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Abstract

In many meteorological and engineering problems, the motion of finite-sized objects of non-zero mass plays a crucial role, such
as in air pollution, desertification, stirring of dust during helicopter navigation, or droplets in clouds or hurricanes. The motion
of these so-called inertial particles can be modeled by equations of motion that place certain application-specific assumptions.
These models are determined by parameters, such as the particle size, the Stokes number or the density ratio between particle
and fluid. To describe the motion of finite-sized particles in an accurate and feasible way, one has to choose the most suitable
particle model and its model parameters very carefully. In this paper, we present multiple interactive visualizations that allow us
to compare different inertial particle models for a range of model parameters. To assess the similarities and disparities in the
inertial pathline geometries in space-time, we first trace multiple inertial particles with varying model parameters from the same
seed point and visualize their motion in space-time for different inertial particle models. Further, we find for a given inertial
trajectory in one model, the parameters of the other model that fit this trajectory best. Finally, we offer a quantitative view of the
pair-wise inertial trajectory distance for each possible parameter combination of two inertial particle models for a given seed
point. By visually exploring this parameter space, we can find similarities and dissimilarities between parameter configurations,
which guides the selection of the parameter model. Since all these visualizations only consider one single seed point, we extend
the methods by displaying the results for multiple seed points in the same domain or by using stacked visualizations. We apply
our method to multiple analytic and numerical vector fields for two inertial particle models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

The scientific visualization of inertial particles is concerned with the
motion of finite-sized objects of non-zero mass in fluid flows [GT17].
Traditionally, flow visualization uses massless tracer particles, since
they follow the flow perfectly tangential. While this has a long tradi-
tion, cf. McLoughlin et al. [MLP∗10], it is of limited use when sci-
entists are interested in the impact of the particle mass on the motion
of inertial particles. The considerable influence of mass, compared
to massless particles can for instance be observed in meteorological
simulations [SRCV98, SH09], sand saltation modeling [SL99], vi-
sual obscuration in helicopter landings [SGL10, KGRK14], jellyfish
feeding [PD09] and the tracking of toxic elements [NWE74]. The
motion of these finite-sized inertial particles can be modeled by
ordinary differential equations under certain simplifying conditions.
Each model depends on one or more parameters. The choice of the
most suitable model is a difficult task, as the difference between the
models varies spatially. How can we compare these models and their
parameter spaces? Are there parameter choices where the inertial
pathlines are nearly identical? Which parameter in a one-parametric
model can approximate a trajectory formed by the two-parametric
model best and vice versa? To answer these questions, we propose an

interactive visualization tool that allows us to compare two different
inertial particle models under varying model parameters.

Our method provides three coordinated views. First, a qualitative
view visualizes inertial trajectories for a possible parameter range
in space-time, which yields a surface in case of a one-parameter
model and a volume in case of a two-parameter model. Displaying
the trajectories for these two models simultaneously allows for a
first comparison of space-time overlaps, similarities and disparities
between the trajectories of different models. Second, we search for a
parameter configuration of one model that leads to the most similar
trajectory of the second model. Third, we provide a quantitative
approach that explores for a given seed point the space of all possible
model parameters. For a one-parametric and a two-parametric model,
the parameter space adds up to a 3D space, in which every point
uniquely identifies a trajectory for each model. For each point in
this space, we compute the distance between the two trajectories,
and visualize the resulting scalar field for the full parameter space,
which displays the full range of all possible parameter combinations.
By displaying this parameter space for multiple seed points in a
stacked visualization, we obtain a spatial view on salient regions of
similar or dissimilar particle behavior.
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2. Related Work

2.1. Inertial Particle Models

We consider two different inertial particle models that are frequently
used in the CFD literature. Both models were derived from the
Maxey-Riley equations [MR83, FH15], which describe inertial par-
ticle motion for small spherical objects. Inertial particles are trans-
ported by a vector field u(x, t) : D×T 7→ R2 for D ⊆ R2, T ⊆ R.
Further, let Du

Dt be the material derivative.

One-parametric Model (Model 1). Crowe et al. [CST98] de-
scribed an inertial particle model, which can be rephrased as an
autonomous ODE in phase space, cf. [GT14, GT15]:

d
dt

x
v
t

=

 v
u(x,t)−v

r +g
1

 ,

x
v
t

(0) =

x0
v0
t0

 (1)

with the initial position x0, initial velocity v0 and seed time t0, a
gravity vector g and the particle response time r:

r =
d2

pρp

18µ
(2)

which consists of particle diameter dp, particle density ρp and air
viscosity µ. This model assumes that particles are rigid spheres
and that the density of the surrounding air is far smaller than the
particle density ρ f � ρp, which allows us to neglect buoyancy.
Further, particle-particle collisions are ignored and one-way cou-
pling is assumed, i.e., particles have no influence on the air flow.
These assumptions are common and have been made in numerous
applications, cf. [BBC∗09, CGP∗10, SGL10, BBC∗11, KGRK14].

Two-parametric Model (Model 2). The second model allows for
higher fluid densities by introducing the density ratio R:

R =
2ρ f

ρ f +2ρp
(3)

which accounts for buoyancy effects by differentiating aerosols
0 < R < 2

3 , bubbles 2
3 < R < 2 and neutrally buoyant particles with

R = 2
3 , cf. [HS08]. The motion can be described by, cf. [GT17]:

d
dt

x
v
t

=

 v
R
St (u(x, t)−v)+ 3R

2
Du(x,t)

Dt +
(

1− 3R
2

)
g

1

 (4)

where St is the Stokes number. Except for the air density being
much smaller than the particle density, this model places the same
assumptions as the first model above. The second model has found
numerous applications [BTT02, BCPP00, VdMG06, HS08, SBR15].

Note that both models approach massless tracer particles in the
limit for r→ 0 or St→ 0, respectively.

2.2. Inertial Particles in Visualization

In traditional flow visualization, particles are assumed to be mass-
less, as they are required to follow the flow perfectly tangential,
cf. McLoughlin et al. [MLP∗10]. Several flow visualization con-
cepts can be extended to inertial particles, though it is important
to note that the particle motion itself can vary considerably, cf.

Haller and Sapsis [HS08]. Even though inertial particles have been
studied in engineering and physics for decades, their visualization
received attention only recently. Early visualizations of inertial par-
ticles were created by Roettger et al. [RSBE01], who studied and
visualized automotive soiling simulations via heat maps. Günther
et al. [GKKT13] extended the concept of integral curves, which
led to the introduction of inertial pathlines and new integral curves
called masslines. A massline connects all particles that were released
from the same seed point but with varying mass. Günther et al. ex-
tended several other common concepts, such as vortex cores [GT14],
finite-time separation [GT15] and vector field topology [GG17].
Recently, Baeza Rojo et al. [BRGG18] visualized the phase space
of inertial particles for varying initial conditions. In traditional time-
dependent vector fields, Lagrangian coherent structures are often
examined, since they constitute material lines that order the flow.
Sapsis, Peng and Haller [SH09, PD09, SPH11] calculated hyper-
bolic Lagrangian coherent structures for inertial particle trajecto-
ries. Moreover, Garaboa-Paz and Pérez-Muñuzuri [GPPMn15] and
Sagristà et al. [SJJ∗17] studied inertial particle separation in the full
phase space or in its various subspaces. While backwards integra-
tion is a frequently used method for massless tracer particles, the
same does not apply for inertial particles. As Günther and Theisel
showed, backwards integration of inertial particles is numerically
challenging and only feasible for short integration durations [GT17].

Günther and Theisel [GT15] varied the model parameter of the
one-parametric model in Eq. (1). We extend their approach to the
two-parameter model in Eq. (4) and compare the two models. Addi-
tionally, we visualize the closest inertial pathline in the other model
and explore the parameter space using stacked visualizations.

2.3. Trajectory Ensemble Visualization

The comparison of inertial trajectories can be seen as ensemble visu-
alization, in which the ensemble parameters change continuously (re-
sponse time, Stokes number and density ratio). Ferstl et al. [FBW16],
Mirzargar et al. [MWK14] and Hummel et al. [HOGJ13] contributed
different methods to capture and visualize trajectory variations.

3. Visual Comparison of Particle Models

We propose multiple visualizations to analyze and compare the
parameter-dependent motion of the two inertial particle models.
With this, we can find conditions in which the models agree, or
conversely in which one or both fail. First, we offer in Section 3.1 a
space-time visualization of particle trajectories that are determined
by certain parameter ranges. This provides a qualitative overview
of how varying inertial parameters affect particle motion in both
models. In Section 3.2, we examine how close a given trajectory of
one model can match any trajectory formed by the other model. We
visualize this closest match both for one seed point, as well as for
multiple seed points. Finally in Section 3.3, we illustrate the whole
parameter space by introducing and plotting different trajectory
measures for a range of inertial parameters in both models.

3.1. Space-Time Visualization

To convey the trajectories that can be obtained from varying model
parameters, we plot the inertial particle trajectories in space-time.
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(b) Space-time Visualization

Figure 1: Varying the response time r in Model 1 gives rise to a set
of inertial particle trajectories that form a surface. Fig. 1a gives a
schematic illustration of the color-coding of r along the front line
and Fig. 1b displays the surface for τ = 9.95, r ∈ [0.0020, 0.0491],
and seed (x0, y0, t0) = (0.5, 0.8, 0) in the DOUBLE GYRE flow.

Model 1 Visualization. To describe inertial pathlines of Model 1,
we use the concept of an inertial flow map φ

τ
t0 (x0,v0,r), which maps

an inertial particle with seed point x0, initial velocity v0, seed time
t0 and particle response time r to the location that is reached after
integration for duration τ. Using the inertial flow map of Model 1,
inertial pathlines p1 (τ,r) are defined as in [GKKT13]:

p1 (τ,r) = φ
τ
t0 (x0,v0,r) (5)

Continuously varying the model parameter r in a range [r0,r1] re-
sults in a mass-dependent path surface P1 (t,r) for t ∈ [t0, t0 + τ], as
used in [GT15]. Throughout the paper, we color-code the response
time range from light to dark orange, see Fig. 1 for an example.

Model 2 Visualization. Similarly, the inertial flow map of the sec-
ond model ψ

τ
t0 (x0,v0,R,St) depends on two model parameters, den-

sity ratio R and Stokes number St. Inertial pathlines are:

p2 (τ,R,St) = ψ
τ
t0 (x0,v0,R,St) (6)

Since this model has two inertial parameters, all realizations of
trajectories form a volume in space-time for ranges of R ∈ [R0,R1]
and St ∈ [St0,St1]. To display the volume, we visualize the enclosing
hull surface, which consists of four mass-dependent path surfaces
in which one parameter is fix. The surface spanned by a range of
density ratios R ∈ [R0,R1] with a fix Stokes number St0 is:

PSt0
2 (t,R) = ψ

τ
t0 (x0,v0,R,St0) (7)

for t ∈ [t0, t0 + τ]. The surface spanned by a range of Stokes numbers
St ∈ [St0,St1], with a fix density ratio R0 is:

QR0
2 (t,St) = ψ

τ
t0 (x0,v0,R0,St) (8)

The schematic illustration in Fig. 2a illustrates the front lines of
the enclosing surfaces, i.e., the four enclosing curves PSt0

2 (t,R),
PSt1

2 (t,R), QR0
2 (t,St), QR1

2 (t,St) at time t. Throughout the paper,
we color-code the range of density ratios R in green and the range
of Stokes numbers St in blue, see Fig. 2b for an example. Note that
these hull surfaces are an approximation, since in space-time inertial
particles can intersect and thus in rare cases leave the hull. An exact
computation requires progressive sampling of the full volume, which
is costly and thus we opt for an approximating solution.

PSt0
2

PSt1
2

QR0
2

QR1
2
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(a) Schematic Illustration
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(b) Space-time Visualization

Figure 2: Variation of the two parameters of Model 2 gives rise to
a volume in space-time. Fig. 2a shows a schematic illustration of
the front lines of the hull surfaces and Fig. 2b shows the surfaces
PSt0

2 , PSt1
2 , QR0

2 and QR1
2 in space-time, for τ = 9,95, density ratio

R ∈ [0.3, 0.7] and Stokes number St ∈ [0.0196, 0.4911], with seed
point (x0, y0, t0) = (0.2, 0.8, 0) in the DOUBLE GYRE flow.

3.2. Closest Match Visualization

Given a trajectory of one particle model, we are interested in the
parameters of the other model that lead to a minimal distance. We
call the trajectory with minimal distance the closest match to our
initial trajectory. This closest match allows us to visualize where the
two models can coincide and how large the margin of error is.

Closest Match from Model 1 to Model 2. Given an inertial parti-
cle trajectory of Model 1, started at seed point (x0, t0), with initial
velocity v0 and response time r0. The distance to the closest trajec-
tory of Model 2 is:

d1→2
r0 (t) = min

R∈[R0,R1]
St∈[St0,St1]

‖φt−t0
t0 (x0,v0,r0)−ψ

t−t0
t0 (x0,v0,R,St)‖

(9)

Distance d1→2
r0 measures at a certain time t the minimum distance

that a point on the Model 1 trajectory has to the points of Model
2 trajectories with model parameters in [R0,R1] and [St0,St1]. The
model parameters R∗ and St∗ that lead to the closest match are:(

R∗,St∗
)
(t) = arg min

R∈[R0,R1]
St∈[St0,St1]

‖φt−t0
t0 (x0,v0,r0)−ψ

t−t0
t0 (x0,v0,R,St)‖

(10)

We define the curve of closest match locations to a Model 1 tra-
jectory p1 (t) = φ

t−t0
t0 (x0,v0,r0) as p∗2 (t). Then, the closest match

distance is equivalently given as d1→2
r0 (t) = ‖p1 (t)−p∗2 (t)‖. Note

that p∗2 (t) in not necessarily a continuous curve. We address this
issue later in this section.

To visualize the closest matches, we display both the Model 1
trajectory p1(t) in cyan and the closest match curve p∗2 (t) in magenta
in space-time and triangulate the space between them, see Fig. 3 for
an example. We additionally provide the possibility to color-code
on the connecting surface either the closest match distance d1→2

r0 ,
or one of the closest match parameters R∗ or St∗.

Closest Match from Model 2 to Model 1. Similarly, we define the
closest match of a given Model 2 trajectory, seeded at (x0, t0), with
initial velocity v0, density ratio R0 and Stokes number St0 as:

d2→1
R0,St0 (t) = min

r∈[r0,r1]
‖ψt−t0

t0 (x0,v0,R0,St0)−φ
t−t0
t0 (x0,v0,r)‖

(11)

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

65



Jérôme Holbein & Tobias Günther / Parameter Space Comparison of Inertial Particle Models

PSt0
2

PSt1
2

QR0
2

QR1
2

p1 (t)•

p∗2 (t)•

(a) Illustration of closest match
from Model 1 to Model 2 volume.
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(b) Space-time visualization of clos-
est matches over time.

Figure 3: In (a), the closest match from Model 1 to Model 2 is shown
for time t. In (b), the closest matches are shown over time for seed
(x0, y0, t0) = (1.4, 0.8, 0), and τ = 9,95 in the DOUBLE GYRE.
The cyan line is the Model 1 trajectory p1 (t) and the magenta line
are the closest match locations p∗2 (t). Here, for r0 = 0.0491 and
Model 2 parameters R ∈ [0.5, 0.7]and St ∈ [0.0196, 0.4911].

p2 (t)•

P1 (t, r0)

P1 (t, r1)

p∗1 (t)
•

(a) Illustration of closest match from
Model 2 to Model 1 front line.
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(b) Space-time visualization of
closest matches over time.

Figure 4: In (a), the closest match from Model 2 to Model 1 is shown
for time t. In (b), it is shown for seed (x0, y0, t0) = (0.3, 0.5, 0)
and duration τ = 9,95 in the DOUBLE GYRE. The cyan line shows
the Model 2 trajectory p2 (t) and the magenta line the closest match
locations p∗1 (t). Here, for density ratio R0 = 0.5, Stokes number
St0 = 0.4911 and response time r ∈ [0.0020, 0.0491].

with response time r∗ of Model 1, leading to the closest match:

r∗ (t) = arg min
r∈[r0,r1]

‖ψt−t0
t0 (x0,v0,R0,St0)−φ

t−t0
t0 (x0,v0,r)‖ (12)

Same as above, we define the curve of closest matching locations as
p∗1 (t). We visualize the closest matches by displaying the Model 2
trajectory p2 (t) in cyan and the closest matches in Model 1 p∗1 (t)
in magenta, and triangulate the space between them. The resulting
surface is color-coded by distance d2→1

R0,St0 or by the closest match
inertial parameter r∗, see Fig. 4.

3.3. Parameter Space Visualization

In the third view, we provide a more quantitative approach. In total,
both methods have three inertial parameters (r, R, St) that are viewed
in a certain range, which can be seen as a 3D parameter space. Every
point in this space uniquely defines the parameters of a trajectory

µavg

x0

p1(t) p2(t)

(a) Illustration of the distance measure

0.006 0.17

rR

St

(r0, R0, St0)

(b) Parameter space

Figure 5: Left: illustration of the trajectory distance measure.
Right: parameter space visualization for the parameter ranges
r ∈ [0.0020, 0.0491], R ∈ [0.5, 0.7] and St ∈ [0.0196, 0.4911]. For
seed (x0, y0, t0) = (0.9, 0.6, 0) and integration duration τ = 9.95.

for both models. In order to compare these two trajectories, we re-
quire a trajectory distance measure. In principle, numerous distance
measures between two curves are imaginable. In the following, we
assume that particles are seeded at point (x0, t0), with initial velocity
v0 and response time r, density ratio R and Stokes number St. Fur-
ther, we trace the particle over integration duration τ. We compare
the trajectories p1 (t) = φ

τ
t0 (x0,v0,r) and p2 (t) = ψ

τ
t0 (x0,v0,R,St)

by the time-averaged Euclidean distance:

µavg (r,R,St) =
1
τ

∫ τ

0
‖Φt

t0 (x0,v0,r)−Ψ
t
t0 (x0,v0,R,St)‖dt (13)

The distance measure is illustrated in Fig. 5a. We not use the Haus-
dorff distance, as it computes distances among particles across dif-
ferent time steps. For visualization, we discretize the (r,R,St) space
at one seed point and color-code the distances, as shown in Fig. 5b
for the DOUBLE GYRE flow. To visualize the parameter space at
multiple seed points, we later use multi-dimensional stacking.

4. Implementation

Since inertial particle motion is governed by a first-order ODE, we
compute trajectories with a fourth-order Runge-Kutta integrator.
Tracing integral surfaces in the space-time view requires adaptive
refinement of the front line for long integration durations. In case
of Model 1 the front line forms a sequence of line segments and in
case of Model 2, the front line forms a closed polygon. The closest
matches, cf. Eqs. (9)–(12), are computed by discretizing the other
model’s parameter intervals [r0,r1], or [R0,R1] and [St0,St1], respec-
tively. Thus, front lines consist of multiple discrete line segments.
The closest point is either a vertex or a point on the segments.

5. Results

We apply our methods to multiple analytic and numerical data
sets. For all experiments, we use a viscosity of air µ = 1.81×
10−5 kg/(m s) and assume a gravity-free environment, i.e., g =
0 m/s2. All particles are released from rest with initial velocity
v0 = 0 m/s and have the density of sand ρp = 1600 kg/m3.

5.1. Influence of Particle Size

First, we study the influence of the particle size on the trajectory
distances. For this, we introduce the DOUBLE GYRE vector field.
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(a) Space-time view.
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Figure 6: Results in the DOUBLE GYRE. Fig. 6a shows the space-
time view, Fig. 6b the closest match distance d1→2

r0 and Fig. 6c the
parameter space for a particle seeded at (x0, y0, t0) = (1, 0.5, 0)
with duration τ = 9.95 and µavg as trajectory distance measure.

Double Gyre. The DOUBLE GYRE flow [SLM05] is an analytic
and periodic 2D unsteady vector field. We define it on the domain
[0,2]× [0,1]× [0,10] and use the parametrization:

u(x,y, t) =
(

−0.1πsin(f (x, t)π)cos(yπ)

0.1πcos(f (x, t)π)sin(yπ) d
dx f (x, t)

)
(14)

where

f (x, t) = 0.25sin
(

t · π
5

)
x2 +

(
1−0.5sin

(
t · π

5

))
x (15)

Fig. 6 shows the space-time visualization, closest match dis-
tance from Model 1 to Model 2 and the parameter space vi-
sualization, with parameters r ∈ [0.0020, 0.0491], R ∈ [0.5, 0.7],
St ∈ [0.0196, 0.4911] and for an integration duration of τ = 9.95.
We observe that small particles behave similar in both models, which
is apparent in space-time in Fig. 7, where the bright colored trajecto-
ries of small parameters match closely. This is because the response
time and the Stokes number are proportional and since Model 1 as-
sumes the fluid density to be much smaller than the particle density,
cf. Section 2.1. Therefore, we expect Model 1 pathlines and Model
2 pathlines to be similar for low response times and low density
ratios and Stokes numbers, respectively. This is especially apparent
in the parameter space visualization in Fig. 6c. This visualization
shows that differences increase quickly when the Stokes number
increases, but there is a wide range of response times (and density
ratios), in which trajectories are similar. From this visualization, we
can read acceptable parameter ranges, in which we can select either
particle model and obtain similar results for a certain parameter set.

In order to get a better impression of the time-dependent differ-
ences, we visualize the closest match distance d1→2

r0 in Fig. 8 over
time. It is apparent that with smaller response time r0 the distance
to the closest matching trajectory point of Model 2 gets smaller
throughout the entire time range, up to the point where differences
are visually indistinguishable. This visualization provides a com-
forting visual confirmation of the small differences for a particular
parameter configuration, which is exhibiting less clutter than the
direct space-time plot of the hull surfaces.

5.2. Influence of Seed Point

The shape of the created space-time surfaces strongly depends on
the seed point. To demonstrate this, we use an analytic vector field.

0.0020 0.0491
response time

x

y

t

(a) Model 1

0.5 0.7
density ratio

x

y

t

(b) Model 2

0.0196 0.4911
Stokes number

x

y

t

(c) Both models

Figure 7: Space-time view of possible inertial particle trajec-
tories for both models in the DOUBLE GYRE. Here, with seed
point (x0, y0, t0) = (0.8,0.2,0), integration duration τ = 9.95,
r ∈ [0.002,0.0491], R ∈ [0.5,0.7] and St ∈ [0.0196,0.4911].

0 0.43
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r0
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t

(a) r0 = 0.0963

0 0.06
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r0
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(b) r0 = 0.0314

0 0.01
d1→2

r0

x

y

t

(c) r0 = 0.0177

Figure 8: Closest matches for different response times in the DOU-
BLE GYRE. Here, with seed point (x0, y0, t0) = (1,0.2,0), integra-
tion duration τ= 9.95, R∈ [0.5,0.7] and St ∈ [0.0196,0.9626]. With
smaller response time r0 the closest match distance d1→2

r0 decreases.

Forced Damped Duffing. The FORCED DAMPED DUFFING oscil-
lator [HS11] is an analytic 2D unsteady vector field. In Fig. 9, we
observe it in the domain [−2.5,2.5]× [−2.5,2.5]× [0,12] and use
the parametrization:

u(x,y, t) =
(

y
x− x3−0.25y+0.4cos t

)
(16)

For the given seed point, the space-time visualization shows a signif-
icant stretching of the hull surface along the front representing the
varying Stokes number. Similarly, the parameter space shows a very
quickly increasing trajectory distance, when increasing the Stokes
number. On the other hand, a change in the response time or the
density ratio have a significantly smaller impact. A first conclusion
is that the two models are interchangeable for small Stokes numbers,
but how much does this conclusion depend on the seed point?

Fig. 10 shows the significantly different results for two different
seeds in the FORCED DAMPED DUFFING flow. While a simultane-
ous visualization of multiple surfaces is possible, it quickly becomes
infeasible due to occlusion problems. For this reason, we visualize
the seed point dependence by displaying multiple stacked parameter
spaces at different seed points in Fig. 11. We can see that trajectories
are only similar inside the two vortices. In the outer part of the
domain, particles accelerate in this analytic flow, amplifying parti-
cles differences quickly. We can see that the choice of an adequate
particle model does not only depend on the considered parameter
ranges, but also strongly depends on the seed point.
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(c) Parameter space.

Figure 9: Results in the FORCED DAMPED DUFFING oscillator.
Fig. 9a shows the space-time visualization, Fig. 9b the closest match
distance d1→2

r0 for response time r0 = 0.0491 and Fig. 9c the param-
eter space for a particle seeded at (x0, y0, t0) = (−0.3, −1.2, 0)
with duration τ = 10.1 and trajectory distance µavg.
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(a) (x0, y0, t0) = (0.3, 0.2, 0)
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Stokes Number

x
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(b) (x0, y0, t0) = (0.4, −0.5, 0)

Figure 10: Space-time visualization for two different seed points in
the FORCED DAMPED DUFFING oscillator. Here, for τ = 10.1.

5.3. Examples in Numerical Flows

Square Cylinder. The SQUARE CYLINDER flow is a 3D numerical
vector field, describing the flow around an obstacle. Tino Weinkauf
provided a uniformly resampled version, based on the Navier-Stokes
simulation by Camarri et al. [CSBI05]. Its uniformity along one
dimension allows us to treat one slice as a 2D unsteady vector field.
The domain of the SQUARE CYLINDER vector field covers the
ranges x ∈ [0, 32], y ∈ [0, 8], t ∈ [0, 162]. A space-time visualiza-
tion, the closest match visualization and the parameter space are
presented in Fig. 12, where the obstacle is colored purple. Vortices
in the wake of the obstacle cause deviations between the models
for larger particles. Thus, if wake turbulence is concerned, Model
1 cannot replace Model 2. In the laminar areas, however, particle
trajectories are more similar. Further visible in the parameter space
for a seed in front of the obstacle, Model 1 is a good fit for all consid-
ered density ratios and response times, as long as the Stokes number
remains small. To get a more complete picture of the behavior for
different seed points, Fig. 13 shows the stacked parameter space. A
small Stokes number leads to small differences in the entire domain.

Boussinesq. The BOUSSINESQ flow is a 2D numerical unsteady
convection simulation around a heated cylinder and was kindly
provided by Tino Weinkauf. The domain covers the ranges x ∈

0.0008 3.0
µavg

(a) Overview

R
r

(b) Close-ups

Figure 11: Stacked parameter spaces showing µavg for 100×100
seed points in the FORCED DAMPED DUFFING, with fixed Stokes
number St = 0.4911, τ = 10.1 and [r0, r1] = [0.0020, 0.0491],
[R0, R1] = [0.3, 0.7]. The parameter ranges are discretized to
10×10. Fig. 11a gives an overview. When zooming in as in Fig. 11b,
the parameter spaces of individual seed points become apparent.

0.0020 0.7858
response time

0.5 0.7
density ratio

0.0196 7.8576
Stokes number

x
y

t

0 0.4703
d1→2

r0

x
y

t

(a) Space-time view and closest matches
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(b) Parameter space

Figure 12: Results in the SQUARE CYLINDER flow. Left: space-
time visualization and closest matches. Right: parameter space for
a particle seeded at (x0, y0, t0) = (7.664, 3.771, 0) with τ = 15.

Vector Field Extraction Time
DOUBLE GYRE 22 min
FORCED DAMPED DUFFING 10 min
SQUARE CYLINDER 3 h 44 min
BOUSSINESQ 10 h 5 min

Table 1: Extraction time of the full parameter space in one seed
point for trajectory measure µavg and duration τ = 10.

[−0.5, 0.5], y ∈ [−0.5, 2.5], t ∈ [0, 20]. This flow serves as a test
case for a more turbulent scenario. The differences in the slowly
developing turbulent wake are larger. The stacked parameter space
can be seen in Fig. 14, where we show slices of different Stokes
numbers. In contrast to the previous example, differences are high
for every particle size. With our visualizations, we can identify areas
in which the simpler Model 1 trajectories cannot replace Model 2.

5.4. Performance

All experiments were conducted on an Intel Core i5-6300U CPU
with 2.4 GHz and 8 GB RAM. The trajectory differences for the en-
tire parameter space are precomputed. The precomputation timings
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St = 7.8576 (large particle)
0.0 9.4µavg :

St = 1.9644

St = 0.0196 (small particle)

Figure 13: Stacked parameter spaces in the SQUARE CYLINDER

for a 200× 50 seed point grid with fixed Stokes number. The pa-
rameter ranges are discretized to 5× 5, for r ∈ [0.0020, 0.7858],
R ∈ [0.3, 0.7], St ∈ [0.0196, 7.8576], t0 = 0 and τ = 15.

St = 4.4199 (large particle)
0.0 0.49µavg :

St = 0.0196 (small particle)

Figure 14: Stacked parameter spaces showing µavg for a 150×50
grid of seeds in the BOUSSINESQ flow with fixed Stokes number.
The parameter ranges are discretized to a 5× 5 grid. Here, with
[r0, r1] = [0.0020, 0.4420], [R0, R1] = [0.3, 0.7], t0 = 0 and τ = 6.

are listed in Table 1, for a discrete grid of 100×100×100 voxels in
the parameter ranges of r,R and St. For the stacked parameter space
visualization, we used a spatial resolution of 100×100 seed points
and a smaller parameter space resolution of 10×10×10.

5.5. Discussion

Occlusion. Depending on the data set, the space-time visualizations
can exhibit a significant amount of occlusion. Fig. 15 illustrates
this for a seed point (x0, y0, t0) = (−1.5, 1, 0) in the FORCED

DAMPED DUFFING. In order to look inside, we use axis-aligned
clipping planes to slice through the domain. An adjustment of the
transparency is imaginable, as well [BWF∗10, GTG17].

Initial velocity. Throughout all examples, we did not vary the initial
velocity v0, which would create another dimension. For a single
particle model, the influence of the initial velocity has been studied
for particle trajectories by Baeza Rojo et al. [BRGG18] and for
Lagrangian coherent structures by Sagristà et al. [SJJ∗17].

Two-way coupling. In this paper, we used inertial particle mod-
els that assume one-way coupling. In the future, we plan to apply
our methods to the comparison of one-way coupled and two-way
coupled trajectories. Note that two-way coupled trajectories are sig-

0.0020 0.0491
response time

0.3 0.7
density ratio

0.0196 0.4911
Stokes number

x

y

t

Figure 15: With long integration duration, surfaces tend to become
complex and occlude themselves. Seed: (x0, y0, t0) = (−1.5, 1, 0),
with integration duration τ = 10.1 in FORCED DAMPED DUFFING.

nificantly more complicated to compute, thus an approximation by
a parametric model might be very beneficial.

Hull Surfaces. The hull surfaces used to visualize the realization
space of inertial trajectories in Model 2 is an approximation. Since
inertial particle trajectories can intersect, inner trajectories might
leave the volume in rare cases. A full Monte Carlo sampling of the
entire volume is costly and we leave its investigation to future work.

Extraction time. We calculated the closest matches and the param-
eter space visualizations on the CPU. As shown in Section 5.4 this
leads to a long precomputation time. To improve performance and
interactivity, an implementation on the GPU is imaginable.

6. Conclusions

In this paper, we used multiple visualizations to compare two fre-
quently used inertial particle models. First, we provided a qualitative
view on the possible trajectories that inertial particles might take
in space-time for various model parameters. In case of the first
model, which has one inertial parameter, this results in a surface.
For the second model, which has two inertial parameters, we obtain
a volume, which we visualize by the four enclosing hull surfaces.
Given a particle with some fix inertial parameters, we introduced
the closest match, which describes the parameters and distance to
the closest position that we could reach by switching the particle
model. The closest match allowed us to express and visualize how
similar the two models are for a given seed point. By expanding the
visualization onto multiple seed points we inspected this similarity
between models across the whole space-time domain. Finally, we
introduced a metric to compare Model 1 and Model 2 trajectories
quantitatively and visualized this measure in parameter space for one
or multiple seed points using stacked visualization. With our method
it is possible to locate parameter ranges and areas in the domain, in
which two particle models are similar and interchangeable.

To generalize our method we will also have to take into account
initial velocity and possibly other inertial parameters in future work.
This means first of all that space-time visualizations will have to
cover more than two varying inertial parameters, which would yield
a more than three-dimensional space. Similarly, parameter spaces
would also contain more than three dimensions if we varied the
initial velocity. Even in higher dimensions, our method is still ap-
plicable to a three-dimensional subspace of the parameter space to
visualize trajectory distances. Approximating a trajectory in another
model and visualizing the resulting curves and their approximation
error also works in a higher dimensional parameter space, but be-
comes computationally more expensive, as each potential parameter
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combination could be the closest match. We also want to extend our
method to three-dimensional data sets, which would result in a 4D
space-time domain. While our quantitative method, i.e., the distance
computation in the parameter space would still work in higher di-
mensional space-time, the actual visualization in space-time needs
to handle the additional occlusion and high dimensionality. For this,
new projections can be used, such as by Hofmann et al. [HRS18].
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