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Abstract

The Material Point Method (MPM) has become very popular in computer graphics due to its capability to handle a variety of
materials and ease of coupling for multi-material simulations. However, MPM suffers from numerical stickyness, which is espe-
cially apparent in fluid-solid coupling. Furthermore, the free-flowing nature of fluids can cause issues for simulating immiscible
fluids, leading to improper separation of phases especially at lower resolutions. Furthermore, some MPM formulations suffer
from unwanted dissipation, noise or instability. Our MPM framework solves the latter using the Moving Least Squares MPM,
while the former is addressed by coupling two grids only on contact, with an optional friction term for tangential coupling. This
is further enhanced with a buoyancy penalty force that can achieve clean separation of immiscible fluids even at low resolutions.
We combine this with a method for porous solids which we generalize in order to allow for highly varied material interactions.

CCS Concepts
e Computing methodologies — Physical simulation;

1. Introduction

MPM is a hybrid Lagrangian/Eulerian method that has become
increasingly popular in computer graphics. Particle advection ad-
dresses mass conservation, while momentum equations are handled
by the grid. Due to the momentum transfer of particles through the
grid and back, the method automatically handles coupling of dif-
ferent materials and can also be easily coupled with other simu-
lations [JSS*15]. Usage of multiple grids allows for overlapping
phases, i.e. to model porous materials [TGK*17]. These proper-
ties make MPM very useful for varied multi-material simulations.
Common problems of MPM such as its dissipative nature and the
ringing instability can be addressed using the Affine Particle-In-
Cell method [JSS*15] (APIC) or MLS-MPM [HFG*18]. Another
issue with MPM is its inherent numerical stickyness of the cou-
pling [SSJ*14].

In this work, we present a multi-grid MLS-MPM framework
for varied material interaction. We adopt and extend the ideas
from [TGK*17] for porous sand, generalizing their ideas to new
forms of interactions. We derive a generalized coupling between
grids similiar to [YLCHI18] which also supports tangential cou-
pling via friction, removing the problem of numerical stickyness.
To achieve better separation of immiscible fluids, we introduce a
buoyancy penalty force that is effective even for simulations at
lower resolutions. We adapt the approaches to miscible fluids and
dissolution from [YLCH18] to our own framework and extend this
by allowing dissolution of porous materials. Our framework allows
great freedom in the specification of how materials interact and
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change their properties based on another phase, allowing for the
simulation of varied effects.

2. Related Work

STOMAKHIN, SCHROEDER, CHAI, et al. [SSC*13] introduced
MPM to computer graphics. They used the method in or-
der to model snow, for which they combined the fixed-
corotated [SHST12] elasticity with a new plasticity model. Mo-
mentum transfer was handled as a blend between the Fluid Im-
plicit Particle [BKR88] (FLIP) and Particle-In-Cell [HERS55] (PIC)
formulations. Later on, their elasto-plastic constitutive model was
extended and used in a MPM for melting, heat transport and phase-
change, which also supported incompressible materials [SSJ*14].

MPM has been used for a variety of material behaviours.
This includes porous interaction of wet and dry sand with
water [TGK*17], viscoelastic fluids, foams, sponges and even
cloth [RGJ*15; YSB*15; JGT17] and many more materials
and multi-material interactions [FQL*20; WFL*19; NSS*19;
FLGJ19]. MPM continues to be actively researched to this
date [LCS22; FCK22; TM22; FHW21].

JIANG, SCHROEDER, SELLE, et al. [JSS*15] address the dissi-
pative nature of PIC as well as the noisy, unstable nature of FLIP
with their APIC method by describing particle velocities locally
affine instead of constant. MLS-MPM [HFG*18] works very si-
miliarly, but reduces computational costs by merging steps of the
computation and avoiding the computation of gradients. The au-
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thors additionally achieved two-way coupling with rigid bodies, as
well as material cutting. GAO, WANG, WU, et al. [GWW*18] par-
allelized MLS-MPM on the GPU and achieved faster computations
than with FLIP.

The MPM coupling is numerically sticky. YAN, L1, CHEN, and
Hu [YLCHI18] address this by using multiple grids and coupling
only when collisions occur, leaving tangential velocities discontin-
uous. Their approach also allows for miscible fluids via diffusion,
as well as dissolution of solids and fluids. FANG, Qu, LI, et al.
[FQL*20] use a more sophisticated approach to address stickyness
with a ghost matrix operator-splitting scheme. Their method sup-
ports coupling non-linear solids and incompressible fluids and is
not restricted to explicit time integration.

3. Material point method

In computer graphics, MPM is most commonly used to simulate
deformable solids. The laws of conservation of mass and momen-
tum for this scenario can be expressed with the following governing
equations:
Dp
Dr
where p is the density, v the velocity, o the Cauchy stress and g
is the gravity. For incompressible non-viscous fluids, the governing
equations are instead:
Dp Dv
5—07 PE——VPJFPQ (2)
where p is pressure. Equation (2) can be viewed as a special case
of Eq. (1), where we define o = —plI, along with the additional
incompressibility constraint. The divergence of o is then equiva-
lent to the pressure gradient in Eq. (2) [TGK*17]. Section 3.2 will
outline how we extend this to handle viscosity.

Dv
=—p(V-v), Py, =V otpg )

In the context of MPM, constitutive models are often defined
using an elasto-plastic energy density function W(Fg, Fp), where
Ff and Fp are the elastic and plastic portions of the deformation
gradient F'. This relates to the Cauchy stress as

v
" det(Fg) 0Fg

MPM solves these equations using a hybrid Lagrangian/Eulerian
approach. Velocity, mass and deformation gradient are stored in
particles (the material points), which makes the material derivates
in Eq. (1) simple to solve, but complicates the computation of
derivatives such as V - o. These derivatives are instead computed
using an Eulerian grid with grid basis functions that interpolate
between particles and the grid. As such, the method consists of a
particle-to-grid (P2G) transfer step that evaluates forces according
to Eq. (1), followed by a grid-to-particle (G2P) transfer step that
translates the grid forces back onto particles and evolves the de-
formation gradients. In the following, we outline our single-grid
MPM framework in more detail, which provides the core for our
multi-grid simulation described in Section 4.

3

3.1. Single-grid material point method

Our MPM framework is based on MLS-MPM [HFG*18] and the
work of STOMAKHIN, SCHROEDER, CHALI, et al. [SSC*13] who

introduced the method to computer graphics. We only use explicit
time integration. Our algorithm is structured into four major steps:
particle initialization, P2G, grid operations and G2P.

Particle initialization We sample particles using poisson disk
sampling with a default relative spacing of 0.5 grid units per di-
mension, yielding 8 particles per cell. Masses m, are determined
by evenly distributing the mass of the sampled volume among par-
ticles. Each particle p is assigned a constitutive model ¥p, which
includes the material parameters for that model. Furthermore, the
user can specify an initial velocity, which can either be a constant
or a function of the initial particle position. The initial volume V,(,)
of each particle is then estimated by computing grid cell masses m;
using a P2G step, estimating the cell density with the grid spacing &
as pg = mg / h3 and transferring this back in a G2P step:

pp,Zp ips Vp?:mp/pg 4)

where ©;, is the weight between cell ¢ and particle p according to
the grid basis functions.

Particle-to-grid The P2G step transfers masses and velocities to
the grid and computes grid forces. Masses are computed as:

my =Y mpay,. ©)
p

MLS-MPM allows to combine the momentum transfer and force
calculation by first calculating the matrix
0¥ T
Qp =M, 'V, BTP(F,Q-‘,,) +mpCy (6)
where M), is %hz or fhz for quadratic and cubic B-spline basis
functions, respectlvely C} is the additional affine matrix from
APIC [JSS*15]. Using Q, grid momentum is estimated as

v = ng'p (mpvp+ Qp(x; — ) . 7)
P

Grid operations Grid velocities are computed by dividing Eq. (7)
by grid mass and gravity is applied. We then apply the same al-
gorithm described in [SSC*13] to achieve one-way coupling with
rigid bodies using animated level sets. The result of this are the final
collided grid velocities v”“ STOMAKHIN, SCHROEDER, CHAI,
et al. also apply this colhs10n algorithm directly on particles at the
end of the simulation step. While we implemented this, we do not
use it because this bypasses the deformation gradient update. The
errors introduced by this are mostly apparent for free-flowing ma-
terials such as fluids and lead to clumping of particles around col-
lision surfaces (see Fig. 1).

Grid-to-particle The G2P step transfers grid momentum onto par-
ticles, evolves the deformation gradients and calculates the affine
matrix CZH. Velocities are updated according to APIC, which is
equivalent for regular PIC for this step:

n+1 wa :z+1. 8)
The affine matrix is updated as

C;Jrl 120)117 :z+1 _w;)T )

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



A. M. Nilles & S. Miiller / MLS-MPM for porous material interactions and non-sticky coupling 147

Figure 1: A 2D dam-break scenario. The top does not use addi-
tional particle collisions, while the bottom does. The errors caused
by this can be seen as dark blue spots where many particles are
clumped together.

and deformation gradients as
it = (1 + &y, (10)

which uses C;'H to estimate V'vl'frl according to MLS-MPM.
I:"E’;I is then treated as defined by the plasticity model to yield the
actual elastic portion of the deformation gradient and update the
plastic portion. Note that for fluids, full deformation gradients are
not necessary and this step can be simplified to an update of only
the determinant (see [TGK*17] for details). At the end of the step,
particles are advected according to their velocities.

3.2. Constitutive models

For hyperelasticity, we implemented the Neo-Hookean model, a
model based on Hencky strain, as well as the fixed corotated en-
ergy density from [SHST12]. We use two different plasticity mod-
els, namely the snow model from [SSC*13], which is paired with
the fixed corotated model, although we allow to use any of the other
hyperelastic models in combination with it. Furthermore, we imple-
mented the model for dry and wet sand from [TGK*17], using the
regular energy density function instead of the unilateral one that
was necessary due to their semi-implicit scheme.

We handle non-viscous fluids the same way as TAMPUBOLON,
GAST, KLAR, et al. [TGK*17] in a weakly-compressible manner.
In order to extend this with viscosity, first consider the respective
governing equations for incompressible fluids:

20, p = VpiuV(Vo)tpg (1)
where u is the dynamic viscosity. As MPM computes V - o, we can
define

o =—pl+uVv (12)

and due to our usage of MLS-MPM, Vw is simply the affine ma-
trix C. This approach is however very simple and does not sup-
port highly viscous fluids without requiring unreasonably small
timesteps.

4. Multi-grid coupling for MPM

While single-grid MPM is already a powerful method for multi-
material simulations due to automatically handling collisions be-
tween different materials via the grid, it does come with some lim-
itations. The numerical scheme of MPM causes collisions to be
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sticky, i.e. fluid particles can get stuck on a solid object because
its momentum will have a much bigger impact on the grid momen-
tum compared to a few individual fluid particles. For very similiar
reasons, the method cannot handle the separation of different free-
flowing phases very well, because thin strands or individual parti-
cles of a fluid are not sufficiently sampled to stay neatly separated
from another phase. Lastly, single-grid MPM does not allow for
overlapping phases.

To address these issues, we start by adapting the approach
from [TGK*17] for porous materials to our MLS-MPM framework
with a few extensions (Section 4.1). We derive a relationship be-
tween the drag-based momentum exchange between two grids and
the default single-grid coupling of MPM. Using these results, we
then define a modification of the single-grid coupling for multi-
ple grids which yields non-sticky coupling with control over fric-
tion and which allows for overlap (Section 4.2). We then adapt the
approaches for fluid-solid coupling, immiscible and miscible fluid-
fluid coupling and dissolution from [YLCH18] to our own coupling
algorithm (Sections 4.2 to 4.5).

4.1. Porous interaction of fluids and solids

In order to facilitate porous materials that can overlap with a fluid
phase, TAMPUBOLON, GAST, KLAR, et al. [TGK*17] treat the
solid and fluid phase separately, each with their own background
grid. For our algorithm this means applying the method from Sec-
tion 3.1 independently for both phases. Interaction between the
two phases is governed by momentum exchange terms [TGK*17],
which were adopted from [MAS*10]:

P =cp(v" —v")+p"Ve", p"=-p°. (13)
Here, s denotes the solid phase and w the fluid phase. The drag
coefficient cg is derived based on material parameters of the sand

as well as gravity (see [TGK*17] for details) and ¢" = pwp—npv is
the fluid volume fraction. The left part of the momentum exchange
term is dissipative and similiar to Coulomb-friction [MAS*10] and
models viscous forces due to sand particles that move through the
fluid. Our discretization of this is equivalent to [TGK*17] and hap-
pens during the grid operations step by calculating an additional
force:

fi= cEm;""m;.V’" (v}v’n - v;’n)7 Y =—fi. (14)
The right part is the buoyancy term. This term however is not dissi-
pative and thus was not used in [MAS*10]. TAMPUBOLON, GAST,
KLAR, et al. [TGK*17] did implement it, but did not use for the
majority of their examples. Due to our usage of MLS-MPM, which
avoids computation of Voo;’p, our discretization of this term is dif-
ferent from [TGK*17]:

w,n

SN W,n wna—1 _n m; n
.fbuoy =nym; Z_pl" M[’ mi[) ms,n - W, (mi - ili[,) . (15)
7 g .

k2 + m'L
This force is added to f; and subtracted from f;. The non-
dissipative nature of this can however easily lead to an unstable
simulation. Furthermore, Eq. (15) is another P2G step, which is the
most computationally expensive part of the method. For these rea-
sons, we came to the same decision as previous authors and did not
use it for the results produced in this paper.
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An issue with Eq. (14) for our explicit time integration is that
large values of cg cause the drag exchange to be non-dissipative
and instead accelerate the two phases away from each other. We
derive a maximum allowed value cg yax ; by solving for the point
at which the applied force causes both phases velocities to be equal:

v + At cpmy (vy —v3) = vi — At - cpmi (v — v3). (16)

The solution to this is
1 1
, Atpaxi = ——————
max, CE(m:V +mi)

an

CE max,i At(mf +mi)
and we clamp cg (0 ¢g max,; for each individual grid cell. An inter-
esting result of this is that if we set the drag coefficient to always
be the maximum, this is exactly the same coupling as single-grid
MPM where we have simply partitioned the set of particles onto
two grids which are later combined.

TAMPUBOLON, GAST, KLAR, et al. [TGK*17] used their algo-
rithm to model dam-break scenarios. The sand of the solid phase is
assumed to be initially wet to a degree that leads to high cohesion,
where any additional fluid instead lowers cohesion. This is facili-
tated by interpolating the initial cohesion cgg with 0 based on the
fluid volume fraction ¢:

et =c (-5, (18)
where the volume fraction is discretized as

w1 1 m" T > 0and mi™ >0
P T . (19)
0 otherwise
1 1
p =Y o, 07 (20)
(3

We generalized their ideas by first allowing both phases to consist
of arbitrary and multiple materials with different material proper-
ties, thus not being restricted to sand and water. The user is given
control over how the fluid volume fraction changes material pa-
rameters and which of the parameters are affected by specifying
different material interactions to Eq. (18). This could be gaining in-
stead of losing cohesion for sand, changes of the Lamé-parameters,
or even using it alongside materials such as snow and changing
parameters of the plasticity model, to name a few examples. Fur-
thermore, we allow changes of the material parameters not only for
the solid phase but also the fluid phase.

Another limitation of the model is that it does not consider capil-
lary action and there is no means for sand to store water and slowly
dry out over time. We thus introduce a new property, the effective
volume fraction 0 cfr, which is used to change material parame-
ters instead of the current volume fraction. ¢, ot is stored on parti-
cles and can be computed freely based on its value in the previous
timestep and the current volume fraction. Examples include:

1 1
O g = max () eqp, 0p ), 21
which causes the solid to never dry and
¢;;%f = (1 — )0 e+ oo (22)

where o can be chosen based on the timestep, which causes the ef-
fective volume fraction to change slowly over time, allowing effects
where the solid is slowly drying out. We give the user free control

over how the effective volume fraction is calculated and combined
with different material interaction terms, this leads to a wide variety
of possible effects without overcomplicating the original method.

Figure 2: A fluid column was initialized on top of a porous sand
column and quickly drains. Sand cohesion is multiplied by \/(]fﬁc,
which is visualized as the sand color and computed as in Eq. (22).
Cohesion does not immediately change with the water fraction and
the sand can retain its shape for longer with this method.

Figure 3: A hyperelastic, porous sheet is placed over a drain.
Contact with water slowly increases 0.5, which increases elasticity,
causing the sheet to eventually slip through the drain. At the same
time, water gains viscosity due to contact with the sheet. 0.5y is
calculated by combining Egs. (21) and (22), i.e. it is slowly gained
and then never decreases.

4.2. Generalized multi-grid coupling

YAN, L1, CHEN, and HU [YLCH18] proposed a coupling approach
that served as the motivation for our work and is very similiar to our
approach. They derived the force of the collision process between
two grids (phases) f1 and f, to be
P —pmy v (] o ()’
'fi’wl = S /2 = i S 23)
(m' +m;’ ) At (m;' +m;*)At

If we compare this to Egs. (14) and (17), this looks very similiar to
what we derived to be the correct force for collision based on the
drag term from the previous section. However, if we insert Eq. (17)
into Eq. (14), the correct result is actually:

pi'mf —pfm]

(m{1 + m{z )At
We believe Eq. (23) from [YLCH18] to be a typo. Using this equa-
tion lead to non-dissipative behaviour in our experiments and it
does not seem correct from a physics viewpoint. In the original
work, the authors ignore viscous forces during the collision, so their
contact force was just a normal force. We generalized this idea and
split our coupling into a normal and tangential force that can be
controlled seperately:

f{zcomact = —ﬁ?comact =B(ficol - mi)ns+ Fir. (25)

f 2,col = (24)
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Here, n; is the interface normal, which is discretized differently
from [YLCH18] in line with MLS-MPM as follows:

71 n
Al Ypeps MpW;, (i —xp)

i 26)
Hzper’ff mp}, (; —}) H
s =f
n{Z - ,n? - M7 27
=

where P%i is the set of particles associated with phase f;. We left
out M;l in this discretization as it is constant for our grid basis
functions and thus irrelevant due to the normalization.

The tangential portion f; ; of our contact force is controlled by a
friction parameter & which allows for stickyness if the normal force
is small enough:

Fin = (Fficol mi)14 (28)
fiy=Fico— Fin 29)
fi if | 5 1< 811 fin
firm Fis if [| £l Il finll 30

3 ||fz,n|| ﬁ, otherwise

As a simpler alternative, f;, can be computed as & fi,t- Similiar
to [YLCHI18], we can restrict the contact force to only apply when
a collision is detected. In order to make our coupling more gen-
eral we also allow to have it apply always, which makes it possible
to represent the default single-grid coupling as well as the drag-
based coupling from Section 4.1 in one unified coupling model.
For solid/fluid or solid/solid coupling, our approach can be used to
improve on the numerically sticky single-grid coupling by restrict-
ing the contact force to collisions and choosing B =1and 8 € [0, 1].
Unfortunately, this approach to coupling is not sufficient for immis-
cible fluids, which we adress in the following section.

(1,0,0) (1,0,1)

o

Figure 4: A cube of low density hit by a water column. The upper
left image uses fully coupled single-grid MPM, demonstrating the
numerical stickyness. The remaining images use our generalized
multi-grid coupling, where coupling is restricted to collisions. The
parameters (B,8,cp) are shown in the upper right for each image.

YAN, LI, CHEN, and HU [YLCHI18] needed their approach to
prevent penetration even for solid-solid and fluid-solid coupling.
This is due to their FLIP/PIC interpolation, as FLIP allows particles
to retain some of their velocities which circumvents the grid cou-
pling. As we use MLS-MPM, which is similiar to APIC, our single-
grid approach already properly couples all particles and penetra-
tion does not occur. Our reason for using this approach for solid-
solid and fluid-solid coupling is solely in order to address numerical
stickyness.

© 2022 The Author(s)
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4.3. Immiscible fluids

For immiscible fluids, YAN, LI, CHEN, and HU [YLCHI8]
used B = 0.3 and only apply their contact force if a collision is
detected. Applying this to our own coupling, this also means & = 0
as they did not have a tangential component for their contact force.
These parameters effectively mean that the two fluid phases behave
similiar to being porous on collisions, in other words the phases
will have overlap. If we let f = 1 as we do for solid/fluid and solid/-
solid coupling, the overlap is avoided in theory. Unfortunately, this
still suffers from similiar issues as attempting to handle immiscible
fluids in single-grid MPM. The fluid tends to form thin strands or
small droplets of liquid and this leads to particles from both phases
ending up finely mixed. An accompanying issue is that the esti-
mated normals become unreliable because of a more sparsely sam-
pled volume. While restricting the coupling to collisions using nor-
mals does help in letting the denser liquid pass through to the bot-
tom, proper separation is not achieved with any values for B, as the
coupling is dissipative and thus cannot actively counteract overlap
that already happened due to the described numeric limitations.

We solve this issue by introducing an artificial buoyancy by
means of a penalty force counteracting gravity. Particles are en-
hanced with their respective rest density pg , which is rasterized in
a P2G step onto grid cells as

m{p51 =Y &f,mppop. (31)
pEPTi
The buoyancy force is f;, = —gpV, given the density of the liquid p
and the displaced volume V. We use the rest density and mass of
one phase to estimate the displaced volume and the cell density of
the other phase for p. This yields our buoyancy force as

il f
n. n.

fip = cpmax(p)? 7 ) 79 (32)
Po,: 0,

where ¢, is a parameter used to scale the strength of this penalty
force. We apply this force to both phases with opposite directions,
where the phase with the higher rest density is pushed in the direc-
tion of gravity. Smaller values for § allow particles to more easily
slip past each other to separate, while also mitigating some of the
artifacts caused by high values for ¢;, that are needed for quick sep-
aration. However, a small  results in more overlap in situations
where the two phases collide in a direction orthogonally to gravity.
Nevertheless, our approach facilitates perfect separation of phases
as the fluids come to rest.

(0.3,0,0) (0.9,0,0) (1,0,0)

Figure 5: Two columns of immiscible fluids with different densities
collide. The upper left image uses fully coupled single-grid MPM.
The remaining images use our generalized multi-grid coupling,
where coupling is restricted to collisions. The parameters (,8,cp,)
are shown in the upper right for each image.
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4.4. Miscible fluids

YAN, L1, CHEN, and HU [YLCH18] approach miscible fluids with
the diffusion model
Dot
Dt

=k, V2ol (33)

with diffusion coefficient k; and concentration afi of fluid phase f;,
where concentrations summed over all phases are 1. Our discretiza-
tion of this is again different due to MLS-MPM:

£, mpop @}, (@i — 7))

mlival = : (34)
|z mpafiot, (@; - =)
Vo) =Y M, &}, Vol - (x; — ) 35)
(3

which involves an additional P2G and G2P step. Without the
normalization of Voc{" we experienced concentration changes
even in situations where concentration was constant across parti-
cles. We update particle masses and rest densities the same way
as [YLCHI18]. Unlike the original paper, we also added viscosity to
our fluids, which allows us to mix fluids of varying viscosity and
blend their viscosity values as they mix.

Figure 6: Two columns of miscible fluids with different viscosity
collide, resulting in a mixture with viscosity in between both. Ar-
tifacts of our diffusion method are visible as an unnatural pattern
in which the concentrations seem to propagate and in the final pic-
ture (lower right), there are still particles left over that have not
properly mixed.

4.5. Dissolution

We adopt the dissolution approach of [YLCHI18] as-is. The dis-
cretization stays the same for our MLS-MPM framework as it does
not depend on gradients of the grid basis functions. For details, we
refer to the original work in [YLCH18]. We use the approach for
miscible fluids from Section 4.4 to diffuse the concentration of the
dissolved solid inside the liquid, which allows for faster dissolu-
tion. Furthermore, the solid phase can use our algorithm for porous
solids from Section 4.1. Since porous materials can be penetrated
by the fluid phase, they are also able to dissolve faster. It is possible
to change viscosity of the fluid phase based on the concentration of
the dissolved solid.

5. Implementation

We parallelized our method on the GPU using OpenGL 4.6. P2G is
done as a scattering algorithm using layered point rendering with
additive blending, grid operations are done in a compute shader and
G2P is a gathering algorithm in a compute shader. Our implemen-
tation is however not optimized and thus not the focus of this work.
The P2G step tends to be the most expensive part of MPM, espe-
cially for our naive implementation, which means that computation
of grid normals and concentration gradients is costly. On the other
hand, the parts of our method that extend the G2P or grid opera-
tions have a smaller impact on performance. For this reason, per-
formance largely depends on how well optimized the P2G is. GAO,
WANG, WU, et al. [GWW*18] massively reduced the cost of the
P2G step, which would make our extensions significantly cheaper.
More advanced and optimized GPU-parallel MPM algorithms can
be found in the literature [GWW*18; WQS*20].

6. Results

We discuss our results using six different scenes, organized into the
categories porous materials, solid-fluid coupling, immiscible fluids,
miscible fluids and dissolution. The supplementary material con-
tains the videos for all of the scenes and figures in this paper.

Porous materials For our first scene (Fig. 2), we initialize a sand
column and water column at the same location. The effective vol-
ume fraction is initialized to 1 and changes according to Eq. (22)
with o = At. Sand cohesion is multiplied by +/®cfr, which is op-
posite to what was done in [TGK*17]. As the water drains, the ef-
fective volume fraction decreases at a slower pace, as indicated by
the color change from red to green in Fig. 2. Cohesion decreases
over time after no water is present in the cell, and once it passes
a threshold, the column starts collapsing. The sand continues to
lose cohesion, causing further sandslides until cohesion reaches 0.
With the original method from [TGK*17], the sand would instead
immediately return to zero cohesion as the water drains and start
collapsing right away.

Our second scene (Fig. 3) demonstrates how we extend porous
interaction to other materials. A porous hyperelastic sheet is placed
on top of a drain and water is poured on top if it. The sheet is
initially capable of bridging the drain, but as ¢ increases, we de-
crease its Young’s modulus and it eventually slips through the gap.
At the same time, fluid viscosity is increased with @, causing it to
gain viscosity as it passes through the porous sheet. For this scene
we compute Qefr as

¢Z;}f = max (0} efr, (1 — A7) ofp + Ar o). (36)

Solid-fluid coupling We demonstrate our generalized multi-grid
coupling using a 2D scene (Fig. 4). A hyperelastic cube is hit by a
column of fluid, with a density ratio of 2 : 5. The default single-grid
coupling of MPM leads to numeric stickyness and causes fluid par-
ticles to stick to the cube. If we restrict coupling to collisions and
fully couple the normal forces, stickyness is prevented, but some
fluid particles can penetrate the solid due to slight inconsistensies
in the normals. This can be mitigated using our buoyancy penalty
force that we proposed for immiscible fluids. If ¢, is too large, this
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causes a gap between solid and fluid, and fluid particles that hit
the top part of the solid are sucked through the solid. If we use our
proposed tangential coupling, both penetration and numerical stick-
yness are prevented even without the additional buoyancy force.

Immiscible fluids We show how different parameters for our cou-
pling approach affect immiscible fluids with a 2D scene containing
two colliding water columns with a density ratio of 2 : 5 (Fig. 5).
A fully-coupled single-grid simulation cannot cleanly separate the
phases and instead leads to a soft gradient of overlapping phases.
Using the approach from [YLCH18] with B = 0.3,0.9 and 1 re-
sults in even more overlap of the two phases, while our approach
with f = 1 and 8 = 1 performs slightly better, but still worse than
a simple single-grid simulation. These results are in line with our
expectations but contradict the results shown in [YLCH18]. This
contradiction could be due to differences in our MPM discretization
and fluid model. However, overlap with B < 1 is to be expected as
it is similiar to the phases being porous, as described in Section 4.3.
Restricting the coupling to only collisions has problems inside the
volume, as normal directions are unreliable except for surfaces. It
is possible that [YLCH18] accounts for this by not coupling the
overlapping volumes, but this would require some form of interface
tracking. Our buoyancy penalty force manages to cleanly separate
both phases, with only temporary overlaps. For very large values
of ¢, especially in conjunction with a large B, it causes artifacts in
form of a gap between phases as well as continuously generating
motion. Despite this, even with unreasonably large c;, velocities
did not increase infinitely, thus simulation was still stable without
changing our timestep.

Miscible fluids In our fifth scene (Fig. 6) we mix two fluid
columns with different viscosity, generating a mixture with a blend
of the original viscosity levels. Our adapted MLS-MPM discretiza-
tion for the concentration gradient seems to cause some artifacts.
The concentrations mix in an unnatural pattern and there are left-
over particles that do not have fully mixed concentrations. We thus
propose to instead use the original discretization from [YLCH18]
that uses V instead of differences, which is more accurate, but
more expensive to compute [HFG*18]. Despite that, our extended
fluid model with viscosity allows for additional interesting effects
not captured by the original algorithm.

Dissolution For our last scene (Fig. 7), we dissolve a bunny using
the snow model from [SSC*13] in water. The solid is modeled to
be porous and the dissolved concentration is diffused in the liquid.
These two additions allow for much faster dissolution, as the diffu-
sion dissipates the concentration, thus allowing the fluid to further
dissolve the solid, while also being able to dissolve the inside of
the volume instead of being limited to the exposed surface thanks
to the porous solid.

7. Conclusion

MPM proves to be a very versatile and flexible method for com-
puter graphics. The MLS-MPM discretization greatly improves
momentum conservation, while mitigating the computational costs
of APIC [JSS*15; HFG*18]. Support for viscous fluids was sim-
ple to add to the MPM formulation. Our extensions to the frame-
work for porous materials from [TGK*17] allow for great freedom
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in designing material interactions and enable many interesting ef-
fects. Furthermore, our generalized multi-grid coupling with nor-
mal and tangential contact forces improves on the standard single-
grid coupling, getting rid of the numerical stickyness that is a core
issue in MPM. Our buoyancy penalty force is very effective in
solving issues with overlapping phases, most notably for immis-
cible fluids, while still allowing for stable simulations despite be-
ing non-dissipative. Lastly, extension of the dissolution approach
from [YLCHI18] with our porous solid approach synergizes well
and enables quicker dissolution.

Figure 7: A bunny with a snow material is dissolved in fluid. The
snow was made slightly porous and diffusion of the dissolved solid
in the liquid was enabled for this scene. In the lower right, the solid
has fully dissolved and its particles are now part of the fluid phase.

8. Limitations and future work

A core limitation of this work is the lack of support for very stiff
and incompressible or nearly incompressible materials. Support
for stiffer materials could be improved using a implicit or semi-
implicit method, but this is non-trivial as [TGK*17] has shown that
this can negatively impact material behaviour, which required an
adapted energy density in their case. Incompressibility of the fluid
would be simple using incompressible FLIP or APIC instead of
our MPM formulation, which can easily be integrated with MPM
thanks to the hybrid Lagrangian/Eulerian formulation. Solids are
more complicated, but possible as shown in [SSJ*14], however it
is not straightforward to extend their approach to arbitrary energy
densities and materials.

The issues with our diffusion approach warrant further research.
While we suspect the reason to be our modified discretization, we
have yet to conclusively show that. Further research is required
here, especially with respect to conservation of mass, as the cur-
rent approach does not necessarily guarantee this.

Lastly, while dissolution works well, the current approach is one-
way and the dissolved solid cannot return to a solid phase, i.e. pre-
cipitation is not possible. Furthermore, the change from solid to
fluid phase is abrupt, as the particles switch their material immedi-
ately. Further research could focus on the blending and interpola-
tion between different materials to make this process more smooth.
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