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Abstract

To gain insight into many properties of granular matter, a particle packing can be simulated. For a dry particle mixture, collective
rearrangement is often used as an iterative process to place the particles. In this paper, we present a new visualization technique

to judge the quality of a collective rearrangement simulation

of many spheres with a given particle size distribution. In addition

to a visualization of the spheres themselves, we directly visualize the gaps and overlaps of the spheres in each iteration. This
allows to see the regions where the simulation is not yet converged as well as the free spaces where spheres can still move into.
Our method supports millions of spheres at interactive to real-time frame rates, allowing the user to inspect the sphere packing
during the simulation. We demonstrate that this type of visualization better shows the structure of the current sphere arrangement
than standard techniques like 2D clipping planes and therefore serves as a visual feedback to support the development of the

packing simulation.
CCS Concepts

«Computing methodologies — Scientific visualization; Rendering;

1. Introduction

Particle packings form the basis of many materials from different
fields like concrete, pills and tablets for medical purposes or pow-
ders for 3D printing. Important properties of the final material are
determined by geometrical properties of the dry particle packing.
Simulating and inspecting these packings may therefore help to
develop materials with a particular desirable property.

If we approximate particles by spheres, as it is quite common in
material sciences (see e.g. [Tor06]), then the mixture is determined
by its particle size distribution (PSD) that describes the percentage
of particles for each radius.

There are several ways to simulate a packing (see e.g. [BBS*02]).
If the aim is to obtain a very dense random packing, the so-called col-
lective rearrangement (CR) algorithms seem to be superior. Here, a
sample of spheres from the PSD is placed randomly in a container
which at the beginning is chosen so small that each of the spheres
must overlap with others. A repulsion between the spheres is simu-
lated and the container is enlarged stepwise until a non-overlapping
placement is reached.

As this algorithm does not aim at simulating the true physical
forces that generate a packing, it is of great importance to inspect
the final packing as well as its generation process to judge the quality
of the simulation. It may e.g. happen, that some overlaps between
spheres remain or that there are unrealistic holes in the packing. If
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the packing simulates a foam, then the spheres represent gas bubbles
and the main interest is in the shape of the interstices.

Therefore the development of a flexible visualization tool for the
simulation became necessary. It should allow the material scientist
to inspect the final packing for its properties, but it should also help
the developer to check the correctness of the complex simulation
algorithms and the impact of their parameters.

More precisely, it should allow to navigate through the packing,
select spheres, inspect its overlaps and visualize the free space. This
should not only be possible for the final static packing but also
during its generation to see the repulsion between the spheres and
the gradual vanishing of the overlaps. Realistic simulation of e.g.
concrete mixture needs huge samples of particles (see [KRW10]).
An additional challenge is the large variation of sphere sizes needed
in one sample for a realistic simulation of e.g. concrete mixtures.
They comprise spheres with diameters from 0.1 micrometers up to
centimeters. Today, highly parallel simulations on the GPU allow
one CR iteration with millions of spheres within milliseconds (
[YGGK17]).

Although sophisticated methods exist to visualize the spatial
placement of particles, simply drawing spheres in 3D does not
show where the remaining overlaps or the existing gaps between
the spheres are (see Figure 1). We therefore develop a visualization
for collective rearrangement of spheres that allows a direct render-
ing of gaps and overlaps. Our method runs entirely on the GPU
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Figure 1: A sphere packing consisting of one million spheres. Large
spheres are drawn in red, small spheres are drawn in yellow. The
periodic boundary shows the space that spheres from the opposite
side occupy. Due to the unfinished collective rearrangement process,
some of the spheres are still overlapping, which is hard to see in a
standard visualization.

and supports large and dynamic sphere packings at interactive to
real-time frame rates. The user can interactively inspect the cur-
rent simulation and see where spheres still overlap, as well as the
remaining free space between them. We demonstrate that such a
visualization is more helpful than standard techniques like drawing
the spheres in combination with 2D clipping planes.

These visualization tools were developed in close cooperation
with a GPU-based simulation tool which is described in more detail
in [YGGK17]. Similar to the former sequential simulation pro-
grams that e.g. utilized loose octrees to store the sphere locations
(see [KRW10], [RK11]), the GPU-based simulation also makes
use of concepts from visualization so that both, simulation and
visualization, use identical core data structures that can easily be
exchanged between both parts of the program system.

2. Previous Work

To achieve fast rendering of spheres, billboards are typically used
in combination with an intersection test per pixel [MTCO6]. There
are several projects that draw millions or even billions of spheres
at interactive to real-time frame rates, including the whole cell
visualizations [FKE13], MegaMol [GKM* 15] and molecular reac-
tions [MPSV14]. A recent overview can be found in [KKF*16].

Several rendering techniques exist to emphasize the spatial ar-
rangement of the spheres, including ambient occlusion, depth-aware
silhouettes and depth darkening [MTCO06]. In case of a large number
of spheres, image-space methods can be used since the rendering
time only depends on the number of pixels. By inspecting neigh-
boring pixels in a geometry buffer, contact shadows and indirect
illumination can be computed within a small region [RGS09].

Our work uses GPU linked lists introduced in [YHGT10] to store

information from multiple spheres for each pixel. This allows to
draw both overlaps and gaps between the spheres at pixel precision.
Our work bears similarities with CSG operations that are computed
in image space [KDO4]. The idea of using linked lists for CSG
operations is described in [RFV13], and [RN14] describes a possible
implementation, which is restricted to two objects and requires two
render passes for list generation. In contrast, our method deals with
an arbitrary number of spheres, fills the lists in a single render pass
and reduces the memory requirements for each list element.

3. Collective Rearrangement Simulation

To determine the spatial placement of the spheres, we use a par-
allel GPU version of the algorithm described in [RK09, KRW10].
Given an arbitrary particle size distribution, we start with random
sphere positions, and then use collective rearrangement to remove
the overlaps. In this iterative process, overlapping spheres push each
other away by a slight amount in each iteration. To cope with a large
number of spheres, the spheres are inserted in a loose octree accord-
ing to their size. In this way, possible candidates for collision are
detected quickly. Our simulation uses a cubic container in combina-
tion with different border types. Beside a hard border that prevents
the spheres from leaving the container, we also support a periodic
boundary that allows a tiling of the sphere packing where spheres
can wrap-around at each border. In this case, spheres intersecting
the border are virtually duplicated for collision checks at the oppo-
site border. Our method requires roughly 30 ms for one CR iteration
with one million spheres and achieves good correspondence with
measured densities of real materials. The details will be available
in [YGGKI17], the simulation itself is not a contribution of this

paper.

4. Direct Sphere Visualization

Our method requires a visualization of spheres with pixel preci-
sion to correctly detect the existing gaps and overlaps between the
spheres using a perspective projection. We start by drawing a point
for each sphere (VBO with position, color and radius), and use a
geometry shader to generate a view-aligned quad for each point.
To conservatively rasterize the sphere region, the quad is oriented
orthogonal to the sphere center direction with a size adjusted to the
sphere radius. Finally, a fragment shader is used to compute the
intersection of each pixel ray with the sphere. In case of an intersec-
tion, the intersection point, the intersection normal and the sphere
color are drawn into a geometry buffer. Otherwise, the fragment is
discarded. Afterwards, we use deferred shading and illuminate all
visible fragments based on the information in the geometry buffer
(position, color, normal). Finally, we use screen-space ambient oc-
clusion [RGS09] to display contact shadows between nearby spheres
to intensify the visual impression of the placement.

5. Visualization of Overlaps and Gaps

Although our visualization of spheres gives a good impression of
the spatial arrangement of the spheres, it is hard to judge where the
remaining overlaps and free spaces are. While this is easy to see in
2D, it is practically invisible in 3D. To better evaluate the quality
of the collective rearrangement, we developed a direct visualization
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Figure 2: Calculations for a GPU linked list (based on [YHGT10]).
Each column in the node buffer stands for a node. Information
needed later such as index can be stored in the green parts for each
node.

of gaps and overlaps in 3D. Since we work with a large number
of potentially small spheres we decided to create this visualization
directly in screen space with pixel precision.

GPU Linked Lists Our work is based on the idea of GPU
linked lists introduced in [YHGT10], which provides a method to
dynamically construct highly concurrent linked lists on modern
graphics processors. To construct a GPU linked list, two buffers are
needed: One large node buffer which contains nodes of the linked list
and another screen-sized head pointer buffer to store head pointers,
each pointing to the start of a linked list in the node buffer, for each
pixel. Figure 2 shows a small example: Here the pixel which has the
value 4 on its head pointer buffer has its node information stored on
the position 4 in the node buffer. This node contains a tail pointer
that refers to the position of the last node that its pixel owns, which
is 1 in this case. Each time a new color is written to a pixel, the
global atomic counter is increased by one and a new node is written
into the position indicated by the counter in the node buffer, with its
tail pointer pointing to the position indicated by the head pointer of
the pixel. If the head pointer has value —1, the tail pointer keeps its
initial value —1. Then the head pointer is set to the position of the
new node in the node buffer.

Spheres in Linked Lists When applied to order-independent
transparency, a GPU linked list needs 3 elements (color, depth and
tail pointer) per hit point between the ray and the surface of a
rendered object. This results in 12 bytes per hit point if each element
requires 32 bits. In our work, we need only 16 bytes for each pair
of hit points (enter and leave of ray-sphere-intersection). We first
render all spheres and insert their enter and leave depth values in
linked lists. To save GPU memory, we only store the following
information for each list entry: Enter and leave depth (2 x float), the
sphere index (1 X int) and the tail pointer (using 32 bits for each).
The sphere index allows the implementation of a selection function,
such that the user can select one overlap per mouse click and get
information about the spheres that form the overlap. Besides, the
sphere index is used to read the center position (3 X float) and the
basic color (1 x int) for one sphere. Thus the position, normal,
and color of an enter/leaving point can be calculated based on the
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Figure 3: Rendering overlaps: For non-overlapping spheres, we
have alternating enter and leave points (ray ry). In case of an
overlap, we get two successive enter points (e4 and es on ray ry).
The second enter point (es) is drawn. The overlap part is marked in
orange.

Figure 4: Three spheres and the corresponding overlap rendering.

depth value on the fly for later illumination. The depth values are
stored as positive, linear z values in eye coordinates. For each of our
visualizations, we first sort the depth values of each linked list along
the z-axis until the surface for overlaps/gaps is found. Except of
transparent renderings, we stop the sorting process at this point. We
therefore need a sorting algorithm that copies the smallest element
to front in each iteration, since this enables an early break of the
sorting. In our work, Heapsort is applied here, since this is a non-
recursive, in-place sorting algorithm which extracts the smallest
element in O(log(n)) steps. Since we allow both a container with
hard and periodic boundary conditions, we have to differentiate
between them for visualization.

5.1. Rendering Overlaps

To detect whether there are overlapping spheres along a camera
ray, we make the following observation: In case of non-overlapping
spheres, we have alternating enter and leave points along the camera
ray. Whenever two spheres are overlapping, this pattern is changing
and we observe two successive enter points. The second enter point
is the one we need to draw, as can be seen in Figure 3. The whole
process is summarized in algorithm 1. Figure 4 shows a small ren-
dering with a few spheres and the resulting overlaps. The resulting
"lenses" effectively describe a CSG intersection operation.
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List 1: Inputs for algorithm 1, 2 and 3. All depth values are
in the Eye coordinate system (ECS), assuming positive depth
values along the z-axis. Tail pointers are first copied from global
memory to register memory as 7', such that swaps in the sorting
algorithm are conducted on register memory and no writing-
process to global memory is needed.

Data: T : array of tail pointers of the current pixel in register
memory.

Data: L : length of T

Data: D : array of vec2s. Each element stores the enter depth
and the leave depth of the pixel ray and a sphere.

Data: c.enter : enter depth of the container.

Data: c./eave : leave depth of the container.

Algorithm 1: Draw overlaps for each pixel. Inputs are found in
list 1.
Result: Determine the depth d of the frontmost overlap surface
for the current pixel.
/I at least two spheres are required for overlap
if L < 1 then discard ;
/[ Initialization.
found « false;
/'y records the largest depth of leave points up to now
y 0
/I copy the tail pointer with the smallest enter depth to front
sortOneStep(0);
/' loop through all spheres
fori—1toL—-1do
/I copy the tail pointer with the ith smallest enter depth to position i
sortOneStep(i);
/I set d to the depth of the ith smallest enter point
d < D|T;].enter;
// set y to leave depth of previous sphere if larger
y «— max{y, D[T;_].leave};
/1 if previous leave depth is larger than current enter depth...
if d < y then
found « true ;
break;
if found then return d ;
else discard ;

/I ...we found an overlap at depth d

5.2. Rendering Overlaps under Periodic Boundary Conditions

In case of periodic boundary conditions (PBCs), spheres can leave
the container on each side and enter the container at the opposite
side during collective rearrangement (wrap-around). PBCs have
been applied extensively in theoretical modeling of crystalline solids
[MP95], electrostatic systems [dLPS80] and biomolecular systems
[CMF*95] etc., since a large (infinite) system can be approximated
by using a small part called unit cell (container).

For a correct visualization, we need to make a virtual copy of
each sphere which intersects the border to make sure that we dis-
play all overlaps with spheres from the opposite border. Since the
periodic boundary results in overlapping spheres outside the con-
tainer we have to extend our overlap test: Detected overlaps outside

Figure 5: Different cases for rendering overlaps under PBCs.
Spheres intersecting the border are virtually duplicated and drawn
in blue. The parts outside of the container are marked with stripes
and emerge on the opposite border. Overlaps inside the container
are drawn in orange. Ray r| shows an overlap inside the container.
Detected overlaps outside the container can be discarded: Ray r)
detects an overlap at e4 which is skipped and es is drawn. For ray
r4, the detected overlap at e7 is ignored because it is behind the
container. Ray r3 detects at overlap in front of the container which
is projected to the border (eq — c).

the container are either discarded or projected to the container bor-
der. Figure 5 shows an example with the different cases. The whole
process is summarized in algorithm 2.

5.3. Rendering Gaps under Periodic Boundary Conditions

During collective rearrangement, it is interesting to see the empty
regions where the overlapping spheres can still move into. There-
fore we would like to invert the sphere rendering and visualize the
surrounding empty space between the spheres. We use this type of
visualization mainly for a periodic boundary, since a hard boundary
effectively shows the container. In case of a periodic boundary, sev-
eral spheres intersect the border and the visualization then shows the
space between them. The basic idea to visualize this empty space is
as follows: If the first intersection point along the camera rays is the
container boundary, we are finished. If we first hit a sphere (which is
outside the container due to the periodic boundary), we travel along
the ray until we find a leave point which is not in an intersection
between spheres. If this point is inside the container, we found the
backside of the sphere that we are searching for. This point can then
be rendered as the frontside of the empty space and illuminated with
the inverted normal. Figure 6 shows a small example with different
cases, the whole process is summarized in algorithm 3.

Figure 7 shows a small rendering with the empty space of two
spheres. This type of rendering leads to a "cheese-like" appearance,
where spheric holes are extracted from the container cube, similar
to a CSG subtraction operation.

© 2017 The Author(s)
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Algorithm 2: Draw overlaps for each pixel under PBCs. Inputs
are found in list 1.
Result: Determine the depth d of the frontmost overlap surface
for the current pixel.
// at least two spheres are required for overlap
if L <1 then discard ;
// initialization
found « false;
inBox « false;
/'y records the largest depth of leave points up to now
y 0
/I copy the tail pointer with the smallest enter depth to front
sortOneStep(0);
/I loop through all spheres
fori—1toL—1do
/I copy the tail pointer with the ith smallest enter depth to position i
sortOneStep(i);
/I set d to the depth of the ith smallest enter point
d <« D|T;].enter;
// sety to leave depth of previous sphere if larger
y «— max{y, D[T;_1].leave};
if d > c.enter then /1'if the enter point is in the container
if d < y then // and overlap at d detected: stop
found < true;
break;
/l'if ray is in container after leaving current sphere
else if D[T;].leave > c.enter then
/I if current overlap projects to the container
if y > c.enter and d < y then
found < true;
inBox « true;
break;
if inBox then return c.enter ;
else if d > c.leave then discard ;
else if found then return d ;
else discard ;

// overlap found
/[ at front border

// overlap at front border

/I overlap behind container
/I overlap inside container
/I no overlap

5.4. Discussion

For both the overlaps and gaps visualization, we generate a geometry
buffer, illuminate and apply screen-space ambient occlusion (similar
to direct sphere rendering). Both visualizations are also applicable
for any convex primitives whose enter and leave points can be
calculated. Furthermore, our methods can also be extended to render
overlaps/gaps or to calculate their volumes for arbitrary 2-manifold
3D-meshes. Either with two render passes (one for front side, one
for back side) or one render pass (with depth test disabled). When
one render pass is applied, we need four elements (depth, index,
normal, tail pointer) per hit point and sort all hit points. Besides, to
render gaps or to calculate volumes of gaps/overlaps, an extra array
in register memory is needed to record the indices of points visited
by the camera ray so that leave points can be recognized.

6. Volume Calculation
During collective rearrangement we would like to judge whether

the quality of the simulation still improves. In this case, overlapping
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Figure 6: Different cases for rendering gaps under PBCs. Black
points are visited by corresponding rays and red points stand for
the surface points of gaps. Ray ry directly detects the first leave
point as the front surface of the empty space. For rays ry up to
r4, Several leave points must be checked until the first leave point
without sphere intersection is found. Rays rs and r¢ detect leave
points in front of the container and are therefore discarded.

ko

Figure 7: Rendering gaps for two spheres under PBCs: One sphere
intersects the container border (left), so it is duplicated to the oppo-
site border. Center: Resulting empty space rendering. Right: Empty
space rendering with transparent container.

spheres are still moving into the remaining free spaces. This means
that both the total amount of overlap and the amount of remaining
free space decrease. The required analytic computation of the in-
tersection volume of multiple spheres is possible, but complicated.
Instead, we use the linked lists per pixel to compute the total free
volume and the total overlap volume at pixel precision. The basic
idea is to compute the volume for each pixel as a sum of cuboid
(orthographic) or frustum (perspective) volumes, resulting from the
stored depth values. If the used sphere packing contains spheres
smaller than a pixel, we use tiled rendering in combination with an
orthographic projection. The tile resolution is then adjusted, such
that the smallest spheres are still larger than a pixel.

In the following, we assume a viewport resolution of w X & pixels.
To determine the volume V of a pixel, we start with 0 and compute
the volume by iterating through the linked list. The total volume is
then determined as the sum of all pixel volumes.
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Algorithm 3: Draw gaps for each pixel under PBCs. Inputs are
found in list 1.
Result: Determine the depth d of the free space surface for the
current pixel under PBCs.
// discard in case of no spheres (container has been rendered already)
if L =0 then discard ;
// initialization
inBox « false;
/I copy the tail pointer with the smallest enter depth to front
sortOneStep(0);
d <« DI[Tp].leave; /I set d to the first possible value for a gap
if d > c.enter then inBox = true ; // check if d is in the container
/I loop through all spheres
fori— 1toL—-1do
/I copy the tail pointer with the ith smallest enter depth to position i
sortOneStep(i);
if inBox then
/I if sphere i enter depth is behind prev. sphere leave depth:
/I gap found at backside of prev. sphere
if D[T;].enter > d then break;
// set d to leave depth of current sphere i if larger
else d «— max{d, D[T;].leave} ;

else

/I if leave depth of prev. sphere is in container

if d > c.enter then

/1'if sphere i enter depth behind prev. sphere leave depth
/I gap found at backside of prev. sphere

if D[T;].enter > d then break;

/I set d to leave depth of current sphere i if larger

else d «— max{d,D[T;].leave} ;

inBox = true;

/I'if gap between sphere i and prev. sphere before container
else if D[T;].enter > d then

/I if enter depth of sphere i is in container: draw border
if D[T;].enter > c.enter then discard;

/I else continue with leave depth of sphere i

else d — D|T;].leave;

// set d to leave depth of current sphere i if larger

else d «— max{d, D|T;].leave} ;

if d > c.leave then discard ;
else returnd ;

// ignore gap behind the container

6.1. Volume Calculation under Orthographic Projection

If orthographic projection is applied, the area A, of each pixel is
simply
_@=b)r-1)

A= M

where ¢, b are coordinates for the top and bottom horizontal clipping
planes and r,/ are coordinates for the right and left vertical clipping
planes.

Therefore, for each pair of matched enter point with depth d, and
leave point with depth dj, the difference d; — d, is added to V and
the sum of V over all pixels is finally multiplied by A, given by
equation (1) to calculate the approximated volume.

6.2. Volume Calculation under Perspective Projection

Using perspective projection with field of view angle 6 and view-
port aspect ratio a, the area A, of each pixel corresponds to a
rectangle with side length 2ztan(6/2)/h in y direction and the side
length a2ztan(6/2)/w in x direction. The pixel area can therefore
be calculated as

_ 4720 tan(@/Z)2
B hw

where z is the depth value in the eye coordinate system of the point
belonging to the current pixel.

A @

Under perspective projection, for each pair of matched enter point
with depth d, and leave point with depth dj, the difference dl3 - dg’
is added to V and the sum of V over all pixels is finally multi-
plied by 4atan(6/ 2)2/(hw) based on equation (2) to calculate the
approximated volume.

7. Results

All performance measurements were conducted on an NVIDIA
GeForce GTX 1080 graphics card with 8 GB video RAM. The PC
is equipped with an Intel Core 17-6700K processor, 4.00 GHz CPU,
32 GB RAM, running Windows 10 (x64). If not indicated otherwise,
the viewport resolution is set to 768 X 768 pixels. Please see also
the accompanying video for real-time frame captures.

Figure 8 shows our renderings of gaps and overlaps for different
numbers of spheres. For rendering the whole container with one
million spheres, the frame rate is 58 fps for the standard rendering
and 45 fps for our overlaps and gaps visualization. In combina-
tion with the CR simulation, the frame rate drops to 20 fps for
standard rendering and 18 fps for overlaps and gaps. Including the
volume calculation requires approximately 17 ms additional time.
The memory requirements for storing the linked lists are approx.
161 MB. Our largest data set contains ten million spheres. Here, we
still reach a frame rate of 17 fps for the standard rendering and 11
fps for gaps and overlaps visualization. We observed that both the
rendering time and the memory requirements increase linearly with
the viewport resolution. Furthermore, the memory requirements in-
crease linearly with the summed cross sectional area of all spheres.
A detailed analysis of both timings and memory requirements is
given in the supplemental material.

In certain situations, it can be helpful to see a combination of
overlaps and gaps in the same image. Figure 9 shows such a render-
ing (47 fps for one million spheres). Here, gaps from large spheres
are visible as well as their overlaps with many, small surrounding
spheres "on the border" of the gaps.

The usual way to see gaps and overlaps between objects is the
insertion of 2D clipping planes. Figure 10 shows a comparison be-
tween a 2D clipping plane and our 3D visualization of overlaps.
Note that it is difficult to get an overview of the distribution and
shape of the overlaps only based on a moving 2D clipping plane.
When combined with a clipping plane, our method also shows the
overlaps on the clipping plane, but in addition, the 3D structure
of the overlaps behind the clipping plane. We found this a more
useful combination than flying inside the 3D structure, which can
become confusing. Please see also the accompanying video to spot
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Figure 8: Overlaps (center row) and gaps (bottom row) for 128
spheres (left) and one million spheres (right). Please note that PBCs
are used here, therefore some gaps and overlaps can result from
spheres at the opposite border. The transparent yellow cube is the
container, overlaps on the container border are drawn in blue.

Figure 9: Combined rendering with both overlaps (drawn in grey)
and gaps (drawn in red) for 128 spheres (left) and one million
spheres (right).

© 2017 The Author(s)
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Figure 10: Comparison of our 3D overlap rendering with standard
2D clipping planes for 128 spheres (top) and one million spheres
(bottom). Overlaps at the clipping plane and at the container border
are drawn in green.

the difference between the different approaches and also the combi-
nation of our gap and overlap visualizations with a clipping plane.
In addition, the video shows renderings with transparency and a
user-defined virtual "stirring" to resolve overlaps that remain after
the CR simulation.

8. Conclusion and Future Work

We presented a new visualization technique to display overlaps and
gaps in large sphere packings. For collective rearrangement simu-
lations, this allows the user to inspect the quality of the simulation
in each iteration. Our method reaches interactive to real-time frame
rates for millions of spheres. Showing these structures in 3D gives
a better impression of their shape than using 2D clipping planes.

As future work, we intend to integrate more realistic particle
shapes, like polyhedrons [GRZ*10] or collections of spheres, both
in the visualization and the simulation. In case of even larger sphere
packings, with many spheres that are smaller than a pixel, we ex-
amine if ray casting in combination with the loose octree can be
used to display the gaps and overlaps more quickly [FKE13]. We
investigate if additional visualization techniques, like depth-aware
contours or depth darkening can improve the perception of the gaps
and overlaps rendering [MTCO06]. Since we detect the position of
overlaps and gaps regions, repelling forces could be added in the
overlap regions, as well as attracting forces in the gaps regions, to
automatically improve the simulation, which could lead to a higher
density of the sphere packing. Furthermore, we plan to use the vi-
sualization for other types of simulations, like random sequential
addition, where spheres are attracted by gravity and roll down until
they have at least three contact points, which often leaves large gaps
between the spheres.
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