversaturation of veiling light, i.e., very bright regions in
underwater images. An example of so-called fusion-based methods
is presented by Ancuti et al. [AAHB12], obtaining enhanced under-
water images via multiscale fusion of color corrected and contrast
enhanced versions of the original underwater image, yielding re-
duced noise and improved global contrast.

Regarding image sequences, Drews et al. [DNCE15] propose
a method to compute depth based on optical flow from pairs of
directly successive frames. For more robust underwater depth es-
timation, Li et al. [LTT*15] apply stereo matching in combina-
tion with haze intensity estimation. Some research has also al-
ready focused on performance in order to enable real-time pro-
cessing, e.g., by reducing model complexity [LAP20; IXS20], typ-
ically sacrificing some image quality. So far, only little focus was
put on temporal stability for underwater video enhancement. An-
cuti et al. [AAHB12] propose time-domain bilateral filtering to
directly incorporate time-sequence information for better tempo-
ral coherence. Qing et al. [QYX*16] suggest to improve temporal
color consistency by spatial–temporal information fusion for trans-
mission and background light estimation, based on correlation be-
tween adjacent frames.

To demonstrate our approach, we will extend two single-frame
methods based on monocular depth estimation, to enhance monoc-
ular RGB underwater video footage. The first method is by
Peng et al. [PZC15]. Compared to similar work that uses the im-
age formation model (IFM) by Jaffe [Jaf90] to enhance the con-
trast of underwater images, Peng et al. uses the blur of objects for
depth estimation, which is often stronger for more distant objects
due to light scattering. This allows objects of different distances to
be weighted accordingly. Their approach achieves comparatively
better results than other methods that build on the IFM. The al-
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gorithm specifies three steps for creating the depth map. First, the
pixel blur is estimated using the difference between the original im-
age and the same image filtered several times through a Gaussian
filter. Then, the depth map is generated using a maximum filter,
assuming that in a small, local area depth remains uniform. In the
last step, the guided filter of He et al. [HST12] is used, to refine the
depth map by closing gaps using morphological reconstruction.

To complete the color correction, the depth information is used
to estimate the background light from the most distant pixels. The
correction is then applied by employing the simplified IFM for un-
derwater images:

I(x) = J(x)t(x)+β(1− t(x))

with J as scene intensity, β as background light, and t as transmis-
sion map (how much scene intensity reaches the camera).

As a second example, we implement an improved variant of the
aforementioned work, proposed by Peng and Cosman [PC17]. This
not only uses depth of field to determine the distance of underwa-
ter objects, but also incorporates light absorption, which is greater
for more distant objects. Furthermore, the calculation of the back-
ground illumination is improved by not calculating it from the en-
tire image, but from candidate points that originate from blurred
regions of the image, i.e. the distant background.

In our work, we extend these methods by using optical flow data
from successive frames to specifically improve temporal stability
of the depth maps used to guide the image enhancement.

3. Method

In order to improve the perceived visual quality of underwater
videos, depth information is employed by many algorithms, e.g.,
Peng et al. [PZC15] and Peng and Cosman [PC17]. The color value
of individual pixels can then be corrected depending on the corre-
sponding estimated depth. However, when used on video, effects
such as motion blur can cause wildly different depth maps being
computed for successive frames.

Our temporal stabilization approach is based on the assumption
that a scene changes only slightly over short periods of time, and
thus successive depth maps should provide similar values. How-
ever, when naively averaging different frames, the resulting depth
map is heavily blurred due to video motion. Therefore, our ap-
proach is based on optical flow by Farnebäck [Far03] to com-
bine multiple successive depth maps. Specifically, we compute per-
frame optical flow, and track the x and y pixel positions of frame i
(xi,yi) over several frames in the RGB video to use the shifted pixel
positions in frame j

(x j,y j) = d j ← i(xi,yi)

to average the depth maps, shifted accordingly via backward pro-
jection to avoid holes.

However, two limitations follow from this: First, for perfor-
mance reasons we do not calculate the disparity (optical flow) from
every frame to every other frame d j ← i in the chosen time window.
Instead, we approximate it by accumulating the displacements over

the span of images (i, i+1, ..., j−2, j−1, j) as follows:

(x j,y j) = d j ← j−1(x j−1,y j−1)

with

(x j−1,y j−1) = d j−1← j−2(x j−2,y j−2)

...

(xi+1,yi+1) = di+1← i(xi,yi)

Due to accumulation errors this is only an approximation. An ex-
ample of this method is shown in Figure 2.

Pixel intensity

Pixel displacement

Figure 2: Accumulative displacement di+2← i, combining two sin-
gle step optical flow fields into one (bottom), for an exemplary 9×9
b/w image sequence (top).

Second, as soon as a pixel moves outside the image area, its in-
formation can no longer be used in subsequent frames. To make
the method more robust despite these limitations, we run the pro-
cedure in both time directions. Thus, for a chosen window of size
n, frames are at most n/2 away from the current time step. Further-
more, a pixel that moves out of view in one time direction is likely
to be in frame in the other direction.

Figure 3 shows the depth map of an exemplary frame (A), and
cutouts showing the same image patch for multiple subsequent
frames. As can be seen in form of a change in the average bright-
ness, depth maps computed from single frames are consistent in
themselves, but not stable over time (B). This instability can be
strongly reduced, as demonstrated in the row below (C), showing
the same cutout of depth maps computed for the same frames, but
stabilized with our approach.

4. Evaluation

To test and compare our approach, we use the methods
Peng et al. 2015 [PZC15] and Peng and Cosman 2017 [PC17],
each in their original single frame version and with our extension
to videos.
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Figure 3: Depth estimation for scene 1 (A). Cutouts of exemplary
consecutive frames showing unstable depth without (B) and with
our stabilization (C). Annotated numbers with curved arrows indi-
cate mean brightness(depth) difference between successive frames.
Visual contrast is slightly increased for illustration purposes.

For the evaluation, we use eight video sequences of different
lengths (see Table 1) showing different underwater scenes, as de-
picted in Figure 4. All videos were provided under a creative com-
mons license with a resolution of at least 1920×1080 px.

The extension of the multi-frame algorithms is implemented us-
ing a window of nine frames, the four previous frames, the current
frame, and the four succeeding frames. Additionally, for Peng and
Cosman 2017 [PC17], the parameter D∞, which controls the over-
all strength of color correction, is adjusted to the scene. In the case
of scene 5, this reduces the spontaneous occurrence of green satu-
rated frames, in the other cases an unnatural red saturation.

Video # Frames / Duration (s) D∞
1 858 / 29 8 (default)
2 259 / 9 4
3 238 / 8 8 (default)
4 146 / 5 6
5 509 / 18 3
6 1359 / 48 8 (default)
7 426 / 15 8 (default)
8 1103 / 38 4

Table 1: Test video lengths, along with the value for parameter
(D∞) used in Peng and Cosman 2017.

4.1. Scenes

In the following we describe our test scenes, the visual results after
applying the color correction algorithms, and scene-specific chal-
lenges regarding temporal consistency in the depth and background
light estimation. Representative images are shown in Figure 4.

Scene 1 shows a camera pan across the ocean floor with the sea on
the horizon to a coral in which a ray is hiding. At first, therefore, the
background is mainly blue due to the water and some creatures are
visible in the lower half of the video. From about halfway through
the video, water is barely perceptible, as filming now takes place in
close proximity to the frame-filling coral.

After correction, the colors of the elements that can be seen
closer in the video at the beginning stand out more strongly. As
the video progresses, this color difference from the original are less
noticeable as all the elements are at a similar distance from the cam-
era and the blue turbidity of the water is only slightly noticeable.
The challenge here is that there is a steep change in depth between
fore- and background in the video.

Scene 2 shows a ray moving close to the seafloor between rock
formations that is followed by the camera. The substrate is very
bright and therefore reflects a lot of light coming in from above.
More rocks can be seen in the background. In addition, the water is
typically clouded blue.

After correction, both the ray and the rocks in the foreground
stand out more compared to the original scene. However, the tur-
bidity in the background does not change much. The challenge is
a panning motion with changing extreme light situations (bright
sand, dark rock).

Scene 3 also features a ray being followed by the camera. How-
ever, it looks like the scene was shot in an aquarium. The water is
very clear even at a greater distance and has almost no blue turbid-
ity. Therefore, the ray in the foreground is already very clear, i.e.
without the influence of the water.

After correction, the scene shows hardly any changes to the orig-
inal. However, the colors of the ray get strongly saturated, since it is
alone in the image for most of the scene. The challenge is the cor-
rect estimation of background light with very low water turbidity
and dark background.

Scene 4 shows a ray that is being tracked by the camera, moving
at a slightly further distance. It is clearly visible, but the turbidity
of the water affects the view of it somewhat.

After correction, since only the ray is visible in the scene, apart
from other objects in the background, the color saturation of it is
increased so that it stands out in the video compared to the original
scene and the blue turbidity is slightly reduced in the direct view of
it. The challenge here is filming upwards, having the water surface
in frame, together with incoming sunlight overexposing that part of
the image.

Scene 5 shows a close-up of a ray that is close to the bottom. The
ray is spotted with color, unlike the rays from the previous scenes.
The captured image has a noticeable blue haze, although water is
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1 2 3 4

5 6 7 8

Figure 4: Representative frames of the tested scenes 1–8 [wai16; Ehl19b; sus18; Ehl19c; Ehl19a; Fis18b; Joh18; Fis18a].

not directly visible. The background is sandy and bright, and the
background is very dark.

After correction, the whole scene is slightly oversaturated. The
challenge is that there is no real depth in the scene, but all elements
are very close to the camera, so that a background cannot be reli-
ably determined with the method.

Scene 6 shows a shot of a more distant ray in very murky seawa-
ter. As a result, this can only be clearly seen by its silhouette. In
contrast, the texture of its surface is barely perceptible. In the lower
part, you can also see the seabed, on which there are various plants
Of these, also, due to the strong turbidity of the water, hardly any
colors can be perceived.

After correction, some elements from the seabed, whose distance
from the camera is closer, are better perceivable. The visibility of
the ray (in the background) will remain similarly difficult because it
is at too great a distance from the camera. The challenge is restoring
colors from extremely discolored input data.

Scene 7 shows a camera perspective perpendicular to the seabed
on which a ray is moving. The bottom itself is very neutral,
monochromatic and there are few other elements to be seen except
for the ray. Due to the fact that the video was captured at a greater
distance from the bottom, only the silhouette of the ray can be seen
here as well, and not the actual texture of its body.

After correction, because of the light blue water turbidity and the
distance from the elements in focus in the image, such as the ray,
the image colors are changed throughout the entire frames and take
on increased color saturation. The challenge is the flat floor with
uniform distance to the camera, and the low amount of stationary
features compared to the high portion that is moving.

Scene 8 again shows a shot of a ray, which is moving along the
seafloor. Unlike the previous scenes, however, its body texture is
clearly visible. The scene has a noticeable blue color cast, which
occurs due to the absorption property of the water.

After correction, the texture of the ray as well as the seabed stand
out in its color saturation. However, due to the fact that there are
again few different distances in the scene, no clear separation be-
tween background and foreground can be made. The challenge here
is the low visual contrast of the moving ray in front of the seafloor.

4.2. Evaluation Framework

For the evaluation of single frames we use the “Underwater Im-
age Understanding” test suite by T. Krahn [KM16], which is an
implementation based on the Underwater Image Quality Measures
(UIQM) algorithm published by Panetta et al. [PGA15].

With this test suite we assess our method on the test scenes using
two established metrics for underwater images: Underwater Image
Colorfulness Measure (UICM), and Underwater Image Sharpness
Measure (UISM). They evaluate different attributes of images, in-
spired by properties of the human visual system.

UICM evaluates the chromaticity of an image and is based on
E. Hering’s opponent theory [Her20]. This states that the human
visual system does not perceive colors independently, but in pairs
of opposite colors, so a value for evaluating colorfulness is calcu-
lated based on the following pairs: yellow–blue and red–green. The
larger the calculated UICM value for an image, the greater the im-
age’s colorfulness.

UISM evaluates the sharpness of an image. Underwater, forward
scattering effects occur which lead to the degradation of image
sharpness in underwater images. A UISM value is calculated by
applying a Sobel edge detector to the image and then evaluating
the sharpness of the edges for the resulting edge map. The greater
the sharpness of an image, the greater the UISM value.

Because the metrics evaluate individual frames, it is not possible
to evaluate the resulting videos as a whole. However, it does allow
to compare frames of the videos generated with Peng et al. 2015
and Peng and Cosman 2017, with and without our extension.

All 8 video sequences are split up into individual frames, which
are processed by the four approaches (two methods, with/without
extension). Finally, the scores for both metrics are computed for
the original and all processed frames, yielding for the following 5
conditions:

• original: Original frames
• single15: Optimized with Peng et al. 2015 [PZC15]
• multi15 (ours): Opt. with Peng et al. 2015 + extension
• single17: Optimized with Peng and Cosman 2017 [PC17]
• multi17 (ours): Opt. with Peng and Cosman 2017 + extension
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4.3. Results

The results of our evaluation are summarized in Table 2, show-
ing one plot per scene (1–8) and metric (UICM, UISM). For each
of the plots, the per-frame (x-axis) score of the respective metric
(y-axis) is shown for the five methods listed above. It should be
noted that the goal was not to improve the UICM or UISM values
but to smoothen them out, as sudden changes in the metrics result
in visible flickering in the videos. We would also like to mention
that for the set of scenes tested, the older single15 method does
not necessarily produce worse results compared to the newer sin-
gle17 method.

Coloring (UICM) In each evaluated scene, both the single frame
single15 method and the multi-frame multi15 method have a com-
parably higher chromaticity level than the corresponding original
frame. It can be seen that our multi-frame method hardly differs
from the single-frame method when considering this metric, and
is only slightly weaker compared to it. Compared to this, the sin-
gle17 method shows weaknesses in some scenes, as the results are
close to those of the original frame in scenes 2, 6, and 7 almost
across the entire scene. In addition, it can be seen that the chro-
maticity of the multi17 method performs always equal to or better
than single17, except for areas of overly strong fluctuation, e.g.,
in scene 7. Between the respective single-frame methods, we can
also see that the chromaticity in single15 is typically above the re-
sult of single17, except for scene 8 and parts of scene 1 and 5. The
same relationship can also be seen between our multi-frame meth-
ods. Here, there is only one opposite case in scene 8, in which the
multi17 method has a higher average chromaticity value than the
multi15 method.

As can be seen in the UICM metric in Table 2 and in the enlarged
excerpt from scene 1 in Figure 5, the main benefit of our multi-
frame extension is the smoothing of spikes in the graph. These
spikes correspond to perceived flickering in the videos caused by
quickly changing color corrections calculated by the single-frame
methods.

675 700 725 750 775

4

6

8

10

Figure 5: UICM for scene 1: Enlarged example excerpt of single17
and multi17 (ours) to showcase the smoothing effect of our method.

Image sharpness (UISM) In scenes 1-3, 6, and 8, the image
sharpness of all four methods is comparable to that of the original
video. In scene 1, all four methods initially offer slightly improved
image sharpness compared to the original for about half the video’s

duration. However, after that point, single17 and multi17 start to ex-
hibit significant fluctuations, oscillating around the sharpness value
of the original video. A similar behavior can be observed in scene
7. In scene 3, the single15 and multi15 method are initially slightly
less sharp than the original, but from 1/3 of the scene onward, all
methods can improve sharpness of the frames. For scenes 5, 7, and
8, all methods yield consistently improved image sharpness above
the original frame, throughout the full scenes.

For scenes 4 and 7, a different trend can be seen. On average,
all four methods are clearly above the image sharpness value of the
original frames, but there are dips in regular, temporal intervals of
about 12 frames, in which the sharpness of all four methods falls to
around the image sharpness value of the original video.

From all the scenes, it can be deduced that the image sharpness
is not negatively affected by the four methods, but rather improved.
It can be seen that the multi-frame extension does not negatively
affect image sharpness (compared to the single-frame methods),
e.g., does not introduce disturbing image artifacts concerning im-
age sharpness.

4.4. Limitations

Our method is limited by the precision of the optical flow. As the re-
sulting flow fields usually contain imperfections, so does the color
correction. This is especially true for videos where objects move
quickly between different positions, where optical flow analysis of-
ten fails.

In addition, our method is still dependent on the quality of the
videos being processed. This means that unstable, poorly exposed,
or blurry videos will in turn lead to poor results. The reason for
this is that important information about the depth of elements po-
tentially cannot be calculated or can only be calculated incorrectly
in the case of blurred frames, leading to problems in extracting the
correct background illumination color. Conversely, well-exposed,
depth-rich and sharp video of underwater scenes enables greater
and more accurate improvements compared to the original consid-
ering the colorfulness and sharpness of the image. Methods imple-
menting our extension can benefit the most for underwater videos
suffering from sudden disturbances, e.g., brightness jumps due to
faulty automatic exposure.

Regardless of the input quality, it is not possible in the cur-
rent CPU-only implementation to process the video in real-time.
The individual steps, the single frame method, especially the opti-
cal flow calculation, but also the recombination of the successive
frames, require too much processing time. In average over the 8
tested videos, the full processing pipeline takes about 1.55 s per
frame (σ = 0.027 s) for the multi15 method and 0.99 s per frame
(σ = 0.016 s) for the multi17 method. Of the total processing time,
the proposed extension accounts for about 83 % (multi15) to 76 %
(multi17).
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Scene 1 Scene 2 Scene 3 Scene 4
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Scene 5 Scene 6 Scene 7 Scene 8
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Table 2: UICM and UISM metrics scores (y-axis) plotted per frame (x-axis) for each condition (original, single15, Peng et al. 2015 + exten-
sion, single17, Peng and Cosman 2017 + extension) and all 8 tested scenes.

5. Conclusion

In conclusion, we have presented an approach to extend single-
frame depth estimation-based underwater color enhancement meth-
ods to video, for improved temporal consistency. The extension
was applied to two example implementations of such single-frame
approaches and was evaluated using dedicated underwater image
quality metrics. The results of our evaluation show that our pro-
posed multi-frame extension successfully improves temporal con-
sistency and even strengthens colorfulness and image sharpness.

Possible future improvements include real-time processing,
which is currently primarily limited by the optical flow compu-
tation. This would allow for interactive usage for post-processing

underwater scenes in video editing. Alternative to our approach
of using multi-frame information to stabilize depth that was com-
puted from single (pairs of successive) frames, an interesting ap-
proach might be to directly infer more stable depth using informa-
tion from multiple frames e.g. through structure-from-motion tech-
niques. Further developments of general extensions to underwater
image enhancement methods include the detection and reduction
of unnatural color saturation, and slower flickering that is not de-
tectable with a frame-to-frame approach. Lastly, our approach to
stabilize depth maps using optical flow potentially could be used
for other depth guided image enhancement methods.
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