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Abstract
We propose a comprehensive pipeline for generating adaptable image abstractions from input pictures, tailored explicitly for
robotic painting tasks. Our pipeline addresses several key objectives, including the ability to paint from background to fore-
ground, maintain fine details, capture structured regions accurately, and highlight important objects. To achieve this, we employ
a panoptic segmentation network to predict the semantic class membership for each pixel in the image. This step provides us
with a detailed understanding of the object categories present in the scene. Building upon the semantic segmentation results, we
combine them with a color-based image over-segmentation technique. This process partitions the image into monochromatic
regions, each corresponding to a specific semantic object. Next, we construct a hierarchical tree based on the segmentation
results, which allows us to merge adjacent regions based on their color difference and semantic class. We take care to ensure
that shapes belonging to different semantic objects are not merged together. We iteratively perform adjacency merging until
no further combinations are possible, resulting in a refined hierarchical shape tree. To obtain the desired image abstraction,
we filter the hierarchical shape tree by examining factors such as color differences, relative sizes, and the layering within the
hierarchy of each region in relation to their parent regions. By employing this approach, we can preserve fine details, apply
local filtering operations, and effectively combine regions with structured shapes. This results in image abstractions well-suited
for robotic painting applications and artistic renderings.

CCS Concepts
• Computing methodologies → Image processing; Image segmentation; Shape representations; Non-photorealistic rendering;

1. Introduction

The E-David system is a robotic painting platform enabling ma-
chines to create pictures using paintbrushes [GPD20]. One goal is
to study human creativity by imitating the painting process as ac-
curately as possible. Earlier attempts rendered images by overlay-
ing semi-transparent and isolated brush strokes. However, human
painters create interacting regions on the canvas, the replication of
which is currently investigated.

The basis for such a region-based approach is a Tree of Shapes
(ToS), a data structure that represents the regions of an image in
a hierarchical way [FXDG17]. A region is a set of connected pix-
els representing an image’s feature. While the original approach
contains tens of thousands of regions, we eliminate most by se-
lectively merging nodes based on color differences and semantic
classes. This yields trees of only dozens of regions which are real-
ized by the painting robot in a background-to-foreground manner,
allowing us to represent more important elements of a painting in
a different style and with different tools. To achieve a compact and
paintable Tree of Shapes, we require abstraction methods.

Most current frameworks for image abstraction [CLH∗16,
AMFM10, TJZ07, ASS∗10] are based purely on accessible image

information such as image edges and pixel colors. They lack infor-
mation about image semantics and object relevance. In most cases,
simple edge detection is not enough to provide reliable cues for dis-
tinguishing between image objects wherever the colors along the
semantic borders are indistinct, or colors are locally very similar.
Examples are grey cars on grey streets, concrete buildings next to
the pavement, or gradual transitions from foliage to clouds.

With the proposed framework, we want to overcome this lack of
information and address two key challenges for artistic image ab-
straction: First, the decision which details in the image need to be
preserved, which can be removed, and how to vary this for different
areas of the image. Second, an abstraction must handle indistinct
borders between objects of the same or different importance. Ab-
straction methods without semantic information might merge these
two objects, creating a region of the same color, spanning parts of
both objects [CLH∗16, AMFM10]. This behavior is often undesir-
able, as it creates a visual conflict for viewers since parts of distinct
objects are represented by a shared region.

In our work, we propose using panoptic image segmentation
[KHG∗19] to obtain semantic information, which allows us to iden-
tify the types and pixel locations of scene elements. We combine
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a Felzenswalb-Huttenlocher (FZH) color segmentation [FH04]
as initial over-segmentation with the prediction of a panoptic seg-
mentation model [WZA∗21] that identifies semantic scene objects
and their image borders to guide the abstraction strength locally
for each detected semantic class and ensure that critical semantic
borders remain present in the final abstraction.

To create a high-fidelity smoothing effect while losing as few
image details as possible of the abstract regions, we introduce an
iterative smoothing procedure based on our definition of local geo-
metric coherence.

2. Related Work

Some methods for image abstraction employ a fixed abstraction
rate or strength for the entire image, regarding all image fea-
tures in the same manner. However, this results in either many
small and unimportant shapes and regions remaining in the back-
ground or a very homogenous abstraction where the back- and
foreground elements appear to have the same visual complexity
[CLH∗16, SAM17]. Other frameworks approximate different ab-
straction strengths, such as a painterly rendering approach that uses
varying brush sizes [Her98] or multi-scale image filtering schemes
[KSKD10] to give more detail to regions with more color changes
and thus complexity. Some methods also employ user assistance to
provide semantic image information to guide the abstraction, such
as user scribbles [TGVB13] for foreground and background differ-
entiation or eye-tracking systems [SD02].

Other region-based image abstraction methods use image seg-
mentation or region growth methods. However, these methods only
consider color information as discerning cues to derive region
borders. Some methods over-segment the input and use cluster-
ing to aggregate similarly colored and adjacent segments [TJZ07,
DMC15,ASS∗10]. The Watershed [BM93], and quickshift [VS08]
segmentation methods are based on changes of pixel color inten-
sity and estimate strong edges as region borders. The FZH seg-
mentation [FH04] produces segments, such that their final extent is
defined along detected outlines of image elements. The algorithm
starts by placing each image pixel into a separate component and
then merges adjacent components based on the dissimilarity be-
tween border pixels and the inner dissimilarity of the components.

By assigning each region an appropriate aggregate color value,
these image segmentation methods alone are often interpreted as
image abstraction techniques or may serve as the basis for other
abstraction methods [HEMK98, CLH∗16, AMFM10].

Newer methods are based on neural networks. The MaX-
DeepLab framework [WZA∗21] is a transformer-based super-
vised machine learning framework for panoptic image segmen-
tation. This segmentation task was first proposed and employed
by [KHG∗19]. It is defined as a coherent scene segmentation that
labels each pixel to object classes and, if applicable, to class in-
stances. Panoptic segmentation combines the two usually distinct
tasks of semantic segmentation and instance segmentation. The au-
thor also sets the first baseline result in the field and defined a qual-
ity metric, panoptic quality (PQ), to compare panoptic segmenta-
tion methods.

While [KHG∗19] followed a two-path strategy for creating se-
mantic and instance segmentations separately and then combining
these in the final output, [WZA∗21] propose simplifying the panop-
tic pipeline to a transformer model that can predict a final class label
immediately. They use a dual-path layout with a convolutional neu-
ral network (CNN) and a global memory to communicate between
CNN layers.

The Tree of Shapes (ToS) was proposed by Faraj et al.
[FXDG17], who describe it as a shape tree based on shape inclu-
sion for shape abstraction. They create a topographic map based
on the luminance in the HSV color space. The image is decom-
posed into shapes whose pixels share the same luminance. They
then connect the shapes from high to low luminance to create a hi-
erarchy between the shape while ensuring inclusion between parent
and child nodes. Using this hierarchical structure, they propose that
the shapes can then be simplified, replaced with primitive shapes,
or filtered to create an abstraction after drawing the shapes in the
hierarchy onto an image.

The result, however, often contains tens of thousands of nodes
that need to be combined to create a useful base for robotic paint-
ing. Figure 1 shows the general abstraction pipeline as proposed
by [FXDG17] from an input image to an abstraction where the
shape tree was filtered and the shapes replaced with other similar
shapes from a dictionary.

Figure 1: Image abstraction using a ToS [FXDG17]

3. Methodology

Besides creating an efficient ToS representation, our goal is to
achieve a hierarchical abstraction incorporating semantic knowl-
edge from machine learning models to guide the abstraction
strength for individual object classes (and objects) in the in-
put image. To this end, we combine a pre-trained model of the
MaX-Deeplab [WZA∗21] panoptic segmentation framework with
a color-based over-segmentation that we obtain from the FZH algo-
rithm [FH04] in a hierarchical shape tree that is based on a ToS. Our
proposed method can work with any initial over-segmentation al-
gorithm with minimal changes. However, other methods like SLIC
superpixles tend to create very regularly shapes regions, especially
within areas of little color difference. These regular structures can
remain in the final abstraction for high detail areas and induce a
mosaic like look, which we did not aim for with this framework.
While it is possible to adjust the compactness to suit the input
image this would introduce an additional hyperparameter.Figure 2
shows some example results of the FZH segmentation.

3.1. Panoptic Segmentation

We use a pre-trained model on the Cityscapes dataset [COR∗16] of
the MaX-Deeplab framework that creates a panoptic segmentation
from an input image. It predicts an object class and correspond-
ing instance whenever applicable for all input image pixels. Since
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Figure 2: Results of the FZH algorithm.

the output of the MaX-Deeplab framework optimizes the predic-
tion accuracy on the training set, it does not enforce the geometric
coherence of present objects or judge how realistic the output re-
gions are. As a consequence, the outputs can include many minor
detection artifacts. These may include ragged edges along object
borders or very small instances of objects which are only a few
pixels wide. These might be misclassifications or small instances
in the background of the image.

For our image abstraction, however, we desire large, coherent re-
gions where the user can choose the abstraction strength. To meet
these requirements and achieve smooth object borders, we remove
all connected pixels of the same object with an area below a certain
threshold. Then we reassign the pixels of these regions to the most
dominant object class in their surroundings. As a final step, a user
can select object classes to be merged together to remove unimpor-
tant object differentiations from the panoptic prediction. Figure 3
shows the prediction of the MaX-Deeplab framework and the re-
sults of the described processing.

(a) Input image [2ha15] (b) MaX-Deeplab model output

(c) Small artifact removal (d) Final panoptic segmentation

Figure 3: Panoptic segmentation of an input image. (d) shows the
panoptic map after user input to merge regions

3.2. Merging Regions for the Tree of Shapes

We combine the smoothed semantic segmentation and the FZH seg-
mentation to construct the first layer of the ToS, which contains the
most detailed segmentation of the input and will serve as a starting
point for the abstraction. We acquire an FZH segmentation of very
small regions by applying a weak gaussian smoothing and a small
value for the minimum region size. and split these along the object
edges in the semantic segmentation. This ensures that every pixel
of each resulting region is part of exactly one panoptic class object.

From here on, we merge adjacent regions to construct the hier-
archical ToS. Every layer l added to the ToS represents a further
abstraction. We obtain the shape adjacency for all regions on a spe-
cific layer by rendering all regions and constructing the region adja-
cency graph (RAG) from the rendered image. Using these adjacen-
cies, we compute connected groups of regions we want to merge by
checking our merge criteria for each node and its edges in the adja-
cency graph. This criteria for merging two adjacent regions on the
same layer considers the two regions’ relative sizes and color differ-
ences and previous merges involving the central node. It penalizes
comparatively small and isolated regions by merging them earlier
with larger and surrounding regions in the ToS hierarchy. However,
the merging still primarily depends on the color difference of the
shapes and is only added when the region size difference is below
a minimum user-defined threshold α ∈ (0,1].

Due to its construction, the ToS consists of shape regions con-
taining at least one pixel. Consider node a ∈ RAG(l) and nodes
n, ...,k,b ∈ RAG(l) that share an edge with it and are from the
same panoptic object. Let ac,nc, ...,kc,bc ∈ [0,255]3 be the re-
gions’ colors, and as,ns, ...,ks,bs ∈ N+ the number of pixels in the
regions. For the color difference as a similarity measure, we use
∆E, the CIE Delta E 2000 color difference [LCR01]. Furthermore,
let as ≤ ns ≤, ...,≤ ks ≤ bs hold w.l.o.g. From which we can fol-
low: ns

as
≤ ...≤ ks

as
≤ bs

as
. We choose ps as the constant penalization

weight for small regions. Then, for a threshold t, we merge regions
a and b under the following conditions:

• If as
bs

< α and (deg(a) = 1 or deg(b) = 1)
• If as

bs
< α and deg(a) ̸= 1 and deg(b) ̸= 1 and

∆E(ac,bc)− t ·
(
−log

(
as

bs·ps

))
≤ t

• If as
bs

≥ α and

∆E(ac,bc)− t ·
(
−log

(
as
bs

))
≤ t

• ∑node∈{ns,...,ks,bs} ∆E(nodec,ac)≤ t2

The function deg() yields the region’s degree in the adjacency
graph. We determined that a set of 22 thresholds can create a ToS
representation that contains useful abstraction scales of the input.
To select these thresholds, we did a stratified sampling of the se-
mantic perception ranges described in Table 1, specific for our artis-
tic abstraction application. Within the interval [1,10] we sample 10
thresholds uniformly to create a good coverage of detailed abstrac-
tions within the first layers of the ToS. For values more similar than
opposite colors within (10,49], we sampled another 10 values uni-
formly. From the final strata we selected thresholds of 75 and 100
to ensure that also the highest color differences are covered and the
final layer comprises all possible color merges. The used thresh-
olds can be changed for specific input images but are usually fixed
as described.

Table 1: ∆ E values according to [Sch20]

Delta E Perception
≤ 1 Not perceptible by human eyes.
1 - 2 Perceptible through close observation.
3 - 10 Perceptible at a glance.
11 - 49 Colors are more similar than opposite.
100 Colors are the exact opposite.
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3.3. Filtering regions within the Tree of Shapes

After constructing the ToS, we have a hierarchical segmentation,
for which we now need to determine what regions at what lev-
els of details we want to keep in the final image abstraction. On
the top layer of the ToS hierarchy are all objects and their discon-
nected subcomponents detected by the semantic segmentation at
their maximum extent. Their subtrees contain all merged regions
for the different merge thresholds within this panoptic class that are
non-overlapping on the same layer. Users can assign an individual
abstraction strength for all semantic classes and instances.

To create a proper image abstraction, we need to select a suitable
subset of regions within the ToS by using good abstraction strength
values for semantic objects to filter important ToS subtrees less,
while removing most details from unimportant subtrees. For that,
we can define the following filtering scheme and criterium for each
parent and child pair in the ToS.

We traverse the nodes of the ToS in reversed breadth-first order.
This ordering allows us to visit the nodes from the fine ToS shapes
to the root node layer by layer. The filter checks the child’s rele-
vance for each node compared to its parent. It removes nodes that
do not contribute enough new color information for their relative
size compared to their parent under the user-specified abstraction
strength parameter for the current subtree. We model region rele-
vance and removal of nodes and their connected subtree by remov-
ing them if they satisfy the following condition:

∆E(ac,bc)+∆E(ac,bc) ·
l1

lmax
< γp

Symbols a and b refer to the child and parent region and
l1, llmax ∈ N to child layer and maximal layer of the ToS, γp ∈
[0,100] is a user-defined hyperparameter that can be set individu-
ally for each semantic class. The subscript p refers to the semantic
class to which child and parent belong. With this parameter, a user
can set the minimum required color difference for a child node.

We selected the set of thresholds for constructing the ToS based
on perceptual categories for a general context [Sch20] and added
additional thresholds. Especially for minor color differences, we
want to create more perceptually relevant steps in the hierarchy
based on how many merges the thresholds produce. This selection
of thresholds seems appropriate, as ∆E is defined only based on
perceptual color differences but also depends on the available color
space of the application and the context o f use.

Region filtering additionally incorporates the ToS layer quotient
between the child region and the maximal reachable layer to model
more important regions preserved during the merging. Providing
a color difference bonus according to the shape layer should give
additional weight to medium-sized or large regions with color dif-
ferences slightly below the given user color thresholds. The user
thresholds for the panoptic class regions are inspired by the ∆ E
color difference and share its typical range. Therefore, they should
provide users with intuition on appropriate values for their desired
setting based on the interpretations of perceived color difference
values as presented in Table 1. Figure 4 shows some of the inter-
mediate layers constructed by the ToS merging procedure.

(a) Layer 1 (b) Layer 9

(c) Layer 17 (d) Layer 23

Figure 4: Illustration of the ToS structure. Layer 1 shows a min-
imally abstracted set of regions, and layer 23 has the highest ab-
straction with average colors. Original image [Zhy19]
3.4. Local Region Processing

Regular mean filters are not applicable for our application, as they
introduce mean values that do not correspond to existing regions.
Instead, we require using only existing values for smoothing, so we
need to use something akin to median filters. However, median fil-
ters smooth across visually significant semantic borders. We must
prevent that, as we assume these borders contain a visually impor-
tant distinction between two semantic objects.

Additionally, median filters might disrupt the geometry of im-
portant shapes where exact borders are needed. An example would
be window frames of buildings. Finally, median filters often create
fuzzy borders around the shape regions. These fuzzy region bor-
ders make the entire image look smoother than the original, but we
lose important sharp edges in the result. The goal of the proposed
smoothing is to remove as little detail from the shapes as possible
while still creating coherent borders wherever possible.

To enforce smooth borders between individual region shapes, we
introduce a notion of local coherence. Using the semantic infor-
mation encoded in the ToS, we avoid processing across semantic
borders in the following manner: we create rendered images of all
shapes with the same panoptic class using their label as color. Next,
we set all other pixels that are not part of any shape to a different
value. These regions will be smoothed subsequently. By differenti-
ating by class we can also control what objects are smoothed at all
to preserve very precise structures.

We also use semantic knowledge in the later processing with
robotic painting by processing semantic objects differently if we
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need to preserve their local geometry. Such objects can be drawn
with a small brush. An example use case would be to preserve text
on road signs.

3.4.1. Structural Coherence

Figure 5:
Kernels

The local structural coherence is defined on a
set of 3×3 neighborhoods (see Figure 5). We
check whether the positions at the green en-
tries all have the same label or are outside the
current semantic object. If satisfied for any of
these kernels, then the current center pixel is
considered coherent to its region. Otherwise,
we replace it with a label in the neighborhood
that does. If there is no suitable label, we mark
the pixel and continue. How to resolve these
instances is discussed in the next section. If multiple candidate la-
bels satisfy the structural coherence, we choose the label which has
the closest mean color to the color the pixel has in the original im-
age. This method can be seen as a semantics-based morphological
filter.

(a) Filtered ToS rendering (b) Result after smoothing regions

(c) Reassigned pixels (in white)

Figure 6: Results of the proposed region smoothing, the method
acts like a semantics-based morphological filter.

We used the Numba [LPS15] library to access all pixels and their
neighborhoods in parallel for each iteration to increase the perfor-
mance. We also compute the enforcement method for all semantic
class renderings in parallel to increase performance.

3.4.2. Filling the Gaps

After we enforce the structural coherence of all pixels and regions,
we may have pixels that cannot be assigned to any region without
breaking coherence. To resolve this issue, we create new regions
from connected groups of unassigned pixels. We overlap each con-
nected group with the rendering of all shapes before enforcing co-
herence. We then create new regions using the intersection of this
connected group with the regions in the rendering.

3.4.3. Reconstruction

Finally, update the geometry of all smoothed regions in the ToS and
remove all regions that are no longer visible. Some regions may dis-
appear as all their pixels were reassigned during smoothing. We do
that by iterating over all available region labels across all rendered
shapes, filtering them for this label, and creating a binary mask with
all pixels assigned to this value. Lastly, we replace the available
binary masks of the shapes with these extracted extents. Figure 6
shows the results of applying our proposed semantics-based mor-
phological smoothing method on the filtered ToS.

4. Results

Figure 7 and Figure 8 show results from the proposed framework.
In robotic painting, semantically unimportant regions will be rep-
resented by larger brushes and simple line patterns, and more im-
portant regions will be drawn with more precision and details.

We first create a panoptic mask for all images, with which we
create a ToS. This ToS is then filtered, and all shapes are smoothed
using the above method. The remaining shapes are then overlaid on
an image to create the final abstraction. In the results, the sky is ab-
stracted to one to two shapes, as these details were defined not to be
important. Complex, semantically more important objects such as
people, cars, or buildings are only slightly abstracted to create high-
fidelity regions. Structured regions that are not so important for a
scene, such as the vegetation and roads, were strongly abstracted as
backgrounds. Our method gives much freedom to the user to define
importance in terms of semantic object categories and instances.

In 8c, we can see the effect of our method. The street and sky
have been selected for significant abstraction, leaving only one re-
gion representing the street. Similarly, foliage has been reduced
in detail while preserving some color differences in 9b. Further-
more, due to semantic information, street signs and lampposts are
preserved despite their proximity to foliage. Finally, the cars and
people visible in the scene have been preserved with a high level
of detail in both images, drawing the focus onto them as the main
subject. This shows that our method can selectively abstract images
like human painters.

Shape count is also significantly reduced in Figure 7. The initial
segmentation contained 5423 regions which our method reduced
to 1195. Significant reductions were made in the semantic classes
"sky" (49 to 1 regions) and "road" (902 to 73 regions). In Figure 11,
we achieved a reduction from 2925 to 840 regions while preserving
the depicted people. The class "road" went from 2453 to 4 regions,
while the two people were reduced from 1142 to 949 and 1953 to
1206 regions, respectively. The result images retain most of the rel-
evant information, and the number of regions is sufficiently reduced
for a painting robot.

Figure 7 again shows the improvement offered by semantic in-
formation. The sky and road are only represented by one region
in the final output, while detail is preserved for cars, people, and
building facades to a lesser degree.

Figure 11 illustrates the use for further artistic applications
beyond abstraction. Using the semantic maps, we can direct a
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painterly renderer to place finer strokes in regions of high impor-
tance while reducing the fidelity in less relevant regions. A painting
robot can use the structural and geometric information acquired by
our method to derive a motion plan for painting.

In Figure 9 we used an abstraction with a robotic painting sys-
tem [GPD20] to get a painterly rendering of the proposed render-
ing pipeline to demonstrate that abstracted images can be used for
robotic painting. In this setup the areas detected by our method are
color quantized and then classified into areas, stroke groups and
details. These are then realized by the e-David system using visual
feedback.

(a) Original image [Pat18] (b) Result of the proposed framework

Figure 7: An abstraction of a foilage-heavy scene: The overall leaf
structure is summarized with a few shapes while preserving details
like branches. Roadsigns and lamp posts are preserved despite cov-
ering a small area and having similar colors to some of their back-
grounds.

5. Discussion

For region merging and region filtering, we used custom heuris-
tic criteria that model the regions’ relevance depending on a set
of general and user-defined thresholds specific to the input image.
In addition, these criteria model the importance of region pairs for
adjacent neighbors and child-/parent relationships in the ToS.

The conditions for merging two adjacent regions prioritize merg-
ing small and isolated regions. Medium-sized and larger regions are
merged at their appropriate perceptual color differences. Penaliz-
ing smaller shapes is justified since smaller areas with perceptually
similar colors to adjacent regions often only marginally add more
detail to the image. Therefore, we apply a logarithmic penalty de-
pending on the size quotient of the compared shapes and further
penalize isolated regions with a degree of 1.

Large merge groups can occur when a central region has a suf-
ficiently small color difference to each region, but the regions
amongst themselves can have a much larger total color difference.

We prevent such large groups from merging in a single layer by
using the sum of previous merges as a limitation for further merges
associated with the same node.

5.1. Region Smoothing

For specific images, applying regular median filters might intro-
duce a set of new discontinuities between regions or even new ar-
tifacts to the image. Particularly where regions have delicate parts
only a few pixels thick between larger subparts or along curved bor-
ders and can not guarantee that the final result would appropriately
smooth all region borders. The smoothing mentioned above ensures
we get regions that satisfy the defined coherence condition every-
where. However, our definition of local coherence removes some
pixels and small regions, as they can not assign to other adjacent
regions. These regions are the only ones that might still be incoher-
ent after construction during the filling method. Therefore, we fill
them in a way that keeps high visual fidelity to the original. Ad-
ditionally we can also leverage the semantic knowledge to exclude
specific objects from the filter if full fidelity is wanted locally.

5.2. Comparison of Smoothing Methods

Usually, image smoothing methods such as a gaussian, mean, or
median filter smooth an image using a fixed-sized kernel. These fil-
ters smooth all image features regardless of their local structure and
along all directions with the same strength. An issue here is that the
shapes resulting from the proposed method may contain features
that require different sizes of the smoothing kernel to be success-
fully removed from the image to create smooth region borders ev-
erywhere in the image. Instead of approximating such kernel size
hyperparameters locally, we defined the geometric structural coher-
ence as a smoothing paradigm. Figure 10 compares our method to a
regular 3×3 kernel size median filter. The median filtering creates
fuzzy borders, which can be avoided with the proposed method and
preserves finer details in the image.

6. Conclusion and Limitations

We present a framework for guided, hierarchical image abstraction
that combines image color- and semantic segmentation. The result-
ing regions are organized in a hierarchical Tree of Shapes with a
hierarchy constructed using CIE Delta E color differences and rel-
ative shape size differences.

Our framework employs two new region merge and filter condi-
tions based on colors and relative sizes. An image-smoothing pro-
cedure is used to reduce semantic noise artifacts and to smooth the
abstracted regions. This smoothing method relies on geometric co-
herence for local neighborhoods as a paradigm to reassign pixels
to different shapes. This way, we achieve region smoothing while
preserving local region details.

With a single parameter for each panoptic class, the framework
allows users to reduce the number of shapes representing a region
they are uninterested in or keep the region complex with many
different shapes. This abstraction is then further used in robotic
painting to realize paintings in a back-to-front, background-to-
foreground manner. The semantic information also allows us to
represent important objects in different styles and tools.
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(a) Original image [Bre17] (b) Panoptic segmentation result (c) Result of the proposed framework

Figure 8: An abstraction of a mostly constructed environment: People and cars are preserved at near full detail according to user input,
while buildings are abstracted only slightly. The road is fully abstracted away.

(a) Abstracted Landscape (our
method)

(b) Robot painted result

Figure 9: Comparison between the results of our proposed abstrac-
tion method and using it in a robotic painting system [GPD20].

Our method is limited by being dependent on the quality and
accuracy of the panoptic segmentation. The segmentation provides
object borders and thus determines exactly where two objects are
split. This can be arbitrarily far away from the real object borders.
Since the MaX-Deeplab panoptic segmentation framework we em-
ploy [WZA∗21] is a supervised learning approach, the space of
images we can use for our method is limited to what can be learned
from the dataset, the model is trained on.

Large regions formed in a semantic class with high color vari-
ance get pushed towards grey colors in the ToS construction since

(a) Smoothed with 3×3 kernel
median filter

(b) Smoothed with the proposed
method

Figure 10: Comparison of a median filter and our proposed
smoothing method

we aggregate colors based on their mean. We slow down this pro-
cess by ordering the merge steps based on the relative size and pre-
vent merges of regions with large variances. However, large high-
variance classes can still lead to artifacts in the final abstraction.
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