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Figure 1: Development of one of the three particle droplets (from case study 1). One time step is shown in detail while past and future
dynamics of the droplet is encoded using ribbons with plotted attributes. (a) The droplet remains in a linear motion in the beginning without
spin (yellow) or deformation (green). (b) The droplet is heavily deformed. The trajectory indicates the transition into spiral movement while
the attributes show an increase in spin and deformation at the point where linear movement ends. The density (blue) is almost constant. (c)
The cluster is subsequently regaining its spherical shape while moving in a spiral, since the spherical anisotropy decreases. For reference,

all droplets are shown in the upper left sub images of (a) - (c).

Abstract

Time-dependent particle-based simulations are typically carried out by direct calculation of interactions between particles over
time. The investigation of higher order effects of particle clusters helps understanding the system’s dynamic. Existing methods
for particle data analysis either rely on animation, where only one time step is visible, or abstraction, which is giving up
on visualizing the data in its spatial domain. Inspired from illustrative techniques, we present an interactive focus+context
visualization, based on flow ribbons, that combines both approaches. Our method jointly shows one time step in detail, as well
as an abstract contextual visualization of past and future dynamics in one image. It allows to assess the time evolution of various
cluster attributes around the current temporal focus. We show the usefulness of the approach on two exemplary case studies.

1. Introduction

Particle-based models are the basis for many simulation techniques
used for example in thermodynamics, material sciences or molecu-
lar biology. Each particle represents an entity, for example an atom
or grain. The simulation is typically carried out by directly calcu-
lating interactions on the particle level in multiple successive time
steps. Clusters of particles form higher order structures, like drops.

In order to assess the time-dependent behavior of these clusters
two approaches are commonly used, namely animation and abstrac-
tion. Using animation, the data is directly visualized in its spatial
domain. This leverages the human capacities to understand higher
order structures that would be hard to reliably formulate as algo-
rithms. To interact with time, it is played and paused like a video.
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The idea is to let the user track related structures and their interac-
tion. Although manipulation of the camera, visualization parame-
ters or filters, is normally allowed, only one time step is visible at
a time. Especially for complex scenes, the mental load on the user
increases dramatically. This can render animation to be even infe-
rior to static images, since all past information has to be recalled
from the user’s memory [TMBO02]. Also, using animation holds the
potential danger of wrong subjective conclusions about movement
and especially interaction between data parts [RFF*08]. Thus, a
typically used pattern is to repeatedly play, pause and rewind ani-
mations while focusing on different parts of the data. Since the hu-
man brain can only track a small number of moving objects [AF07],
this might become tedious when many objects are present.
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The other commonly used approach for analysis, especially in
thermodynamics, is based on abstraction, like function plots or
graphs. In order to assess and compare changes in time, multiple
graphs are presented simultaneously. This visualization, on the one
hand, does not rely on the memory of the user and allows for ex-
act depiction of events. On the other hand, by its abstract nature, it
gives up on a direct visualization of the data in its domain and thus
does not make use of the human’s capacity to understand shapes.
Methods exist that remedy this problem with linked views (for ex-
ample [GRVEQ7]). Generally, designing multi-view solutions with
linked graphs is very challenging since the design must be consis-
tent and facilitate the user’s understanding of information, that is
distributed over many connected plots [WBWKO00].

We propose an interactive visualization that jointly shows a di-
rect spatial visualization of particle data for one time step with a
condensed abstract view of its temporal context. Our work is in-
spired by illustrative techniques, especially so called flow ribbons
known from comics, that were investigated by Joshi et al. [JRO5].
In essence, they are bands that follow a part of the trajectory up to
one time step in focus. We extend the idea of showing movement
to additionally encode cluster attributes, thus allowing the user to
assess past and future development, directly correlated in space and
time. We argue that our approach combines the benefits of a spa-
tial, and also an abstract visualization. Since we define one selected
time step as focus while having an abstract spatio-temporal context,
our approach can be classified as a temporal focus+context method.

Our contributions are:

e We present a focus+context visualization that shows particle
clusters of one focused time step in detail and their past and fu-
ture development as a ribbon in one static scene.

e We discuss and present the calculation of various attributes of
clusters, specific to the domain of particle-based simulations.

Throughout the remaining sections, we refer to the state and change
of the cluster’s attributes as "cluster dynamics".

2. Related Work

Augmenting scientific visualization with abstract graphs is an ac-
tive field of research (see for example a recent survey by Wang
on graph-based techniques [Wan15]). In order to better understand
selected data while using a reduced representation of the remain-
ing data, focus+context methods are especially useful. They rely
on the definition of a degree-of-interest (doi) function that maps
parts of the data either to be in focus or in context, optionally with
a smooth boundary [Hau06]. For time-dependent data, this concept
is extended to a temporal doi (tdoi) function [CSRCO8] by adding
a point or range in time to the focus definition.

Conveying movement in static images is one key element in il-
lustration and comics [McC94]. Joshi et al. investigated the applica-
bility of various comic elements for scientific visualization [JRO5].
Following the same idea, Nienhaus and Dollner presented a system
to analyze a dynamic scene and automatically assign art-inspired
techniques where appropriate [NDO5]. Our work is based on the
idea of simplified, temporally localized and easy to grasp glyphs,
as well.

A variety of methods exist to visualize trajectories and their as-
sociated attributes. They are employed in various fields, such as bi-
ology [KERCO09] and especially traffic analysis [CGW15]. Works
in these areas can roughly be subdivided into aggregation meth-
ods and direct visualizations, which in turn can be divided into ap-
proaches that either work on 2D or 3D trajectory data. Aggregation
methods, for example density maps are best suited for large num-
bers of trajectories [SWvdWvW12]. For 2D trajectories like car or
ship movement data, the remaining dimension of a 3D scene can be
used to either encode time or trajectory dynamics. Tominski et al.
presented a visualization of 2D trajectories by using colored bands,
stacked in the z-axis to show temporal dynamics [TSAA12]. Hib
et al. built on this idea, but used the stacking approach to show
multiple attributes [HMRH15].

In contrast to 2D data, 3D trajectories pose additional challenges,
since all axes of a 3D scene are occupied for the spatial attributes
of the trajectory itself. Especially occlusion and clutter are prob-
lems, foremost for large and dense trajectory data. Buschmann et
al. proposed an interactive system that combines direct and aggre-
gated visualizations of massive airplane trajectory data [BTD14].
Dense data is selected and filtered using various querying tech-
niques. Also, they include a means of temporal focus+context by
allowing the user to compare subsets of trajectories for different
time spans by color coding.

For interactive analyses of sparse trajectories, as in our approach,
more screen space and rendering effort can be dedicated to single
trajectories. Ware et al. visualized sparse movement data of hump-
back whales [WAPWO06] using thick ribbons. They are twisted
around their central axis according to the rolling of the whales. To
show the direction of movement, chevrons are used. Inspired from
their works, Schroeder et al presented a system to visualize surgical
training data [SKW™*12]. Participants were given a surgical device
whose position was tracked. Beside other representations, the au-
thors included a 3D visualization using ribbons. Various attributes
are encoded with texture, orientation and color. A related approach
was presented by Rakita et al. to show complex trajectories of robot
arms [RMG16]. In addition to trajectories, they extract meaning-
ful keyframes and superimpose them in one static image. Recently,
Karch et al. presented a system to visualize the dynamics in two-
phase flow fields [KBE* 17]. Their visualization approach includes
a ribbon that conveys movement and twists of droplets, integrated
into a spatial visualization.

Several works exist that visualize paths or trajectories in particle
data. Lindow et al. proposed a method for molecular dynamics data
to estimate and show potential molecular binding paths [LBH11].
In order to show deeply occluded paths, they use advanced shading
techniques and semantically meaningful clipping. Fraedrich and
Westermann presented a visualization in order to assess motion
in astrophysical particle simulations [FW12]. They render distinct
particle trajectories on multiple scales and combine tube rendering
and volume rendering. Recently, Scharnowski et al. presented a dis-
tributed method to efficiently encode and simplify a large number
of particle trajectories using Hermite splines [SFRE17].

Note, that rendering techniques for flow ribbons also share sim-
ilarities with methods in vector field visualization. But since they
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differ in their motivation (analysis of flow vs. direct depiction of
single movements), they are out of scope for this work [JROS].

3. Data Preprocessing

Our method is laid out with a focus in molecular dynamics and ther-
modynamics. Data sets in these areas typically consist of particles
that move and interact, but do not vanish. Higher order structures,
represented as clusters, show complex dynamics, like deformation,
splitting, merging or evaporation. Please note that the identification
of clusters is not part of this work. We rely on pre-clustered data,
provided by our application domain scientist partners.

The input is a time-dependent particle dataset with multiple time
steps. In the following we denote a certain time step ¢ with a super-
script. Each time step consists of a set of particles P*, each defined
by their position pﬁ € R? and an optional radius. Per time step, the
particles are partitioned into a set of clusters C', where each ele-
ment C; C P' itself is a set of its corresponding particles. Particles
may join of leave a cluster, which means, that a clusters may appear
or vanish.

3.1. Determination of evaporated particles

Especially in molecular dynamics simulations, evaporation and
its implications is an important research topic (see for example
[HVF16] and related works). Parts of the simulated matter evap-
orate by detaching from the cluster. While those particles tend to
maintain the momentum of the original cluster for still some time,
they are successively less affected from the cluster’s dynamics.
Evaporated particles are identified in the very first step, and re-
moved from subsequent calculations.

In our approach, a particle is considered to be in a gas phase
when its approximate local density falls below a simulation specific
threshold. For particle datasets, the density can be approximated for
each particle by counting the number of elements in a neighbor-
hood with a constant radius. Note that neighbors are sought inde-
pendently of the cluster partitioning. Formally, a particle at position
pi € P is in gas phase if

{aePlla-pl<r}|<n )

holds, where r is the search radius and ng is the lower threshold.
Using this criterion, the particles in a cluster C; form two new sets.
C;,J denote the particles of cluster ¢ in time step i that are in a gas
phase and the set CIE.i contains all other particles.

3.2. Calculation of the centroid

The cluster’s particles that are not in gas phase are used to calculate
a centroid gﬁ. In this work, we treat the particles as elements with
constant mass which allows us to calculate the center of mass by
calculating their arithmetic mean.

Averaging is done for each coordinate independently to account
for cyclic border conditions as shown in [BBO08]. First, the coordi-
nates of all particles in C%’i are rescaled to range from O - 27 and
used as angle for a point on a unit circle. All points on the circle are
averaged to yield a new center point inside the circle, which is then
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projected back to the unit circle. Finally, the angle is calculated and
rescaled to the dimension’s simulation space. In case the average
point is in the origin, all points are uniformly distributed and no an-
gle can be calculated. Since all positions are equally valid, we use
the direct arithmetic mean of this coordinate, then. In order to en-
sure consistent centroids over time, the closest point ¢} in the cyclic
simulation space to the centroid gfl is calculated.

3.3. Estimation of consistent frame

Additionally, a consistent direction 7} is estimated associated with
each centroid, which is used during visualization to properly orient
the ribbons. Its estimation is based on an iterative plane fit to obtain
a smooth direction, even in the presence of noisy and degenerated
data. Around a centroid, an interval of preceding and successive
centroids on the trajectory is used for an eigenvalue decomposi-
tion of its covariance matrix. The vector 7} is obtained from the
normalized eigenvector of the smallest eigenvalue, if the plane fit
is stable. To assess the stability, the planar isotropy ¢, € [0,1] is
used [WPG¥97]. Let the eigenvalues be A{ > A5 > A5 > 0, then
the planar isotropy is calculated as:
Cc c
oo 252
THAS S

The bigger the value of ¢, the more the points spread into a plane.
As long as cp is too small (i.e. the points spread on a line), the
process is repeated with an increased neighborhood. In our experi-
ments, the results were best with a threshold of 0.2.

3.4. Cluster attribute estimation

For the sake of clarity, the cluster id i and time step ¢ is omitted
in the following. All calculations refer to particles of one cluster
in one time step. Estimated attributes include the angular velocity
magnitude ®, the cluster’s density p, the ratio f of particles to all
particles in a time step, the spherical anisotropy ¢ and the fraction
of evaporated particles y. Also, from the trajectory, i.e. the list of all
centroids, we estimate the arc length s, as well as the curvature x
and torsion T. Note, that also derivatives of these attributes can be
used for visualization. This covers for example linear velocity and
acceleration as derivatives of the arc length.

Fraction of evaporated particles Since all particles in gas phase

are marked, the calculation of the fraction, relative to all particles

of a cluster, is very simple. It is given by
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where Cy is the set of particles in a gas phase of a cluster.

Y @)

Cluster density Given the centroid, a measure that is approxi-
mately proportional to the density of the cluster, is calculated. The
examination of the density can provide useful information on the
expansion or contraction of a cluster. We define this scalar as the
ratio of the number of particles to the volume of their enclosing
ellipsoid. Assuming an ellipsoidal shape is a good choice for me-
dia in thermodynamics that tends to distribute homogeneously, thus
generating a spherical shape. In the case of applied translational or
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rotational forces, the sphere is distorted to be elliptical. First, we es-
timate the principal axes of the enclosing ellipsoid with a principal
component analysis. Then, all particles are projected on each axis.
To estimate the length of the axes while accounting for outliers, we
then use the interval from the 10-percentile to the 90-percentile of
projected lengths from the cluster center on each axis.

Let ¥, V;,V3 be the eigenvectors of the covariance matrix of all
particles in Cg and L?/z/s = {(Bfg) VipplpPE Cg} the pro-
jected lengths, then the axis half lengths are defined by the 10th
and 90th percentile function R1o(S) and Rgp(S) as

Roo(L}) —Rio(L})
W == || Roo(L}) = Rio(L})
Roo(L%) — Ryo(LY)

The density then reads:

3]Gl
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p= 3)
where C,, € Cg denotes the set of particles who’s projected lengths
fall into the interval between the 10th and 90th percentile.

Cluster’s angular velocity The angular speed, i.e. the speed of
the rotation around the cluster center, is a useful property to char-
acterize applied and inherent forces. We define this measure as the
average angular velocity of its particles around the centroid. For
particle i, it is approximately proportional to the magnitude of a
perpendicular vector to the direction vector 7; (from the centroid
to the particle’s position) and the relative direction vector 25 of the
particle’s movement. The latter can only be obtained for particles
that are part of the cluster in the current and last time step. Let Ce
be the intersection of Ci, and C’{l and points denoted as P, € Co.

Let further be 7, = p{ —c' and d, = (p,—¢)— (p;(_' —ch,
then the cluster’s angular velocity magnitude is:
|| X dy
C))
\Cw| Z |?

Cluster’s spherical anisotropy The spherical anisotropy of a
cluster is a measure for its deviation from a spherical shape. In
the context of our work, it quantifies the change of the cluster’s
shape in all spatial dimensions. Bigger values indicate a more
anisotropic shape. In particle simulations, the deformation of the
cluster’s shape is typically the effect of applied internal or external
forces, like collisions or bounces [ZJL16]. Given the eigenvalues of
the particle’s covariance matrix A > A5 > A% > 0, we define the
spherical anisotropy ¢ similar to tensor analysis [WPG*97] as:
3 s

M +0L+ AL ©)

Trajectory’s Curvature and Torsions In order to quantitatively
assess changes in the trajectory, its curvature magnitude K and tor-
sion magnitude 7 is estimated. The points on the trajectory are typ-
ically noisy which hinders the use of direct numerical derivatives.
In order to obtain smooth curvature and torsion values and also to
account for non-uniformly spaced sample points, we iteratively fit
the trajectory with a B-spline [LGLCOS]. In the first step, control

points are equally distributed over the (numerically estimated) arc
length of the curve. Unless the approximation error between curve
points and their closest points on the trajectory falls below a thresh-
old, the control points are moved. The curvature and torsion asso-
ciated with each centroid is estimated by first locating the curve
parameter that produces the closest curve point, given an approxi-
mate similar arc length. We then use the first and second derivative
to calculate the curvature and torsion. Let ¢(s) be the fitted curve,
then the curvature «(s) and torsion (s ) is calculated as

K(s) = uc u

4. Visualization and Interaction

Our visualization is based on the concept of (temporal) fo-
cus+context. All time steps of the simulation are jointly visualized
in one static scene that can be interactively explored. We map the
temporal dynamics to three distinct rendering styles, defined by one
time step in focus and a (not necessarily symmetrical) user defin-
able time span before and after this point.

1. For the time step in focus, a detailed spatial visualization is
shown. All particles of a cluster are considered and rendered as
small spheres that are locally lighted. We employ current state-
of-the-art ray casting of simple particle spheres [FGKR16].

2. The trajectory for temporal intervals that are neither in focus nor
inside the user defined time span, we show a thin line.

3. Most interesting is the region in the user defined time span,
which we visualize using a ribbon-like glyph.

As mentioned, our ribbon rendering work is inspired by illus-
trative techniques, especially flow ribbons as investigated by Joshi
et al. [JROS]. The authors differentiate various types of flow rib-
bons with increasing complexity. The most complex type consists
of a parallel pair of lines with an opaque interior. To hint at oc-
cluded features, small line segments are rendered on top. We alter
this approach in the following ways as shown in Figure 2 to not
only convey movement, but the dynamics of a cluster:

e Instead of placing lines to indicate occluded objects, we use lines
with varying thickness to encode a user selectable set of cluster
attributes. While the depiction of absolute values is not possible,
quantitative changes can be assessed.

e In order to also assess future changse of clusters, we allow the
ribbon not only to cover past time, but also future time steps.

e Additionally, we map a fixed selection of attributes to the rib-
bon’s appearance itself. We encode the cluster id, passed time
and particle fraction as color in the inner of the ribbon and the
degree of evaporation on the ribbon’s border.

Each cluster and its ribbon is rendered using a distinct color that
is chosen equally on the hue circle in the HSV color space.

4.1. Ribbon Visualization

For each cluster i, a temporal interval [t,,7] that spans a set of
discrete time steps is selected by the user that defines a ribbon. The
ribbon is a triangle strip that follows the trajectory of the clusters,
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Figure 2: One face of the ribbon is created from two consecutive
points gﬁ and QEJFI, and an up direction W; that is chosen to face the
camera. The border is deformed to reflect the cluster’s evaporation.
A user selectable number of attributes (here exemplary the density
p and angular velocity ®) is mapped as line plots.

i.e. the ordered list of centroids gﬁ” ...g? . It is oriented such that
it faces the interactive camera, while minimizing visual distortion.
Billboard techniques, i.e. simply enforcing the ribbon’s face normal
to be directed towards the camera, introduce numerical instabilities
when the normal approaches the tangent. Also, this causes twists in
the faces that are connected to neighboring faces where the sign is
flipped in at least one dimension. By binding the view dependent
orientation to a quarter circle, flipping is prohibited.

The viewers position and orientation is defined by a camera
viewing matrix V. In order to face the ribbon to the camera, a con-
sistent up direction is calculated view-dependently for every cen-
troid ¢!. Tt is obtained through spherical blending of the prepro-
cessed frame direction 7} in camera space and another consistently
chosen vector . The vector #; is perpendicular to both, 7’ and
the tangent at ¢}. As blend factor, the projection of 7l to the view

ot
direction of the camera is used. Letd; =V - (gﬁ“ - gﬁ) be the di-

. — =t _— . .
rection vector and and it = d; x V!, then the sought up direction
it} is calculated as

i = slerp(Viiy, i, | (Vi) ©)
The vector @ is then normalized.

Equation 6 states, that the bigger the z component of 7} in camera
space, the less it affects ﬁﬁ, which leads to a vector that has a min-
imal z component. Blending between two orthogonal vectors with
a blend factor between 0 and 1 generates a vector that is always

between 7 and Bi, thus flipping or twisting cannot appear as long
as i’ is consistent, which is practically always the case. Figure 3
(a) and (b) show the effect of our orientation approach, compared
to billboard techniques. Relative camera angles exist where the rib-
bon is facing orthogonally to the camera and thus is invisible. This
is a cause of constraining rotation towards the camera to a quarter
circle. In order to obtain a seamless consecutive ribbon, the up di-
rection is averaged with the up direction from the subsequent line
segment and scaled to the user selectable ribbon thickness.

A ribbon consists of a border and an interior. We encode the
change in evaporation, i.e. the ratio of particles that detach from the
cluster per time step, in the border by using a jigsaw like pattern.
The higher its amplitude, the stronger the evaporation. The color of
the inner part is obtained from the cluster id, that defines the hue.
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Figure 3: Instabilities that arise with billboard techniques (a) are
eliminated with our method (b).

The current point in time defines the saturation and the brightness
is set to the particle fraction f;;. In the foreground we quantitatively
encode user selectable attributes as lines with varying thickness ac-
cording to the attributes values, normalized to the range [0, 1]. The
colors of the lines are uniquely chosen for each attribute from the
"pastell" qualitative color set from ColorBrewer [HBO3].

4.2. User Interface Design and Interaction

The spatial navigation is carried out directly in the 3D visualization
using a standard orbit camera. The time step in focus is set glob-
ally through a slider. The number of time steps in the future or past
that are represented by a ribbon, as well as its thickness can be set
for each cluster independently. Clusters and ribbons can be enabled
or disabled for visualization. The ribbon’s appearance can be ma-
nipulated independently for each ribbon or a selection of ribbons.
Global parameters allow to enable or disable the mapping of clus-
ter characteristics to properties of the ribbon, i.e. the jigsaw border
and color. Furthermore, the user can enable or disable attributes to
be shown on the ribbons as line plots. Regarding the focus visual-
ization, the global radius can be manipulated. Also, independently
per cluster, a scaling relative to the cluster center can be defined.

To efficiently select clusters, the 2D user interface contains a ta-
ble of all clusters. Each row represents one cluster and consists of
a color field, a checkbox to control its visibility and an abstract
overview visualization of the trajectory’s approximate curve types,
as shown for example in Figure 5 (a).

To generate the overview, the complete simulation time is
equally subdivided into 20 intervals. Each subset is represented by a
square, with the color mapped to the trajectory’s approximate type.
Note that these colors are only existent in the user interface and
thus do not interfere with the attribute colors on the ribbons in the
3d scene. The curve types include linear, circular, spiral (circular in
the plane with decreasing radius), helical, helical with increasing
or decreasing curvature and arbitrary. It is obtained by a linear re-
gression of the subset’s curvature and torsion values. Depending on
combinations of the slope m and y-intercept n the types are assigned
according to Table 1. The curvature, resp. torsion is approximately
zero if m = n = 0, constant if m = 0,n # 0 and linear if m # 0. If
the maximum error of the curvature, resp. torsion values from the
regression exceeds a threshold, which is chosen to be smaller than
the slope, then the curve type is assumed to be arbitrary.
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k=0 K const ¥ linear
=0 line circle spiral
T konst M arbitrary helix M helix +/-
7T linear M arbitrary M arbitrary M arbitrary

M no movement

Table 1: Local curve types are assigned depending on the local
curvature and torsion. The colored squares indicate their colors in
the overview plot.

B

Figure 4: Three colliding droplets (case study 1). (a) The complete
trajectory as line strip shows an initial linear movement, followed
by a spiral like pattern. (b) Ribbons of past and future development
of all three droplets similarly show a similar development.

5. Results

We show the usefulness of our approach on two exemplary case
studies from molecular dynamics and thermodynamics. Several
time steps for both datasets are focused and the past and future
dynamics is explained.

5.1. Case Study 1 - Three Colliding Droplets

This dataset is a molecular dynamics simulation of three liquid
droplets of similar Lennard-Jones material model that approach lin-
early, collide and then merge. During the complete simulation, the
droplets evaporate into the simulation space. The dataset consists
of 3,000 time steps with 79,509 particles per time step, i.e. 26,503
particles per droplet. Figure 4 (a) shows the trajectory of all three
droplets as line strips. The droplets approach and then collide ap-
proximately at the center of the simulation space, slightly in an
angle which induces linear movement and rotation.

Investigating only one droplet, the motion can be split into a lin-
ear part and a spiral-like movement. Figure 1 (a) shows a point in
time in the middle of the linear part with a ribbon showing past
motion for 50 frames. On the ribbon, the angular velocity (upper
line, light red) and spherical anisotropy (lower line, light green) are
rendered as line plots. The movement pattern is very simple with
low rotational velocity and low spherical anisotropy. The ribbons
show that this has been a stable process in the past. Also shown is
the evaporation by the jagged border.

Figure 1 (b) shows a later point in time of the development, af-
ter the droplet begins moving in a spiral. Here, a third attribute,
the density, is shown at the bottom of the ribbon (light blue). The
cluster in the focused time step is heavily deformed, caused by the

collision with other clusters. On the ribbon of past movement the
rotational velocity and the spherical anisotropy increase, indicat-
ing on the deformation and an emerging spin. It can be seen that
the cause of this drastic change is in the past, right at the moment
where the droplet also begins the spiral movement pattern. Also, it
does not affect the density or evaporation, as the thickness of the
light blue line, as well as the amplitude of the jigsaw-pattern is al-
most constant.

Figure 1 (c) shows a point in time where the droplet has com-
pleted three revolutions. Apparently, it returns back to a spherical
shape. A ribbon of past and future movement is shown with two line
plots encoding the density (light blue) and the spherical anisotropy
(light green). To improve visibility, it is superimposed on the parti-
cle visualization and the focused time step is marked on the ribbon
with a bar. What can be seen is, that the anisotropy decreased in the
past (i.e. in direction of an increasingly darker ribbon color) while
the cluster’s movement is a spiral. The same happens with the den-
sity. After collision, the clusters diffuse into each other and thus
slowly return to their spherical shape. The process, that started the
reformation of the cluster into a sphere started further in the past.
Also, it can be seen, that this decrease in spherical anisotropy and
density continues in the future, which means, that it is a long-term
process.

Figure 4 (b) shows the interplay of all droplets using ribbons
that show past dynamics before the collision took place and future
dynamics for the time needed for a quarter revolution. For this vi-
sualization, focus rendering was disabled. The current time point is
again indicated by the bar on the ribbons. All three droplets show
similar movement, as well as deformation and beginning spin. This
indicates an identical setup for all three droplets and supports the
assumption, that the linear movement and rotation after collision is
an effect of the collision angles.

5.2. Case Study 2 - Laser Ablation

In this dataset, a laser ablation is simulated. Here, an aluminum
block, simulated as a regular grid of particles, is hit by two lasers
that both move linearly along the X, resp. y axis, such that they
form a cross. The laser impact injects high amounts of energy into
the particles, thus stimulating the electrons. Driven by their kinetic
energy, they move away from the block. This simulation has 400
time steps with 562,500 particles per time step. Since the majority
of particles remain in the metal block throughout the simulation,
the emerging clusters only consist of a small number of elements
in the order of 100. The clustering was reconstructed in a prepro-
cessing step using local density analysis and tracking of coherent
structures, leading to 32 clusters in total.

Figure 5 (b) shows the dataset focused on the first time step with
ribbons indicating future development. On the ribbons, the linear
acceleration is plotted. In the image, one laser moves from the right
to the left and another from the front to the back on the metal block.
Due to the linear laser movement, the cluster trajectories all aim
into a diagonal direction. Although all ribbons represent the same
time span, their lengths differ, indicating that the clusters move
with different speed. Clusters near the intersection point of the two
lasers move much faster. Interestingly, the later a cluster emerges,

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.



J. Staib, S. Grottel & S. Gumhold / Temporal Focus+Context for Clusters in Particle Data 91

'3) (O
“ I 0O00000OO000000
5 (O
1 0
v (O
18 I 00O00000OO000000
9 [
% ID0OOO0000O0000000
2 ID00O0O00DO0000000
2 EERC00O00000O0000000
2 EED00O0000DO0000000
# 0
=0 IR EEN P EEEEaEN0
% (I
7 I EENEREEEEEEEEE O
% [ NN e
] BN WNNNEN NEA W

Figure 5: Laser ablation dataset (case study 2). (a) Excerpt of the trajectory overview. (b) Visualization of all trajectories with acceleration
shown as line plots on the ribbons. (c) One trajectory shows an increase in density where it detaches from the wave on the metal block.

the faster it moves. This might be an effect of the heating of the
metal block due to the laser’s energy, facilitating the detachment of
particles. The linear acceleration increases fast in almost all trajec-
tories and then sinks, hinting on the applied forces that initiate the
movement. Note, that due to the fact that the acceleration is below
zero at the end of the trajectory, the value of zero, which is mostly
present, is mapped to a visible line.

Some trajectories, show a special behavior. Figure 5 (a) shows
an excerpt of the overview trajectory list. As mentioned , one col-
umn consists of colored blocks that roughly describe the trajec-
tory’s shape. Most trajectories are stationary in the beginning, then
move in an arbitrary pattern, then in a spiral pattern and finally
show linear movement. The trajectories with the ordering number
27 to 30 show other movement patterns, since they do not move
linearly after being set in motion. In fact, their angle is too shallow
to escape the metal block. One of the clusters is even falling back
on the surface. In Figure 5 (b) they are located in the front left of
the image.

Figure 5 (c) contains a detailed view of trajectory 30, rendered as
aribbon of future and past movement with the density (top) and the
spherical anisotropy plotted. While the density rises, the spherical
anisotropy is almost constant. Focusing on the point of the highest
density, it becomes apparent that this is the point in time, where the
cluster separates from the wave. Here, the cluster becomes com-
pact, but is still heavily distorted.

5.3. Performance and Scalability

The preprocessing step is CPU-intensive. For example, in order to
determine evaporated particles, a neighborhood graph has to be
built for every frame and nearest-neighbor queries must be per-
formed for every particle. In our current implementation, the pre-
processing is completely done on the CPU, but parallelized using
OpenMP. While the determination of evaporated particles is paral-
lelized over different time steps, all other steps can be trivially be
parallelized over different clusters. Figure 6 shows the contribution
of the several steps to the overall computation time. On a consumer
test system (Intel Core i7-3770 with 3.4 GHz), the preprocessing
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Figure 6: Contribution of the several steps to preprocessing time.

took 1.6 min for the colliding droplets dataset and 1.8 min for the
laser ablation dataset. Note, however, that this task has to be carried
out only once for a dataset, since the results can be stored on the
harddisk and loaded for subsequent analysis tasks.

The performance of the visualization itself is defined by the used
particle rendering method. We use a direct visualization that is
based on ray casting. Optimized implementations can achieve re-
altime framerates for particle counts in the order of 107 [FGKR16].
Our contribution, the ribbon visualization, has a comparably low
computational cost. A ribbon is a triangle strip that is rendered
in a single draw call and generated on-the-fly using the geometry
shader. The line graphs are computed in the fragment shader based
on vertex buffers and thus does not require any additional texture
lookups. Typically, a ribbon consists of triangles in the order of
hundrets or thousands.

Our approach is scalable in terms of the dataset size. For the
preprocessing, not more that two complete time steps need to be
loaded into memory at the same time. The data that is generated is
only a small fraction of the original data. For example, the extracted
attributes have a size of 540.7 KB for the droplet dataset. Also for
the visualization, only one frame, as well as the attribute data, must
be present in GPU memory at one time. For the droplet dataset,
GPU usage can thus be reduced to not more than 2 MB. Of course,
keeping more frames in memory would allow for faster playback
of the time steps as an animation, but this is of minor importance in
our method which is based on the analysis of a static scene.
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6. Discussion

Existing methods for sparse trajectory visualization aim at showing
the trajectory as a whole in order to identify interesting behaviors
throughout the movement. The goal of our focus+context method
differs, as it aims to help explaining the cause or the effect of a
certain cluster state over a limited time span.

The direct visualization of particles as distinct spheres allows the
user to assess and understand complex cluster shapes and constel-
lations. Especially when function plots show an unexpected behav-
ior, spatial visualizations are required. Abstracted visualizations al-
low to reduce complex dynamics of a cluster to a small number of
scalars. The case studies show that a joint visualization indeed con-
veys complex structures while also hinting at their cause, as well as
their further development in one static image. For example, in the
droplets dataset, the moment in time where the deformation started
is clearly visible. More importantly, dynamics that lead to a certain
cluster state at a focused time can be correlated to a spatial region.
In the droplets dataset, the beginning of the deformation can clearly
be correlated with the beginning of the spiral movement, induced
by the collision of the other two similar droplets. As shown in the
laser ablation study, the cause of the shape of at least one of the
clusters can be ascribed to a region of the wave on the metal block.

The ribbons help to filter from a larger number of clusters di-
rectly in the spatial visualization, judged not only by the move-
ment but also other cluster attributes. For example, some of the
trajectories in the laser ablation dataset show a differing behavior
in their movement and their acceleration. These trajectories lie in
close proximity. Additionally, the overview table, as shown in Fig-
ure 5 (a), allows to assess the approximate movement of each clus-
ter in order to identify prominent trajectories. In the laser ablation
case study, three trajectories could be easily identified.

Trajectory visualizations that show the complete movement typ-
ically suffer from the problem, that points on the trajectory cannot
be mapped to time. Visual hints must be added, for example by
arrows or color. Although we also use color to indicate time, the
temporal context is much clearer in our scenario, since it is explic-
itly defined by the user and only affects a comparably short time
span. Also, shorter ribbons allow to dedicate more screen space and
computational effort to their rendering. By facing the ribbon to the
camera, without introducing twists or distortions, the effective plot-
ting area is enlarged. We use this area to additionally qualitatively
map attribute values, like evaporation.

Since the ribbon serves as a context for the particle visualiza-
tion in focus, a trade off concerning visibility and occlusion has
to be made. On the one hand, the ribbons should occlude as less
of the focused particle cluster as possible. On the other hand, the
ribbon itself must be sufficiently visible in order to allow assess-
ment plotted values. We alleviate this issue with various techniques
like superposition, as well as interactive control, such as filtering or
manipulation of ribbon and cluster parameters.

Another challenge concerning the ribbons is the distortion of
plotted attribute values. Although we aim at minimizing distortion,
it is naturally induced simply by plotting information on a curved
band. It is further induced by perspective and occlusions. A much
bigger issue is the differing arc length of the lower ribbon border

and the upper ribbon border. While the direct depiction of absolute
values is not possible, the user can compare values and put them
into order, even to assess ratios.

7. Conclusion and future work

In this work we propose a temporal focus+context method to assess
past and future development of clusters in time-dependent particle
data sets. We have presented a variety of cluster attributes and their
estimation. Our visualization is based on the idea of flow ribbons,
augmented to not only encode movement but additional attributes
of a selectable time span. The ribbon’s placement and layout is de-
signed to minimize distortions while at the same time remain max-
imum visibility. Our case studies have shown, that past and future
development can be conveyed in one static scene. Furthermore we
have shown that our approach helps in selecting interesting ele-
ments from a larger number of clusters.

For future work, we identified four challenging areas: attribute
estimation, mapping, overplotting and selection. Deriving precise
attributes from discrete data is a complex task. Finding more ro-
bust or more general estimation methods, for example to better ap-
proximate the density, would help to make values more expressive
and general. We also want to experiment with more sophisticated
mappings for attributes. This includes special glyphs to indicate
no movement, as well as methods to convey dynamics even when
clusters are not spatially locatable or separable. Also, more sophis-
ticated choices for colors improve intelligibility.

Regarding overplotting, advanced methods might be helpful,
from using transparency to interactive tools, like cutout views. Se-
lection is a challenge on the semantic scale (i.e. which trajectory
to select) and on the temporal scale (i.e. which time point to se-
lect). We presented our solutions to these problems. More advanced
methods for semantic selection are imaginable, for example by co-
selecting similar trajectories. Automatic methods for time span se-
lection can help to preselect areas of interesting attribute changes.
Overall, we believe, that this method is a valuable addition to exist-
ing tools to help understanding the dynamics of particle clusters.
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