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Abstract

Visual quality metrics describe the quality and efficiency of multidimensional data visualizations in order to guide data analysts
during exploration tasks. Current metrics are usually based on empirical algorithms which do not accurately represent human
perception and therefore often differ from the analysts’ expectations. We propose a new perception-based quality metric using
deep learning that rates the correlation of data dimensions visualized by scatterplots. First, we created a data set containing
over 15,000 pairs of scatterplots with human annotations on the perceived correlation between the data dimensions. Afterwards,
we trained two different Convolutional Neural Networks (CNN), one extracts features from scatterplot images and the other
directly from data vectors. We evaluated both CNNs on our test set and compared them to previous visual quality metrics. The
experiments show that our new metric is able to represent human perception more accurately than previous methods.
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1. Introduction

With continuing advances of digital technologies, the amount of
generated and collected data is rapidly increasing. In order to ex-
tract meaningful information from these collections, effective vi-
sual exploration techniques are required. Visual quality metrics are
measures that were introduced to support the visual exploration of
high dimensional data sets. They are used to automatically rate
lower-dimensional mappings of data sets with regard to a previ-
ously defined task chosen by the analysts. Most current metrics are
based on empirical algorithms and do not reliably represent human
perception. As the interest of the analysts may differ from the math-
ematical definition of data properties, their expectations may not be
matched by current metrics. Therefore, not all structures of interest
for human observers may be found. To address this problem, we
propose a new visual quality metric that evaluates data visualiza-
tions according to human perception. In this paper, we focus on the
task of rating the correlation visualized by scatterplots using deep
learning. Thereby, we are able to identify scatterplots that do not
match the mathematical concept of correlation but nonetheless are
of interest to analysts.

Previous work on Convolutional Neural Networks (CNNs) has
shown their ability to match human perception when trained on
appropriate data sets. This was demonstrated on various tasks
like rating the similarity of natural images [PCMS18] or scatter-
plots [MTW™*19]. Instead of computing a similarity score, we pro-
pose to use CNNs to learn a quality metric that rates the per-
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ceived correlation in scatterplots according to human perception.
The graphical representation of the analyzed data property can be
very diverse in scatterplots (e.g. linear vs. non-linear correlation),
therefore rating the similarity alone is not sufficient. Despite this,
humans can rate different correlation forms in scatterplots as sim-
ilar, independently of their visual disparity. We perform an exper-
iment using a pairwise comparison design to empirically gather a
data set containing the perceived correlation in scatterplots. During
the experiment, participants were instructed to select the scatterplot
showing the strongest correlation between its dimensions.

Overall, our new data set consists of more than 15,000 anno-
tated pairs of scatterplots which we use to train two different CNN
architectures. One uses images as input and is based on the popular
ResNet [HZRS16] architecture which achieved outstanding perfor-
mance for many image processing tasks. The other architecture is
based on PointNet++ [QYSG17] and uses data vectors as input. By
adapting PointNet++, our metric becomes independent of visual
representations. The output of both networks is a score indicating
the perceived correlation as captured by our experiment. The main
contributions of our work are:

e A novel CNN-based visual quality metric to rate correlation in
scatterplots according to human perception.

e A new data set consisting of over 15,000 pairs of scatterplots
annotated with human judgments on the perceived correlation.

e Several comparisons of our two CNN architectures accepting ei-
ther images or data vectors.
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* Which scatterplot shows a stronger correlation?

left right

left right

Figure 1: Exemplar trial: During the experiment, participants
were asked to choose which of the two presented scatterplots
showed a stronger correlation.

2. Related Work

In our work, we propose to learn a new visual quality metric re-
specting human perception using deep learning. Thus, we shortly
outline perception related classical approaches and learning tech-
niques that incorporate perception for related tasks.

Human Perception on Scatterplots

There has been extensive previous work on describing and de-
tecting properties and patterns in visualizations. While many ap-
proaches were presented to automatically select or rank visualiza-
tions [WAGO05, TAE*11,SSB*16], the majority of these works does
not focus on modeling human perception. In order to understand
and model human perception on scatterplots, different experiments
have been conducted [RB10, PKF*16, Ren17, YHR*19]. One ex-
ample of such an experiment is presented in the work of Rensink
and Baldridge which uses classical psychological measures like
the just-noticeable difference to investigate whether the perception
of scatterplots can be modeled by mathematical concepts [RB10].
Alternatively, Pandey et al. performed an experiment where par-
ticipants were asked to group scatterplots and to find names for
the proposed groups [PKF*16]. The authors found that the par-
ticipants’ grouping criteria differed from previously defined cate-
gories [WAGOS]. They suggested to use the new concepts to de-
scribe scatterplots with respect to human perception. Additional
experiments showed that entropy is an important factor for partic-
ipants [Ren17] and that only a small number of visual features are
used when rating the correlation in scatterplots [YHR*19].
Building upon the experimental insights [RB10], a system to rank
visualizations using Weber’s law was introduced [HYFC14]. In
contrast to manually designing a descriptive model, we train a CNN
on human ratings which implicitly learns to rate the correlation of
scatterplots according to human perception.

In order to investigate human perception on dimension reduc-
tion techniques, Sedlmair et al. performed an experiment with two
visual analytics experts [STMT12]. During the study, the experts
rated scatterplots based on their class separation property using a

Likert scale from 1 to 5. Later, they successfully used their data
set to evaluate existing quality metrics for class separation in hind-
sight of human perception [SA15]. To obtain reliable results using
CNNess, the training data needs to be as complete and representa-
tive as possible. Thus, learning normally requires a large quantity
of data. To obtain this amount of annotated scatterplots, we con-
duct an experiment via an online survey. Therefore, we use a pair-
wise comparison instead of a Likert scale as direct numerical as-
signments can be inconsistent between participants without clearly
defining the meaning of each possible value beforehand [EF00].

Learning to Mimic Human Perception

In the field of visual analytics, different learning-based techniques
were introduced to generate perceptually-motivated visualizations
for human analysts [DBH14,DD19, HBL*19, HGH* 19]. The pos-
sibility to automatically choose good design parameters for visu-
alization (like color, shape, or size) was realized based on learned
kernels [DBH14], while other works focused on predicting the de-
sign choices of visual analysts [HBL*19]. Instead of predicting vi-
sualization parameters, Dibia and Demiralp directly generated ef-
ficient visualizations from a data set using a recurrent neural net-
work [DD19]. In order to enable easier comparisons, Hu et al. intro-
duced a data set collection for visualization generation [HGH* 19].
In contrast to these works, we do not aim to find perceptual-
motivated visual representations but to rate specific data properties
according to human perception.

Training neural networks to match human perception has been
proposed for different tasks in the field of quality assessment for
images like predicting visible distortions [BLBS17] or rating im-
age similarity [ZIE*18]. Talebih and Milanfar trained a CNN for
image enhancement by not only using ground truth information but
also incorporating human ratings [TM18]. Therefore, human anno-
tations on the aesthetics of images were included in their training
data alongside undistorted ground truth information. Prashnani et
al. introduced a network that learns image similarity through an
experiment with pairwise comparisons [PCMS18]. While their ap-
proach aims to find the perceptual error with regard to a reference
image, we want to obtain a score for a scatterplot without a refer-
ence. Moreover, these CNN-based methods only use input images,
whereas we also designed a network architecture which operates
directly on data vectors.

Similar to our work, Albuquerque et al. introduced a perception-
based quality metric [AEM11]. Instead of deep learning, they used
a machine learning approach based on non-metric multidimen-
sional scaling [AWC™*07]. While they can mimic human percep-
tion, their perceptual embedding has been trained only on a small
set of correlation patterns. Furthermore, as their metric compares
new scatterplot images to the learned examples using Principal
Component Analysis, it can be only used to reliably rank scatter-
plots that are very similar to the learned samples. Recently, a deep
learning approach has been proposed to rank scatterplots according
to their similarity [MTW*19]. In their ScatterNet an experiment is
conducted using triplets of scatterplot images where one scatterplot
acts as a reference. The participant decides which of the other two
plots is most similar to the reference. Afterwards, a CNN is trained
to retrieve the most similar scatterplots based on a query image.
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Figure 2: An overview of our network architecture and training procedure. During online phase (indicated by the dashed box) our network
calculates a score on a single input. Our architecture consists of two networks. First, we use a feature extraction network (either Image-based
or Vector-based) to obtain a 1024 x 1 feature vector. We feed this feature vector into a ranking network which computes our final correlation
score in [0,1]. For training we compute the scores of annotated scatterplot pairs using two instances of our architecture with shared weights.
For the loss computation, we apply a probabilistic-based cross entropy loss according to the user rating and computed scores.

While the network can be used to find similar scatterplots, it cannot
directly rate data properties for a defined user task. In contrast to
ScatterNet, our network learns to rate scatterplots for a given task
on a numerical scale. This way, our approach can match human rat-
ings for diverse graphical representation like linear and non-linear
correlation which cannot be retrieved based on similarity only. Ad-
ditionally, as ScatterNet is based on input images, the quality suf-
fers if the representation of scatterplots (e.g. the chosen point size)
is changed. To avoid this problem we successfully train a network
directly on the data vectors which achieves the same quality as our
Image-based network variation.

3. Data Set

We create a data set with annotations collected through an experi-
ment and use it to train a CNN to rate the correlation in scatterplots
with respect to human perception. We use scatterplot pairs and ask
the participants to decide which of the two shows a stronger corre-
lation. The annotated scatterplot pairs enable our network to learn
a meaningful scale for the rating implicitly. Thus, we avoid to man-
ually normalize the ratings which is often seen for Likert scales,
as the rating behaviour on a numerical scale can differ between
participants. [EF00]. While previous work learns to rate similarity
between two images [PCMS18, MTW*19], our approach allows to
rate a specific perceptual characteristic from a single input. In the-
ory, our metric can learn to rate any other data property by repeating
the experiment for the desired property and retraining on the new
data set.

To create the data set, we first choose 26 real data sets from
the UCI machine learning repository [DG17] and 3 contained
in the ggplot2 R package [Wicl6] which include different point
distributions and forms of linear and non-linear correlation. We
first split the data sets into a train and test set to make sure that
data sets and scatterplots are mutually exclusive between both
sets. We use 15 data sets during training: Abalone, AirQuality,
Anuran Calls MFCCs, Avila, Cloud, Credit Card Clients, Energy,
HTRU2, KEGG Metabolic, Relation Network, MAGIC Gamma
Telescope, Wine Quality, Physicochemical Properties of Protein
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Tertiary Structure, Parkinsons and Telemonitoring. The test set uses
14 data sets: Baseball, Crwd Sourced, Diamonds, Electrical Grid
Stability, Facebook, Google, iBeacon, Leaf, Occupancy, Online
News Popularity, Page Blocks, Postures, Sensorless Drive Diag-
nosis and liver. We then render scatterplots for all possible dimen-
sion pairs for both sets at a size of 256x256 pixels. Afterwards, we
manually choose subsets of 500 plots for training and 50 for test-
ing which represent the different forms and patterns of correlation
well. Additionally, we remove scatterplots containing categorical
data or classes. We obtain enough data making it unnecessary to
enlarge our data set with synthetic data. Finally, we randomly gen-
erate 15,000 pairs for training and 200 pairs for testing and eval-
uations. Even though, the test set is considerably smaller than the
training set, we used a similar amount of data sets and preserved
diverse data properties.

Experiment

We created a web-based experiment and invited participants via
email. Invitation emails were sent to different university mailing
lists aimed at students of computer science and related fields. Any-
one who obtained the link to the survey was able to participate.

As a first step, when participants accessed the experiment site,
they were guided through a training section. This was designed to
convey all necessary information for the experiment and familiarize
the participants both with the task and the concept of correlation.
In this training, the participants were presented with examples of
linear and non-linear correlation as well as with examples where
the data dimensions were not correlated at all. They were informed
to rate negative and positive correlations equally, and to base their
judgments on their impression rather than on mathematical defi-
nitions. After the participants read all the information, they were
presented with five training trials that were not considered for the
analysis. These exemplar trials showed clear cases of strong and
weak correlation to test whether the participants understood the ex-
plained concepts. Thus, the participants could only continue with
the real experiment by selecting the right answers.

The experiment consisted on a forced-choice task where the par-
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Accuracy | Pearson RVM Image-based | Vector-based
Train - - 92.07 % 90.60%
Test 52.50% | 69.00% 80.00% 83.00%

Table 1: Accuracy values for the Pearson correlation, the
RVM [AEM 1] and both of our networks on our data set.

ticipants needed to select the plot with the highest correlation based
on the criteria previously explained to them. Participants were pre-
sented with a screen where two scatterplots were displayed side by
side under the sentence "Which scatterplot shows a stronger corre-
lation". They were able to introduce their answers by checking one
of the two radio buttons available (see Fig. 1). For each trial of the
experiment, a randomly selected scatterplot pair was presented and
the participant needed to make their decision before the next pair
was displayed.

The number of trials of the experiment was left to the decision
of the participant and they were given the opportunity to conclude
the experiment at their own convenience. The average number of
trials fulfilled by a participant was 150. Overall, we collected at
least three human annotations for each scatterplot pair. Based on
the results gathered through this experiment, in order to build our
data set, we labelled each pair based on the majority decision and
stored the images as well as data vectors for all scatterplots.

4. Network

Our visual quality metric to rate the correlation in scatterplots ac-
cording to human perception consists of two network parts: First, a
feature extraction network computes a 1024 x 1 feature vector rep-
resenting the scatterplot. Afterwards, a ranking network calculates
a perceptual score based on the extracted features. An overview of
the network architecture is given in Fig. 2.

For the feature extraction network we evaluate two different vari-
ations. As CNNs have shown impressive results for feature ex-
traction from images for various tasks like classification and seg-
mentation, we train an Image-based feature extractor for scat-
terplot images. This way the network is trained on the same im-
ages that were shown to the participants during the experiment and
obtains no additional information. However, using scatterplot im-
ages as input also has a disadvantage: Scatterplots need to be ren-
dered beforehand and use the same representation (e.g. point size)
that was used for the training data. Otherwise, the rendering differ-
ences might reduce the performance of the metric [MTW™*19]. To
avoid this restrictions, we also train a second network using Vector-
based feature extraction. This architecture directly processes the
data vectors and is therefore independent of scatterplot images and
their visual representation. The disadvantage is that the vector data
may contain information the participants did not perceive, like data
points that overlap and were not visible in the rendered scatterplot.

Image-based feature extraction. The Image-based architecture
adapts ResNet [HZRS16] as it has shown outstanding perfor-
mance on the task of image classification. The Residual Units of
this architecture make deep network architectures without perfor-
mance degradation possible. This enables networks to learn ab-

stract and representative features resulting in good classification
performance. We adopt the standard ResNet18 architecture with
some modifications. As scatterplot images have less variations than
natural images, we reduce the feature vector to a size of 1024 x 1
by changing the output size of the forth residual block to 256, re-
moving the last fully-connected layer and setting the kernel size of
average pooling to 2.

Vector-based feature extraction. The Vector-based architecture
adapts PointNet++ [QSMG17] for feature extraction. PointNet++
has been designed to use point clouds and therefore is independent
of the point order. Originally, the efficiency of PointNet++ has been
demonstrated for 3D point cloud segmentation and classification.
We adjust the architecture by setting the input dimension to 2 as we
consider each scatterplots as a 2D point cloud. As proposed by the
original PointNet++, we either up- or downsample our point cloud
to create a vector with a fixed length. We use an input length of
4096 data points.

Ranking Network. After feature extraction, we want the ranking
network to learn a numerical score, even though our data set only
contains binary correlation information for each pair. Therefore, we
took inspiration from RankNet which computes a ranking by sort-
ing items using a probabilistic cross entropy loss [BSR*05]. We
use a simple three-layer structure after feature extraction that out-
puts a one-dimensional value as score. Specifically, we use three
fully connected layers with LeakyReLUs. The ranking is performed
exactly in the same way for both Image-based and Vector-based
feature extraction. As we want to normalize the score of our qual-
ity metric between 0 and 1 we conclude the ranking network with
a sigmoid function. Limiting the score with an upper and lower
bound makes the rating directly interpretable and more predictable
for unseen scatterplots.

4.1. Loss Function

We train our networks end-to-end to predict a score for one input
scatterplot representing the correlation’s strength. For this purpose
we use an adapted version of the probabilistic cross entropy loss
proposed in RankNet [BSR*05]:

L= ~PijlogP; — (1 - Pyj)log(l - Py), (1)

where P; j is the ground truth label which was derived from the ex-
periment by majority decision:

Fij= (@)

= |1 ishows stronger correlation
0 else

Accordingly, P;; is the probability that scatterplot i is perceived to
be more correlated than scatterplot j based on the scores S; and S
estimated by the network. However, as we restrict our scores to be
in the range of [0, 1], it puts a hard limit on the probability P;; and
therefore restricts the size of the gradient signal. To counteract this
problem we adapted the probability function with a multiplier ¢ to
enlarge the possible probability range:

. exp (o (S; —S;))
Y T+exp(o*(Si—S;))

3)
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Figure 3: Scatterplot matrices showing the scores computed by our Image-based metric (top) and Vector-based metric (bottom) for all pairs

of dimensions of the diamond data set [Wicl6].

Training Details

During training the Image-based network, we use the random flips
as data augmentation to prevent overfitting: We perform random
flips in both horizontal and vertical directions, as we decided to
treat positive and negative correlation equally. For image files, we
avoid operations which would affect human perception. Especially
cropping image regions may change the impression on the corre-
lation of the scatterplots as data points can be cut off. As rotations
might also require cropping of image edges, we exclude this op-
eration as well. For the Vector-based architecture, we first perform
data normalization to bring the point positions to a common value
range. To increase the variability of the data vectors, we randomly
shuffle the point order.

We use the following techniques and parameters: We set the mul-
tiplier 6 = 5 from Eq.3 as this provided the best training results. We
use SGD [GBC16] as a solver and set the momentum to 0.9. For
both network architectures we use a batch size of 64 and a learning
rate of 0.001. We decay the learning rate by multiplying it with 0.1
after every 10 epochs. While the loss basically converges after 15
epochs, we keep training for a total of 50 epochs. Training takes
about 2.5 hours for the Image-based network and 9 hours for the
Vector-based network on a NVIDIA Titan Xp. Our networks were
implemented in PyTorch using CUDA support.

© 2019 The Author(s)
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5. Evaluation

In this section, we evaluate how well our novel visual quality met-
rics match human perception and compare their results to two ex-
isting methods. We perform three different experiments. In the first
experiment we compute the overall accuracy values on our data set
for all metrics. In the second experiment, we show the differences
between our novel metrics and present results for example scat-
terplots containing different correlation patterns. Lastly, we use a
ranking example to further illustrate the behaviour of our metrics.
We compare our metrics to the Pearson correlation which is based
on the mathematical definition for linear correlation. As we do not
distinguish between positive and negative correlation, we use abso-
lute values for the Person correlation. Additionally, we compute the
Rotating Variance Measure (RVM) [TAE*11] which was designed
to rate both linear and non-linear correlation. This metric is based
on the fact that correlated data is usually represented by fine struc-
tures in scatterplots. We chose the parameters of RVM as proposed
by the original paper.

For our first test, we compare the accuracy of our metrics, Pear-
son and RVM on our data set. To check the accuracy of the differ-
ent quality metrics, we compute scores for all scatterplots. Then,
we check whether the order of the calculated scores matches the
human annotation for each scatterplot pair. The resulting accuracy
values are presented in Table 1. Both of our proposed network ar-
chitectures achieve a high accuracy on the train set showing a suc-
cessful training. As our metrics already saw all scatterplots in the
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Pearson 0.9216 0.7512 0.9999
RVM 0.0898 0.3257 0.2445 1.0
Image-based 0.0012 0.5215 0.6924 0.9999
Vector-based 0.0004 0.7242 0.6462 0.9996
Pearson 0.4931 0.7278 0.478 0.7978 0.9949
RVM 0.3826 0.2658 0.2858 0.2114 0.2801
Image-based 0.0044 0.2359 0.4592 0.7203 0.9871
Vector-based 0.0019 0.4565 0.601 0.7648 0.9984

Table 2: Two scatterplot sets ordered by human participants. From left to right, the scatterplots appear increasingly correlated. Our Image-

based feature extraction performed particularly well in this experiment.

train set, we perform all following experiments only on data from
the test set to ensure a fair comparison. Our metrics significantly
outperform the Pearson Correlation baseline as well as the RVM
achieving an accuracy of 80.00% and 83.00% for the unseen scat-
terplots in the test set. The accuracy is close to chance-level for the
Pearson Correlation at 52.50%. The reason for this is most likely
the inclusion of non-linear correlation which is not anticipated by
the Pearson correlation. In contrast, the RVM achieves a reasonable
accuracy of 69.00%. We present two examples of scatterplot pairs
with scores for both of our metrics as well as the Pearson Corre-
lation and RVM in Table 3. Even though the metrics do not match
human perception, their values for both scatterplots in the lower
example are very similar. In contrast to the compared metrics, both
of our networks match the human judgment for these examples.
Overall, these results indicate that both of our Learning-based tech-
niques are in better alignment with human annotations.

Next, we investigate the differences between our Image-based
and Vector-based architectures. Fig. 3 shows a comparison of
scores on the diamond data set [Wic16]. The diamond data set con-
sists of the following dimensions: Carat, Depth Percentage, Table,
Price, Length, Width and Depth. We visualize the scores in a scat-
terplot matrix which enables us to detect interesting dependencies
between data dimensions. As a diamonds carat is defined by its
weight, the carat value is correlated to the length, width and depth
of diamonds. Additionally, our metrics show that the length, width
and depth of diamonds correlate to each other. This indicates that
diamonds are usually cut while preserving an equal ratio between
its sizes. While both of the metrics produce reasonable scores, the
Image-based metric outputs scores distributed over the full value

range while the Vector-based architecture scores are closer to the
upper and lower bound.

To gain a better understanding of our metrics, we performed an
analysis of their scores in our test set. The average scores are 0.5095
for the Image-based architecture and 0.4412 for the Vector-based
architecture with a standard deviation (STD) of 0.3148 and 0.3415.
The STD of the Vector-based metric is 8.48% larger, indicating that
the scores of this metric are generally more extreme than the ones
from the Image-based metric. Additionally, the average difference
between scores is 0.1847. The differences between both metrics
likely result from a different amount of information in the input
data of both architectures. Especially, if several data points are in
close proximity, they cover each other and are therefore not visi-
ble for the Image-based network. In contrast, the Vector-based net-
work receives information based on the overall point distribution.
Table 4 shows an example where the score of the Vector-based met-
ric does not match the human rating from our experiment and also
strongly differs from the Image-based variation. The right scatter-
plot was judged to have a stronger correlation, however, the Vector-
based metric differs from this judgment. As can be seen in the lower
left corner of the right image, there is a cluster of outliers. While
our participants as well as the Image-based network only register a
small amount of outliers, the actual number is considerably higher.
As the actual number of outliers is not registered by participants
and the Image-based network, they are still able to detect the strong
correlation along the center diagonal. In contrast, this Vector-based
and classical methods are unable to represent the interesting data
distribution in their score.

In terms of runtime, the Image-based metric rates an input im-
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Pearson 0.4931 0.472 Pearson 0.9863 0.531
RVM 0.3826 0.2918 RVM 0.7687 0.5951
Image-based 0.0044 0.4353 Image-based 0.9937 0.9999
Vector-based 0.0019 0.1473 Vector-based 0.9982 0.4725

il

Pearson 0.958 0.9548
RVM 0.2967 0.2658
Image-based 0.4919 0.7224
Vector-based 0.8479 0.9708

Table 3: Examples of scatterplot pairs where the right one was
perceived to show stronger correlation. In contrast to our metrics,
Pearson correlation and the RVM do not match the perception of
the participants.

age in 7.85ms whereas the Vector-based approach requires roughly
282ms. Overall, our Image-based and Vector-based architectures
achieve similar results which shows that CNNs can learn to match
human judgment based not only on images but also on data vectors.
This is a valuable insight, as it enables training and testing without
the need to render scatterplots, making it independent of the scatter-
plot’s representation parameters like point size and other rendering
effects.

We further illustrate the behaviour of our visual quality metrics
using a sorting example. We prepared two subsets of five scatter-
plots and asked participants to sort them from weak to strong cor-
relation. We recruited five participants who are familiar with visual
analytics and asked them to sort the plots independently. We then
computed scores for all scatterplots using our networks as well as
the classical metrics and compared their results to the order pro-
posed by the human participants. The results for this experiment
are given in Table 2. The image order is based on the majority de-
cision of the participants. For the upper row, all participants agreed
on the displayed order, while one participant switched the second
and third scatterplot for the lower row. From this experiment, we
see that the classical metrics do not always align well to human
ordering. Overall, our Image-based quality metric performed better
than the Vector-based metric in this test. One example of this can be
seen for the second and third image in the upper row where the or-
der was only preserved by our Image-based metric. In contrast, the

© 2019 The Author(s)
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Table 4: For this scatterplot pair, the human participants perceived
the right one to display a stronger correlation, which is not repre-
sented by our Vector-based quality metric. The reason is the outlier
cluster in the left bottom of the right plot (marked with a red cir-
cle). The score for this scatterplot is also not in union with human
perception for both classical metrics.

lower row was correctly sorted by both of our metrics. This exam-
ple suggest that our metrics could also be used to compute rankings
based on human perception.

Overall, our experiments indicate that our network architectures
are able to represent human perception better than previous visual
quality metrics when rating the correlation in scatterplots.

6. Conclusion

In this paper, we presented a novel visual quality metric based on
human perception to rate the correlation in scatterplots. Our met-
ric utilizes CNNs which are trained on a novel data set consisting
of more than 15,000 scatterplot pairs with human annotations. To
create the data set we conducted an experiment and obtained hu-
man judgments on which of two scatterplots were perceived as hav-
ing stronger dimensional correlation. We trained and evaluated two
CNNs: one based on images and the other based on data-vectors.
Our results indicate that both versions improve the performance to
predict human judgment compared to traditional correlation met-
rics.

There are some promising lines of work that we will like to ad-
dress in the future, like adjusting the Vector-based network to en-
able the processing of variable input length. Another interesting
extension is investigating how well the presented networks can be
adapted for different criteria like class separation or other visu-
alization techniques like parallel coordinates. Finally, it might be
worthwhile to align both metrics’ score more closely by matching
the information contained in the image and vector files.
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