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Figure 1: Example renderings of materials with highly complex reflectance behavior containing anisotropy and Fresnel reflections. The
SVBRDFs were reconstructed using our novel method from only 14 pairs of view- and light-configurations. The SVBRDFs of the rendered
reference materials are provided by the Bonn SVBRDF dataset/ MHRK19].

Abstract

In this work, we adapt and improve recent isotropic material estimation efforts to estimate spatially varying anisotropic mate-
rials with an additional Fresnel term using a variable set of input images and are able to handle any resolution. We combine
an initial estimation network with an auto-encoder to fine-tune the decoding of latent embedded appearance parameters on the
input images to produce finely detailed SVBRDFs. For this purpose, the training must be adapted so that the determination is
possible on the basis of a small number of images that still capture as much reflective behavior of materials as possible. The
resulting appearance parameters are capable of capturing and reconstructing complex spatially varying features in detail, but

place increased demands on the input images.
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1. Introduction

The capturing and digital representation of spatially varying re-
flectance behavior of real-world materials is an important topic
with many applications, such as entertainment, media and adver-
tisement. The use of spatially varying bidirectional reflectance dis-
tribution functions (SVBRDFs) has proven to be advantageous as
this parametric representation is very compact and efficient to ren-
der. However, the acquisition of this representation often requires
specialized equipment and a laboratory environment as well as a
large number of images of the material to capture the exact re-
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flectance behaviour. An effective device designed specifically for
this purpose is the TAC-7 scanner [XR18].

In recent years, advances with light-weight learning-based meth-
ods have softened the requirements and made it possible to capture
SVBRDFs using simple devices such as mobile phone cameras,
often times requiring as little as a single image, but they are of-
ten limited to a small resolution of 256 x 256. These deep-learning
based methods are concerned with the detection of isotropic sur-
faces. However, some materials require more complex reflectance
representations which need additional parameters, displayed in Fig-
ure 2. For these, the representation with isotropic models means a
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Figure 2: Display of problematic reflections for isotropic estima-
tion approaches produced by the Material GAN.

loss of reflection behavior. We seek to estimate more complex re-
flections by building on existing methods for isotropic materials
and refining and adapting their methodology to predict anisotropic
reflectance behavior, as well as reflectances modeled by a Fres-
nel equation, from a few input images. Recovering these reflec-
tions of a material from a few input images is an ill-posed problem
as many combinations of appearance parameters can represent the
original images. As the complexity of the underlying appearance
model increases, so does the set of possible parameter representa-
tions. In Figure 1 we present results obtained with our method for
such complex materials. Our main contribution to the state-of-the-
art is thereby:

e Estimation of anisotropic reflectance behavior and spatially
varying Fresnel terms.

e Identification of rules to select view- and light-configurations
necessary for a few shot capturing scenario and network train-
ing.

e Support for arbitrary image resolutions.

2. Related Work

For many years, the parameters of materials have been measured
using specialized equipment in laboratory environments. For such
procedures, devices such as the TAC7 scanner[ XR18] are used, but
they take many hours and are not applicable in the wild. The rise
of learning-based methods in various fields has also brought great
advances to material acquisition methods. One of the first learn-
ing based techniques[DAWOI] is able to classify reflectance be-
haviour under unknown light conditions and arbitrary geometry of
the surface. It is able to learn connections between the reflectance
and certain statistics based on an image. Closer to our problem is
a work by [LDPT17], which also attempts to use Convolutional
Neural Networks (CNN) to estimate SVBRDF parameters based
on a single image. However, it only deals with the prediction of
normal and diffuse features and is therefore limited to represent
only uniform specular reflections. A later learning-based method,
[LXR*18], deals with the estimation of albedos, roughness, normal
and depth from a single image and is thus already able to repre-
sent much more detailed reflections. A subsequent paper[BJK*20],
which predicts the same reflection parameters, noted that a single
image often does not contain enough information to reliably esti-
mate all reflections, which also holds true for this work, where we
need more informations to estimate the reflections.

One of the foundations of this work is the methodology of

[DAD*18], in which a single flash-lit image is used to estimate an
isotropic material. It uses a deep-learning U-Net architecture with
an additional global feature track to combine local with spatially
distant information. In a subsequent work [DAD*19] the method
was extended to use multiple input images. We adapt and mod-
ify this architecture for our anisotropic materials while incorporat-
ing other ideas, as it is crucial for us to combine the information
from multiple images into their appearance parameter representa-
tion. The combination of optimization methods with learning-based
methods can also be used for the determination of SVBRDFs. Other
methods, such as [BL19] improved on single image estimations us-
ing a Generative Adversarial Network (GAN) architecture.

In [BJLPS17] it has already been shown that optimizing a latent
space of GANs can provide useful results in tasks such as sam-
ple interpolation and sample synthesis. The Material GAN network
[GSH*20] showed that this latent space optimization can also be
used to optimize the SVBRDF parameters of isotropic materials
based on a few input images. The goal of the optimization is to
be able to display the input images with the help of the generated
appearance parameters. Previously, Gao [GLP*19] had shown that
this optimization in the latent space of a simple auto-encoder is ad-
vantageous compared to direct optimization using a few input im-
ages for the appearance parameters of isotropic materials. We adapt
this method for our work, where especially for our anisotropic ma-
terials the choice of input images is important to have a solid tar-
get for the optimization. Asselin’s work [ALL20] further demon-
strated the problem with many learning-based methods trained on
synthetic materials and the weaknesses when applied to real-world
materials. We therefore train on a dataset that does not directly use
synthetic data, but instead uses traditional methods to obtain the
SVBRDFs of anisotropic materials from the real world. In addi-
tion, the work of [BBJ*21] also showed the problems of shifting
away from laboratory setups with a single point-light, considering
rather uncontrolled environmental illumination, when dealing with
the task of geometry and material property determination.

3. Methodology

Our method for SVBRDF estimation presented in Figure 3 uses an
arbitrary number of input images, which are converted into appear-
ance parameters using an estimation network introduced in Sec-
tion 3.2. We use an encoder E that converts the appearance pa-
rameters into a latent vector z and a decoder D performing the
back transformation with the procedure described in Section 3.3.
We fine-tune this decoder for each material, using the input im-
ages as well as their view- and light-configuration, presented in
Section 3.4. Additionally, we define a selection procedure for these
configurations in Section 3.6, since their selection is crucial for the
reconstruction and for keeping the number of required images low.

3.1. Rendering Model

We render the anisotropic materials using the Geisler-Moroder vari-
ant [GMDI10] of the anisotropic Ward BRDF Model with Fresnel
reflection term. The model is defined for a point p on the surface
of the material. The geometric tangent frame is computed with the
help of the heightmap H(p). It is defined by a tangent tg(p), bi-
tangent bg(p) and geometric normal ng(p) and computed using the
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Figure 3: Presentation of the pipeline of our anisotropic material estimation. All images, divided into 256 x 256 tiles are fed to an estimation
network and recombined to the original resolution, creating an initial feature prediction. The appearance features are afterwards transformed
to a latent embedding z with the help of a pre-trained encoder and use a pre-trained decoder to transform z back into feature predictions
and fine-tune this decoder using the input images, thus improving the estimates. To further improve the resulting features, we refine them
afterwards with the help of an traditional optimization of the estimate with the help of the input images.

gradients of the heightmap. f,(p) and bg(p) are re-orthogonalized
by a Gram-Schmidt step. The anisotropy map o(p) defines the an-
gle of rotation of the tangent frames around an additional shading
normal ng(p). Thus there are three basic vectors defining an or-
thonormal basis for each pixel.

The view- and light-direction v and / are transformed into the lo-
cal coordinate frame and the un-normalized halfway vector 4 is
created by adding these two directions up in R3. Additionaly the
Fresnel term requires a normalized halfway vector ' computed as
1’ = h/||h||. The final anisotropic Ward model is detailed as

n_aa(p) _as(p)F(Fo(p),(wh')) 4
Jip b d)= v n6x(p)oy(p)h? <

The parameters needed to compute the model are the diffuse albedo
aq(p), specular albedo as(p) and the Fresnel term at 0° incidence.
The 2-dimensional lobes are defined as ¢ = (Gx,Gy)” . The term d
is computed as

ey

(h3/0x(p)?) + (3 /oy (p)?) .
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Omitting the dependence on the single point p for our notation,
we obtain our appearance parameters s = {ay,ds,ns,0,0, Fy} and
make use of the Schlick Fresnel approximation [Sch94] defined by

F(Fy(p).8) = Fo(p)(1—Fy(p))(1 —cosB)°. 3)

It must be noted that the specular albedo as in our model, unlike
in common Ward models and its variants, is not bounded by 1, but
is divided by the Fresnel term a; = a} /Fy. However, all qualitative
comparisons of the specular properties in this paper remove the di-
vision of the Fresnel term from the specular albedo and display aj.
Our methods also estimate a} and Fy separately and as is calculated
afterwards.

3.2. Estimation Network

We require an initial estimate for the appearance parameters and
therefore alter the original multi-image network [DAD*19] for
our purpose. the architecture follows the U-Net architecture by
[RFB15] with an accompanied global feature track. The informa-
tion is compressed by reducing the resolution of a 256 x 256 res-
olution input image in each encoder layer, while increasing the
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number of features and feeding information from the encoder to
the corresponding decoder with the help of skip-connections. The
global feature track feeds global information back into the net-
work, as complementary information is present in distant regions.
To account for the increased complexity of anisotropic materials
the maximum feature size of the encoder is increased from 512 for
isotropic materials to 1024 while the architecture of the six encoder
layers is not changed any further. For the decoder we incorporate
the idea of [LXR* 18] using a single encoder track to encode the
information, but splitting the decoder track into multiple ones. In
contrast to the single image network of [DAD* 18], we use two
decoder tracks, one of which is responsible for the diffuse, spec-
ular, lobes, and Fresnel features, and the second decoder track for
the normal and rotation features. The single encoder ensures con-
sistent encoding of the input information, while the decoders can
each interpret it separately depending on the features within the
two paths. We do not split the decoder further to keep connec-
tions within the features per decoder track. The structure of each
decoder layer is still kept the same as in the original multi-image
architecture, where the resolution is doubled in each deocder layer
while the feature size is halved. The skip connections from the en-
coder layers are forwarded to both corresponding decoder layers,
where the output of the previous decoder is concatenated with the
data of the skip-connection along the feature channel, displayed in
Figure 5. The following convolution handles the reduction to the
correct feature size. The output of the global feature track of the
encoder is also routed to both decoder tracks, where each decoder
track has its own global feature track. To match the number of en-
coder layers, each decoder track has six layers, but as each track is
responsible for different amounts of features the channel sizes are
adjusted. The first decoder track, responsible for four features, has
a maximum output feature size of 512 and the second track, respon-
sible for two features , has a maximum output feature size of 256.
These are gradualy reduced to 64 and 32 channels. The output of
each single image network therefore consists of two decoder track
outputs, each consisting of a U-Net path and an associated feature
path.

Since each input image is converted to such an output by a single-
image network, maxpooling layers are used to combine all out-
puts into one output consisting of two U-Net paths with associated
global feature paths, displayed in Figure 4. Since the estimation
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Single-image Network

Pooling
Figure 4: Structure of the estimation network, handling a flexible
amount of input images. Each output path of the single-image net-
works is responsible for different features and kept seperated from
another. The outputs of the single-image networks are combined
with maxpooling layers highlighted in blue.

network is already supposed to generate a first estimation of param-
eters and still has 64 and 32 channels per pixel of information, three
further convolutions are applied to generate the appropriate number
of channels per pixel for each of our paths. The first path is respon-
sible for the reconstruction of diffuse albedo, specular albedo, lobe
and fresnel maps. Therefore, its information is reduced from 64
channels per pixel to 9 channels per pixel using the three convolu-
tions. In the second path, responsible for the x and y directions of
the normals, as well as the rotation values, the number of channels
per pixel is reduced to 3.

3.3. Inverse Rendering Framework

Although the estimation network is able to provide an initial es-
timate of the SVBRDF parameters, it only uses its learned prior
assumptions diluting the result. To make optimal use of the infor-
mation contained in these input images, we adapt and improve the
inverse rendering framework[GLP*19] for anisotropic materials,
but keep the original network architecture. It improves the initial
SVBRDF estimate with the help of an optimization in a latent em-
bedded space provided by an auto-encoder. The encoder provides
the latent embeddingt of the parameters and uses 5 layers each us-
ing a convolution to increase the feature size, while reducing the
resolution. A single batch normalization is performed at the end
of the encoder layers for regularization during training to balance
the noise and smoothing effects of this regularization. The channel
sizes of the encoder layers are 64, 128, 256, 512 and an increased
1024 channels, to account for the increased information necessary
for anisotropic materials. The five decoder layers, decoding the la-
tent space back to appearance features use transposed convolutions.

3.4. Optimization

Traditional optimization approaches try to find appearance
parameters s which describe a set of input images {/};, mini-
mizing the sum of a loss function L comparing an image /; to
the rendering R of the appearance parameters using the same
view- and light-configuration C; as the input image, displayed in
Equation (4). This loss function computes the mean difference
between an input image /; and the rendered appearance parameters
in log-space. This optimization of L with respect to s results in a
per-pixel minimization, with no connection between the individual
parameter maps, leading to parameters incorectly expressing

DD:“‘ ek

Figure 5: The structure of our single-image network with two
decoder tracks. The feature-track is highlighted in green and the
skip connections forward the data to both decoder tracks and is
highlighted using dotted lines.

256x2508x3

characteristics of other parameter maps. To counter this problem
of traditional optimization, Gao’s original approach proposes to
move the optimization into the latent space provided by an encoder
of a pre-trained auto-encoder network. This results in better
preservation of connectivity between features, but also suffers
from some blurryness in the resulting features. We argue that this
optimization of the latent space between the encoder and decoder
is not strong enough, especially for our more complex scenario
where some of the Fresnel and anisotropy features are only visible
in fine details of the input images. We therefore fine-tune the
decoder of the auto-encoder instead of optimizing the latent vector
z to estimate the appearance parameters.

argminL(I,R(s,C)) )

L= mean(|log(l;+0.01) —log (R(s,C;) +0.01)|)  (5)

We compute the loss in the same way as in the traditional optimiza-
tion, except that we no longer directly optimize the appearance pa-
rameters, but rather train the decoder using the loss shown in Equa-
tion (6). We only use the input images and their configurations to
evaluate the performance of our decoder.

L= Zmean(| log (; +0.01) —log (R(D(z),C;) +0.01)|)  (6)

Additionally we make use of the traditional optimization in order
to display even fine details in the features that have been lost due to
the smoothing effect of the architecture of the auto-encoder.

3.5. Image Resolutions

We enable our methods to predict SVBRDFs of materials with
any resolution. Without any adjustments, our estimation network
is only able to provide SVBRDFs with a resolution of 256 x 256.
Therefore, we use a sliding window method to divide the input im-
ages into 256 x 256 slices. We overlap these slices up to 192 pix-
els, resulting in many estimates for one pixel. We average these
estimates and merge all the estimates back together to regain the
original resolution.

In the next step, we would like to optimize this initial SVBRDF
estimate using the auto-encoder. However, due to its architecture
it is limited to slices that are a multiple of 23. To solve even this
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limitation and allow any resolution, we add a padding to the input
to change the resolution to a multiple of 23. This padding is then
removed before being returned by the network, thus restoring the
original resolution.

3.6. Image Configuration Selection

In order to capture the reflectance behavior of materials using
only a few images, the selection procedure of view- and light-
configurations is of great importance, as [LDPT17] has already
stated. It aims to limit the large space of possible configurations
to those that produce meaningful reflections. The configuration se-
lection presented is not perfect for every material and only serves as
a reference to achieve good results in general. Since the reflections
caused by the Fresnel terms are only visible under special config-
urations, we define a Fresnel configuration that particularly tries
to highlight them in limited region of the material and rely on the
learned connections to apply these information to the other regions.
It must also be noted that these fresnel configurations provoke ex-
treme reflections and need to be balanced by the other configura-
tions to avoid burn-in to other features. In addition, we define a
configuration that causes anisotropic reflections, for which we need
two images of a region on the material. To keep the total number of
images low we also use independent configurations to view many
areas of the material. For each configuration, we need to define the
sampling method for the view- and light-positions. Since we allow
materials with non-symmetric sizes, we need to define the configu-
rations depending on the longest side n of a material. Additionally,
the positions are distanced from the material according to n to en-
sure a sufficient number of highlights in the input images.

o Fresnel-configuration: A view-position is placed beside the
material roughly along the center axes with a distance of up to
0.5n and a height of 0.1n to 0.4n to cause a strong Fresnel re-
flection across the material. The light-position is arranged in an
approximate mirroring configuration.

e Anisotropic-configuration: The view-position is sampled from
a cosine distribution and a light position is generated in a mirror-
ing configuration. A second configuration is created by rotating
the first configuration by 90°. The center of both configurations
is moved together to a random position on the material and each
view- and light-position is randomly distanced between n and 4n
away from the material.

o Independent-configuration: Both view- and light-positions are
moved independently to a random position on the material and
are randomly distanced between n and 4n away from the mate-
rial.

4. Implementation Details

After defining the methods, we now discuss the implementation
details. We address the used dataset, the training of the learning-
based approaches and the optimization implementation.

4.1. Dataset

Most other works, which estimate the appearance parameters of
isotropic surfaces make use of SVBRDF datasets containing syn-
thetic data created by designers and artists. While these display
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a wide variety of materials, they do not capture the variety of
real-world objects. We make use of the Bonn SVBRDF Dataset
[MHRK19], containing a wide variety of SVBRDFs of many dif-
ferent kinds of real-world fabrics. These SVBRDF parameters are
fitted with the help of a highly accurate TAC-7 scanner using the
Pantora[XR19] anisotropic textile preset. During the capturing pro-
cess of the appearance parameters by the scanner, the textiles are
rotated five times in 45° steps. Four cameras with different LED
point lights turned on are used for each of the rotations. The result
is 348 panchromatic images, 100 color images, and some line-lit
images taken using a linear light source. All images are used for
the fitting process.

The dataset is divided in three sets: A training, validation and an
additional challenge dataset. The training dataset contains 300 fab-
rics and the validation dataset around 60 materials, which we also
use as the training and validation data of our training process. The
materials vary greatly in resolution and are described by the param-
eters of the Geisler-Moroder Ward Model with a spatially varying
Fresnel reflection term.

4.2. Training Details

With the methods defined we need to train two seperate net-
works to estimate the final appearance parameters. The estima-
tion network takes input images I with a resolution of 256 x 256
transformed into log-space using Equation (7) to reduce the dy-
namic range and scaled and shifted to range [—1,1] as input.
We have to set some requirements on the input images, in con-
trast to other works on isotropic materials, as not all features are
visible under every input view- and light-configuration. We dis-
cussed the view-light configuration choices in Section 3.6 and use
five images, one using the Fresnel-configuration, two images us-
ing the anistropic-configuration and two images sampled from the
independent-configuration for the training of the estimation net-
work.

_ log(x+0.01) —10g(0.01)
~ log(1.01) —log(0.01)

@)

We require some transformations of the features for the input of the
auto-encoder and also return the transformed features. The rotation
values are transformed from range [—n/2, /2] to range [—1, 1] and
the normals are reduced to their x and y directions. Both networks
are trained on 256 x 256 resolution patches. To judge the perfor-
mance of the estimation network we make use of an L; and render-
loss Ly with both weighted equally. The render-loss is crucial in
capturing the perceptual performance of the parameters, comparing
reference SVBRDF G and the estimated SVBRDF P in log-space
using the same view- and light-configuration C and our rendering
model R for i view- and light-configurations, displayed in Equa-
tion (8).

Ly =Y mean(|log(R(G,C;) 40.01) — log(R(P,C;) +0.01)[) (8)

We already mentioned that we have to choose the configurations
C more carefully to make sure all the features are visible in the
renderings, extending the ideas from the work of [DAD*18] for
our anisotropic materials. We defined our Fresnel-, anisotropic-
and independent-configurations in Section 3.6 and sample two
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Figure 6: Estimated features of two materials of the validation dataset using 12 input images, as well as two novel view images rendered
with the help of the estimated features. The red material has a resolution of 1024 x 350 and the yellow material a resolution of 1024 x 393.
The difference images show the mean absolute difference between the rendered images of the new view with the reference parameters and
the predicted parameters, and show the largest difference in regions with inaccurate Frensel predictions. The x- and y-directions of the lobes

are displayed in the R and G channel of the RGB space.

Fine-tuned Results configuration o

Refined Results configuration o

Refined Results configuration B

N ag ag ng c o Fy ag dy

c o F aqg as ns c a K

8 [0.0004 0.0024 0.0023 0.0072 0.55 0.070|0.0003 0.0022 0.0018 0.0068 0.52 0.070 | 0.0008 0.0027 0.0033 0.0079 0.51 0.14

101 0.0005 0.0025 0.0023 0.0072 0.55 0.067 [ 0.0003 0.0023 0.0017 0.0068 0.52 0.066 | 0.0008 0.0028 0.0033 0.0083 0.51 0.15

12 {0.0004 0.0021 0.0022 0.0072 0.54 0.06 |0.0002 0.0019 0.0016 0.0068 0.50 0.059 | 0.0006 0.0026 0.0028 0.0074 0.52 0.18

Table 1: Comparison of fine-tuned results with and without a refinement step using a mean squared difference metric and N ranging from 8 to
12 input images. The evaluation is performed on 58 materials of the validation data set with the differences measured after re-transformation

of the features to their original range of values.

pairs from the anisotropic-configuration focussing on the high-
light of specular and anisotropy features, one from the Fresnel-
configuration and one from the independent-configuration to sam-
ple the configurations for the render-loss. The auto-encoder is
trained using the same equally weighted L and render-loss, but ad-
ditionally requires a smoothness loss term, to make the latent space
and the decoding of it less dependant on a perfect input SVBRDEF,
which we try to esitimate in the first place. We follow the definition
and parameters of the smoothness loss of [GLP*19].

We train the estimation network for 300 epochs using a batchsize
of 4 and the auto-encoder with a batchsize of 16 for 500 epochs.
We make use of an Adam optimizer with a learning rate of Se—5
for the estimation network and a learning rate of 1e—3 for the auto-
encoder.

To fine-tune the decoder, we use an Adam optimizer with a learn-
ing rate of 7.5e—4 and 5000 optimization steps followed by 500
refinement steps with a learning rate of 1e—4. The selected learn-
ing rate is of crucial importance and must be chosen carefully, since
a value which is too low leads to unoptimal results and a learning
rate which is too high breaks the optimization.

5. Results

We focus our evaluation on materials with different resolutions. All
evaluations are performed on a system with an RTX 2080ti and use
the validation Bonn SVBRDF dataset by [MHRK19] further de-
scribed in Section 4.1. The runtime varies depending on the number
of input images as well as the resolution, but to give an estimate,
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Figure 7: A comparison between our method and the Material GAN method for a synthetic and a real material. For the synthetic material
on the left, we use 10 input images and use 6 input images for the real-world material on the right. The Material GAN method is not able to
reproduce reasonable novel view images for the synthetic material, while our method is able to produce reasonable feature predictions for

both material.

Our Method

Figure 8: Comparison of our estimated specular and Fresnel val-
ues with the reference values, showing more consistent predictions
using our method.

the evaluation for a 256 x 256 material tile takes about 7 minutes.
The two-dimensional lobes are displayed in the R and G channels
of the RGB images. We transform the rotation feature to the range
[0, 1] and plot the rotation and Fresnel feature using a perceptualy
uniform color map.

5.1. Synthetical Results

We use the materials of the validation dataset to generate 12 in-
put images for each material. The choice of view- and light-
configurations is crucial to estimate this amount of features
with only these few input images, previously discussed in Sec-
tion 3.6. We sample 2 inputs from the Fresnel-configuration, 2 from
the independent-configuration and the rest from the anisotropic-
configuration. We present two exemplar results in Figure 6, show-
ing the great ability to predict the additional features, without com-
promising the other features predicted. It is noticeable across all
results that the lobes in particular are estimated differently than
specified in the reference and more clearly represent the structures
of the materials in our estimation. Meanwhile the added rotation
properties are very accurately captured and reconstructed with our
method. The Fresnel values can also be reconstructed well, but do
not quite reach the instensity of the reference values. Since we cal-
culate the undivided specular value in our network and divide it by
the predicted Fresnel value afterwards, the connection of the two
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parameters poses an additional challenge for the optimization. The
Fresnel values in the dataset are not always optimal either, which
again shows the difficulty of computing these properties. In Fig-
ure 8 we show how the computation of reflections with spatially
varying Fresnel values challenges Pantora during the acquisition of
the dataset, where a contiguous part within the material cutout un-
dergoes drastic sudden changes in Fresnel values without any struc-
tural connection. However, our network is often able to unify this
mapping and produce more coherent results. To show the results of
our method with and without refinement and the effect of the input
configuration selection, we compare the results over our validation
dataset for different amounts of input images. The dataset contains
58 materials with an average resolution of 553 x 822 in Table 1. The
a configuration uses the previously described combination of con-
figurations, while the B configuration uses only the independent-
and mirror- configurations, which leads to slightly worse results
for most parameters.

5.2. Comparison

Here we compare our method to another state-of-the-art learning
based method, with the features displayed in Figure 7. We provide
both methods with 10 input images for the synthetical material and
6 input images for the real-world images. One problem with the
comparison is the rendering models used. We use a variant of the
Ward model and the Material GAN uses a microsurface BRDF with
a GGX normal distribution. While other methods are concerned
with capturing isotropic surfaces, the goal of this work is to extend
them with additional parameters to be able to capture reflectance
behavior that cannot be represented by the other methods. For the
synthetic material, we provide input images to our method with the
same combination of configurations as described in Section 5.1,
but need to provide collocated view- and light-configurations for
the Material GAN since ours tend to break the method. The real-
world images are taken from the original Material GAN paper and
represent colocated view- and light-configurations, on which our
method has never been trained and yet is still able to achieve rea-
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sonable results. The Material GAN with its generator is able to gen-
erate SVBRDF parameters from its latent space which closely rep-
resent the input images. The problem with our synthetic material
is that it does not fall into the space of SVBRDF parameters for
which the MaterialGAN has been trained. Thus, there is no com-
bination of SVBRDF parameters that the Material GAN generates
which are able describe all of the input images for the left material.
This is most obvious in the novel views, where a clear difference
can be seen. Especially in the areas that are far away from the spec-
ular highlight, a difference in intensity is visible. In the novel views
with configurations that focus on Fresnel effects, it is immediately
apparent that the Material GAN is not able to represent this type of
reflection with its model, while our method provides a much more
convincing result with the estimation of the additional features.

5.3. Limitations

Although our method can achieve results ranging from plausible
to near perfect for most materials depending on the input images,
there is one type of material that has proven to be particularly dif-
ficult for our method. Such material has many small irregular com-
plex reflective regions that are not coherent. For the human observer
it is clear that such regions should have the same reflective behav-
ior, but the irregularity in size and shape leads to the network not
being able to determine these regions correctly. However, if the set
of input images is large enough and captures the reflections of the
small regions, these can also be accurately reproduced. Another
factor that is crucial for determining the appearance parameters
and can hinder the results are the selected input images. Since the
estimated features do not have to be present in every image, our
method can only recover them to a limited extent by making use
of the learned priors if there is not enough information about these
features in the input images.

6. Conclusion and Future Work

In this work, we have shown that we are able to detect even highly
complex reflections using learning-based methods. In particular the
reflections requiring an anisotropy and Fresnel feature. The training
of the learning-based methods faces special challenges here, since
not all features have to be recognizable in every image. We are able
to define both the training conditions and the input data sufficiently
to correctly estimate the features. But there is still room for im-
provement. Even though we are able to predict arbitrary sizes of
materials, we are still limited by the GPU memory. Since this is
mainly stressed by the render model used, more efficient models
and hardware advances could remove this limitation as well. Fur-
thermore, our method also depends on the choice of input images.
If these are poorly chosen, the result can suffer. In the future, adapt-
ing a GAN to estimate these materials could be beneficial, but even
greater care is needed during the training. Additionally, adapting
our SVBRDF estimating methods for non-planar material samples
and bidirectional texture functions [SSWK13] would be of interest
in the future.
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