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Abstract

Modeling and predicting human hand grasping interactions is an active area of research in robotics, computer vision and
computer graphics. We tackle the problem of predicting plausible hand grasps and the contact points given an input 3-D object
model. Such a prediction task can be difficult due to the variations in the 3-D structure of daily use objects as well as the
different ways that similar objects can be manipulated. In this work, we formulate grasp synthesis as a constrained optimization
problem which takes into account the anthropomorphic and kinematic limitations of a human hand as well as the local and
global geometric properties of the interacting object. We evaluate our proposed algorithm on twelve 3-D object models of daily
use and demonstrate that our algorithm can successfully predict plausible hand grasps and contact points on the object.

1. Introduction

Given an object, grasp synthesis refers to the problem of finding
a plausible grasp configuration that satisfies a set of criteria rele-
vant for interacting with the object. Modeling and predicting hu-
man hand grasps is an active and popular area of research as it
has applications in robotics [SDNO8], computer vision and com-
puter graphics [Liu09]. Existing grasp synthesis algorithms can
be broadly divided into two categories : analytic [SEKB12] and
data-driven [BMAK14]. Given an input object model, analytic ap-
proaches determine the contact locations on the object and grasp-
ing pose through kinematic and dynamic formulations. Analytic
approaches are known to be computationally expensive as a cer-
tain number of conditions have to be satisfied for a successful
grasp [SEKB12]. Contrary to analytic approaches, the data-driven
paradigm places more emphasis on learning models that capture
the relationship between the object’s shape and features and the
grasping pose by training on annotated examples. As 3-D data ac-
quisition devices and modeling tools became more widely avail-
able, research in data-driven direction gained more traction within
the community [Shi96, BMAK14]. In this work, we also adopt a
data-driven approach which models the hand-object interaction and
automatically synthesizes 3-D hand grasps when presented with an
object model (refer to Figure 1).

We are motivated by the energy minimization approach
of [KCGF14], which automatically predicts human pose and con-
tact points when given the 3D structure of an object such as a bi-
cycle or a fitness machine. The energy minimization incorporates
local affordance features as well as global constraints such as sym-
metry of the human body and human pose priors. We adopt a simi-
lar approach for synthesizing realistic hand grasps given a 3-D ob-
ject model. However, the model in [KCGF14] cannot be directly
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Figure 1: Given a 3D object model as input, we predict a plausi-
ble hand pose and contact points on the object surface.
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applied to the grasp synthesis problem because unlike the human
body, the human hand is not symmetric. Furthermore, grasp sta-
bility is an important factor to consider when synthesizing hand
grasps for object interaction, i.e. physically possible hand grasps
are not always natural nor plausible in real life due to a lack of
object stability.

We propose an energy-minimization approach for the task of 3-D
grasp synthesis and summarize our contributions as follows. First,
we relax the symmetry constraints of [KCGF14] by proposing a
modified energy term that reflects the part-wise reflectional sym-
metry of the human hand. Secondly, we propose a novel energy
term which leads to the synthesis of stable grasps. Stability of syn-
thesized hand grasps is a feature that is often found only in analytic
approaches but with our proposed energy term, we are able to incor-
porate this desirable property into a data-driven paradigm. Third, to
speed up the computation of the energy-minimization, we propose
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a simplified hand kinematic model with 22 degrees of freedom and
7 contact parts. The proposed hand model predicts similar grasps as
more complex models with 21 contact parts but in only a fraction
of the time. Finally, to validate our approach we present a dataset
covering 6 grasp types and 12 types of objects with complete anno-
tations for the hand contact points and the 3-D hand model.

2. Related Works

Existing grasp synthesis algorithms can be broadly divided into an-
alytic and data-driven approaches. We give only a short overview
and refer the reader to existing surveys [SEKB12, BMAK14] for
more details. Instead, we primarily focus on approaches which cast
the hand grasp synthesis as an energy minimization.

2.1. Analytic Approaches

Analytic approaches focus on the analysis of kinematics, stabil-
ity and/or dynamic formulations. Several of these approaches aim
to synthesize stable grasps [Liu00, DLW0O, LLD04]. These ap-
proaches are often dependent on an ideal background such as sim-
plified contact models [Ngu88], Coulomb friction [HPK13] and
rigid body modeling [SK16, MLSS94]. When applied to real world
scenarios, synthesized grasps may be improper (anthropomorphi-
cally not possible) [PT08] due to ambiguities and imperfections
unaccounted for in the formulations.

2.2. Data-Driven Approaches

Data-driven or empirical approaches rely on learning from exam-
ples and predict graspable regions based on object geometric fea-
tures [Sax09,LLS15]. These examples can either be provided in the
form of generated labeled training data, human demonstration or
through trial-and-error. A standard data-driven approach samples
grasp candidates given an object and then ranks them according
to some metric [BMAK14]. The approach in [MCFdP04] learns a
vision-based grasp system by repeating a large number of grasping
actions on different objects. In [SDNO8], a simple logistic regressor
is learned based on large amounts of synthetic training data to pre-
dict grasps without the need for satisfying any kinematic or stabil-
ity constraints. More recently, there has been focus on the relation-
ship between grasp prediction and object features [BK10,HCCJ10].
In comparison to analytic approaches, data-driven approaches pay
more attention to the aspects of the object representation and per-
ceptual processing. As a result, the data-driven approaches may
generate grasps which are improper, as pointed out in [KEK09].

2.3. Grasp Synthesis as Energy Minimization

Several approaches, both analytic and data-driven, have cast grasp
synthesis as an energy minimization problem [Lia,JGT11,CGA07,
HWA*12]. Jia et al. in [JGT11] proposed a two-finger grasping ap-
proach for deformable objects by minimizing the object’s potential
energy under external squeezing forces. Ciocarlie ez al. in [CGA07]
use to simulated annealing to minimize an energy term based on lo-
cal geometric features such as distances between the contact points
and object surface, and angular differences between surface nor-
mals at the contact locations and the closest point on the object.

The works to date have formulated the energy minimiza-
tion based on either only the synergy of the pose and geomet-
ric features [CGAO7, HWA*12] or on force and stability analy-
sis [JGT11]. We propose an optimization framework which incor-
porates both the compatibility of hand poses with local geometric
features of the object as well the stability of the object on appli-
cation of a particular grasping pose jointly during the energy min-
imization. This allows us to synthesize physically possible hand
grasps which ensures object stability during the interaction.

3. Approach

Our proposed approach proceeds in two stages : learning a hand-
object interaction model and using this learned model to infer the
grasping pose when presented with an input shape.

For learning, the input is a collection of 3-D shapes with man-
ually annotated contact points and poses represented by the joint
angles. Our goal is to learn an interaction model that is able to mea-
sure the quality of a pose given an input object shape. The interac-
tion model incorporates terms learned from examples to model the
local geometry of contact points and the joint angles for hand inter-
action poses, and it includes penalty terms for deviations from the
part-wise reflectional symmetry of the human hand, intersections
with the shape and penalizes unstable grasping poses.

For inference, the input is a novel shape, and the output is a set of
joint angles and contact points parameterizing the most likely hand
interaction pose. The key algorithm in this stage searches the com-
binatorial space of hand poses to find the ones with lower energies
(meaning higher compatibility) according to the interaction model.
First, possible contact points on the object are sampled; this con-
strains the search space for possible hand poses. We then sample
large number of poses from the learned joint angle distributions.
The distribution of the hand parts and the sample points are then
aligned using a rigid transformation. For each aligned pose-contact
points pair, the exact value of the objective function is evaluated.
The pose with the lowest energy is selected as the final solution.
An overview of our approach is given in Figure 2.

3.1. Kinematic Model of Hand Skeleton

Estimating an accurate kinematic model of the human hand is ren-
dered difficult by its anatomical complexity. Consequently, simpli-
fying assumptions are often made in analytic solutions to ease the
implementation or speed up computations [BBD12]. The human
hand has 27 degrees of freedom (DOFs) : 4 in each of the four fin-
gers, 3 for extension and flexion, 1 for abduction and adduction; the
thumb has 5 DOFs and remaining 6 DOFs for the rotation and the
translation of the wrist [AD09, ES03].

We make the following simplifying assumptions on top of the 27
DOF model. First, in contrast to the standard model, we simplify
the role of the thumb to behave like the any other finger. Also, it
has one fewer joint and thus has 3 DOFs instead of 4 (the DOF for
all other fingers). Secondly, for our experiments, we assume that
the input object model is presented in an upright position. Thus,
we remove the DOFs corresponding to rotation and are left with 3
DOFs (corresponding to translations in the xyz plane). In total, our
kinematic hand model has 22 DOFs as shown in Figure 3.
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Figure 2: Grasp Synthesis Pipeline : (a) Given an input 3D shape, (b) we first classify the surface for possible contact points correspond-
ing to each key part of our kinematic hand model, (c) find the probability distribution for each contact part by sampling hand poses from
training examples, and (d) predict the grasping pose by minimizing energy terms corresponding to (b) and (c).
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Figure 3: Hand skeleton model with 22 degrees of freedom. The
circles (in yellow) indicate the key parts of our proposed hand
model which make physical contact with the object.

The joint angles of the hand specify only the pose which it has
to assume when interacting with objects. To fully determine the
grasp, we also need to predict where the hand makes physical con-
tact with the object of interest. We refer to the hand parts that estab-
lish contact as key parts. For precise grasp predictions, all the finger
tips, finger joints and points connecting the base of each finger and
thumb to the root of our kinematic hand model (denoted as C in Fig-
ure 3), as well as C itself can be assigned as a key part. This totals
21 key parts - {Li=0—3,Ri=0-3,Mi=0~3;li=0—3, Ti=0—2, W, C}.
However, this imposes a heavy computational burden. For our
work, we identify 7 locations on the human hand as contact parts as
shown in Figure 3. Later in our experiments, we observed that hav-
ing 7 contact parts instead of 21 leads to minimal loss of precision
as observed during our experiments.

3.2. Modeling Hand-Object Interaction

In this work, we cast the grasp synthesis problem as an energy min-
imization problem and adopt a framework similar to [KCGF14].
Based on the observation that local geometric features are often
insufficient for predicting contact points, Kim et al. in [KCGF14]
proposed a framework that allows the incorporation of both local
constraint (in the form of key part-local geometric feature com-
patibility) and global constraints stemming from anthropomorphic
limitations and properties of the human pose into a single energy
minimization framework. Similar in concept, we want the inferred
grasp to interact with the object in a believable manner, i.e. make

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

contact with the object in “graspable” areas. This is in turn depen-
dent on the local geometric properties of the object. Besides, we
want to ensure that the synthesized grasp does not intersect the ob-
ject surface. Furthermore, we add the functional constraint of ‘do
not drop the object’ in order to synthesize stable grasps. In our pro-
posed interaction model, each individual energy terms addresses
one of the aforementioned issues.

In the learning stage, we model the hand-object interaction for
a class of shapes. Our goal is to build a model that can be used to
evaluate the interaction between a shape S and a hand grasp rep-
resented by a rigid transformation T, joint angles 6 = {01,...,60,}
where 7 is the number of joints, key hand parts P (tip of each fin-
ger, center of the palm, and the base of the four fingers), and contact
point assignments m : P — SU {ground, unassigned }. Some hand
parts may be unassigned and rest in free space : p — unassigned,
or may be placed on the ground plane : p — ground.

Our proposed model searches over a space of all plausible hand
grasps, and picks a grasp minimizing the following objective:

S(Tﬁ,m,S) = Wdistgdist(T7éam75) + eratgfeat (m,S)
+ Wposegpose (é) +WeabExstab (T7 m, é’ S) M
+ Wisectgisect(Ta é,S)

Eiis and Efeq are local energy terms assigned to the key parts;
Eqist penalizes key parts that do not make physical contact with
the object while £, penalizes contact assignments when the cor-
responding key part is incompatible with the local surface geom-
etry. The remaining energy terms define global pose constraints:
Epose penalizes implausible poses, £y, penalizes unstable grasp-
ing poses, and Ejs.; penalizes surface intersections.

3.2.1. Contact Distance [KCGF14]

If a hand part is assigned to a surface point on the 3-D object, we
want the hand part to establish physical contact with the object. To
ensure this, we penalize large separations between the object and
the assigned contact part. The energy term is given by

2
Eaist = )Y 1Tpe —mpl|”, 2)
PEP, my# unassigned

where pg is the position of key hand parts p € P given joint angles
6 and m), denotes the contact point assignments for each key part p.
Parts assigned to the ground are measured by separation in height.
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3.2.2. Feature Compatibility [KCGF14]

The feature compatibility measures how likely it is for a sur-
face point on the object to be in physical contact with a particu-
lar hand part. Given training shapes Si,S7,...,S) with annotated
ground truth contacts m; : P — §;, we learn a regression model
Vp : § — [0,1] for each part p € P which estimates the probabil-
ity that it will be placed on a point on a query surface S. The model
relies on local geometric features to predict which regions are com-
patible with which hand part: for instance, large flat/cylindrical
surfaces are meant for the palms and small homogeneous surfaces
(such as trigger or button) are meant for more assertive parts such
as the thumb and index finger.

Using the iterative farthest-point algorithm, 1000 - A points Cs, =
{c1,¢2,,ck } are sampled on each shape S;, where A is the shape’s
surface area in square centimeters. Geometric features such as lo-
cal neighborhoods, local symmetry axes, curvature, shape diameter
function, and a histogram of distances are computed at these points.

Next, for each body part p and training shape S;, we can compute

a normalized measure V,, which is 1 at the ground truth contact

point mj, and decays to zero. We define Vj(c;) at sample point c;
as

i\2

i —g(cj,mp)

Vp(cj) :exp< o ),

where g(, ) is the geodesic distance and  is a tuning parameter. T is

chosen in a way such that V,(c;) is 0.4 at a geodesic distance of 2

cm.

For each hand key part p, we train a random regression forest
with 30 trees to estimate V),. When predicting the pose, the regres-
sion forest is used to predict feature compatibility at each candidate
contact point assigned to a hand part. The overall compatibility is
measured by the energy term Ey., given by,

Efear =Y, —log Vip(my) 3)
pEP

For parts mapped to the ground plane or left unassigned, the fea-
ture compatibility is estimated from training data statistics with
Vp(ground) = Mgyouna/M where Mg,p,nq is the number of times
part p was placed on the ground or left unassigned. A lower bound
of 0.1 is set to avoid infinite energies.

3.2.3. Pose Prior and Symmetry

The pose prior helps to distinguish between plausible (anthro-
pomorphically possible) poses from implausible ones [KCGF14].
Similar to [HEKL*13] we use a Gaussian Mixture Model (GMM)
to learn a probabilistic encoding of finger joint angle distributions.
We use the same hand skeletal model in all examples. Each hand
pose is represented by a 26 dimensional - 22 degrees of freedom
and 4 parameters for the location and rotation.

First, we use standard k-means clustering to group all input train-
ing poses into L clusters. In most cases, we set £ = 3. Then, for
each cluster /; (where k = {1,2,---,L}), we use a Gaussian with
learned mean ,uf" and standard deviation cll* to represent the varia-
tion of the 6; - the i-th joint angle. Note that the distribution of each
joint angle is modeled independently

The human hand lacks (reflective) symmetry like the full hu-
man body. However, by analyzing the detailed grasp taxonomy
of [LFNP14], we observe that 56 of the 73 grasp types have sym-
metric behavior across the middle, ring, and pinkie fingers. To inter-
act with objects with triggers or buttons, people often use the thumb
(the remote control) or the index finger (the gun and the spray bot-
tle), which makes their pose different than that of the middle, ring
and pinkie fingers. As such, we relax the constraints of [KCGF14]
and incorporate a 3-finger symmetry in the pose prior energy term.
We set the joint angles of the ring and little finger to be symmet-
ric with the corresponding joint angles on the middle finger. For
each symmetric pair (6;, ny ™), the deviation of the joint angles is
represented with a Gaussian : |6; — 67" | ~ N (1™, 6;™), where
a smaller ;""" indicates that the middle, ring and pinkie fingers are
aligned in an symmetrical manner in a grasp.

The pose-prior energy term is now given by
2
% o~

. (|6 — 67" —™)?
Epose = min ;
pose leL; (05)2 (G.;)m)z

@

The first term in the summation penalizes the deviations of the
inferred joint angle and the joint angle distribution learned from the
examples. It prefers poses which are similar to the ones observed
during training. The second term in the summation penalizes in-
ferred poses which violate the symmetrical behavior observed dur-
ing training.

3.2.4. Stability

A grasped object is defined to be in equilibrium if the sum of all
forces and the sum of all moments acting on it are equal to zero
[Shi96]. However, an equilibrium grasp can both be stable or unsta-
ble. A grasp is said to be stable when the grasped object is in equi-
librium (no net forces and torque) and it should be possible to in-
crease the grasping force’s magnitude to prevent any displacement
due to an arbitrary applied force [VI12,Cut89]. Force closed grasps
are a subset of equilibrium grasps which have the important prop-
erty of being stable [SEKB12]. Force closure is an important prop-
erty in grasping and has an extensive literature [MLSS94, Ngu§88].
In grasp synthesis, we want to generate grasps not only with plau-
sible poses and contact points, but also ensure that objects of inter-
action are stable. We introduce a novel energy term which ensures
the predicted grasp results in force closure by restricting the mo-
tion of the object through the contact forces exerted by the hand.
For simplicity, we assume that all contacts between the fingertips
and the objects are point contacts which can only exert a normal
force through the point of contact and a frictional force along the
surface in a direction perpendicular to that of the normal force.

In the simplest scenario, we assume that 2 contact points are
required to make an object stable (Figure 4 (a)). Furthermore, we
assume that the forces exerted through the contact points are equal
in magnitude and they are applied at points diametrically opposite
to each other. The frictional force is given by Fy = u(F; +F>) where
u is the coefficient of friction of the surface. If the magnitude of Fy
is bigger than the force exerted by gravity, then the object remains
stable in the z-axis. Furthermore, if | and F, are equal and opposite
in direction (180° between them), then they cancel each other out
in the xy-axis.

(© 2017 The Author(s)
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(a) (b)

Figure 4: (a) Normal forces F| and F, of equal magnitude ap-
plied at diametrically opposite points into the surface cancel each
other out. (b) As the angle between the normal forces Fi and F;,
decrease, the y-components increase making the object unstable.

Now consider an angle between the force vectors smaller than
180° (Figure 4 (b)). There are still two forces in operation: F| and
F>. F{'and F ly are the components in x and y directions of force Fj.
Likewise, F5 and F; for F,. Even if F;" and F3' are in equilibrium in
x direction, the object is not in mechanical equilibrium in the direc-
tion of y because of the additive nature of F; and F; . Furthermore,
as the angle between F; and F, gets smaller than 180 degrees, the
y-components increase, making the object more unstable.

Based on these observations, we propose an energy term Eg,p
which favors hand parts to be assigned to sampled contact points
which are 180° apart. Let p,q € P denote the p-th and g-th key part
respectively. Also, let ap = Tpg indicate the position of the key part
p given joint angle 6 and b, = m) denote the contact point for hand
part p. The force vector for key part p can now be denoted by the

vector apbp and likewise agby for key part g.

The energy term &, is then given by

—
apbp aghq
Estab = Z _— (5)
pa€Pp#q apbpllaghy
During interaction with objects of daily use, we often assume a
grasping pose where a pair or more of fingers are placed at large
angles with respect to each other in order to impart stability. We
can classify 7 key hand parts into 2 groups. One includes the tips
of index, middle, ring and little fingers. The tip of the thumb, the
center of palm and the center of the forward half palm form the
other group. In common conditions, contact points which gener-
ate the forces with big angle are respectively from those 2 groups.
For example, the tip of thumb and the tip of the index finger when
interacting with disk shaped objects [VI12].

3.2.5. Intersection [KCGF14]

The intersection energy term helps us to avoid impossible grasps
where the hand skeleton intersects the object. We assume the hand
is represented as a skeleton, with linear bones B = by,b;,...,bx
connecting the joints joints. For each link b;, we check for I5(b;) -
the intersection with the shape S. Intersections within a small dis-
tance of the shape and the assigned contact part are ignored. Higher
penalties are applied when the bone intersects the surface orthogo-
nally. The intersection energy is given as the sum of maximal per-
link penalties:

Eisect = Z Mmaxgeq () |normal(q) - direction(b;)] . (6)
b;€B
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3.3. Inferring the Grasping Pose

During inference, the key challenge is to efficiently sample the
combinatorial search space spanned by the hand pose and the con-
tact points. Instead of jointly minimizing over this search space,
we observe that it is possible to sample high-probability contact as-
signments m and high-probability poses 8 independently, since they
contribute to two separate terms &, (1) and Epose (6) respectively.

3.3.1. Sampling contact points

The contact points mp for each body part p € P are sampled inde-
pendently, by picking candidate points on the shape whose compat-
ibility energy &£feq (m,S) with p is lower than the cost of leaving
them unassigned to any contact point.

3.3.2. Sampling plausible poses

We sample plausible hand poses with low energy &pose by directly
sampling the joint angle Gaussian distributions from the pose prior.
In our experiments we sample 5,000 poses in a fraction of a sec-
ond. The space is discretized into grids of lem? voxels. Each voxel
stores a portion of the pose prior energy of the sampled pose cor-
responding to the key part lying in this voxel. pose can be com-
puted by adding over the partial energy in the voxels containing
the individual hand key parts. Joints contributing to multiple par-
tial energies have their contributions averaged over the overlapping
paths [KCGF14]. Note that discretization introduces some approx-
imation error at the cost of reduced complexity.

3.3.3. Pose-Contact Point Alignment

Next, for every sampled contact point m,, for the corresponding part
p € P, 32 rotations are considered around the up axis in an attempt
to align the part distribution grids with respect to the surface. The
anchor and the rotation define the rigid transformation 7', which
aligns part distribution grids to the surface.

Given the aligned grid, we estimate a lower bound on the feature
and pose energy terms, as well as the corresponding pose, by greed-
ily assigning body parts to contact points. Each successive assign-
ment mfu) is chosen to be the one that least increases S fear + Epose-
The 3 finger symmetry term is measured with respect to the pre-
viously assigned i — 1 points, and the pose prior is bounded from
below by the entry in the aligned voxel containing the assigned
contact point.

Finally, in order to infer the best pose, we need to compute the
full energy function, which requires knowledge of the exact joint
angles 6. All candidate poses which were sampled previously are
sorted in order of increasing estimated lower bound on energy, and
for each pose we Eyjs + Epose is minimized. Following [KCGF14],
8 is solved for iteratively until the energy &y + Epose stops de-
creasing. Given 8, we solve for Eygp + Eiseer and rank the predicted
poses according to the lowest values of the energy function.

4. Dataset

For evaluating our proposed approach, we need a hand-object in-
teraction dataset which contains detailed hand annotation consist-
ing of 3-D joint locations and deformation and the 3-D object
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model along with the contact points. We looked through numer-
ous datasets but they were not suitable for our approach because
of missing 3-D object models [XC13, AWKI15], missing 3-D joint
locations and deformations [FRE*13]. In [TSLP14], the dataset
consists of raw depth data of grasps with objects and it is difficult
to construct the rigid hand skeleton model and also the 3-D model
of the object. Even though, segmentation masks for the objects are
provided, it is still not suitable for feature analysis because of the
lack of precision. Most importantly, none of the mentioned datasets
contain contact points annotations. Consequently, we recorded and
release a new dataset to validate our proposed approach.

4.1. Grasp Taxonomy

We studied the detailed grasp taxonomy of [LFNP14], where typi-
cal human hand grasps are classified into 73 different grasps based
on different object geometries and hand shapes. We select a sub-
set of 6 highly distinct grasp types for our experiments. For each
grasp type, we annotate the contact points and joint angles for 2 — 4
different object categories. In total, we annotate the contact points
for 111 object models spanning over 12 different object categories
- ‘bottle’, ‘mug’, ‘knife’, ‘sword’, ‘phone’, ‘cube’, ‘bulb’, ‘fruit’,
‘gun’, ‘pen/pencil’, ‘spoon/fork’, ‘coin/chess pieces’. Sample an-
notations for each grasp type from our dataset are shown below in
Figure 5. Note that the grasp types are named based on the geome-
try of the object with which they interact. The annotated 3-D grasps
sizes are chosen to approximate real hand sizes and likewise for the
3-D object shapes.

Large Diameter Precision Disk Trigger Press
— ‘yl -~
. § ¥
Small Diameter Precision Sphere/ N
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s _ AR ==
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Figure 5: Example of Dataset

5. Experiments

In this section, we validate our proposed approach on the afore-
mentioned dataset. We perform experiments to select appropriate
weights for each energy term and to assess the correctness of the
predicted grasp. We also demonstrate the improvements in grasp
prediction with the introduction of our newly proposed energy
terms. Finally, we show that having a simplified hand model of 7
key parts finstead of 21 leads to minimal loss in accuracy.

We ran a leave-one-out experiment for each grasp type, i.e for
each grasp, we train on all models except one and predict the pose
for the omitted model. In order to quantitatively evaluate the cor-
rectness of the poses predicted by our algorithm, we measure the

distances between all predicted and ground-truth joint positions for
each object model. In the following plots, on the vertical axis we list
the fraction of joints whose error is less than the distance threshold
listed on the horizontal axis (ranging from 0 to 25 millimeters).

5.1. Weights of Energy Terms

First, we want to select appropriate weights for each of the en-
ergy terms. We run several experiments by varying the weights
for each of the individual energy terms while keeping the weights
for the other terms fixed. We observed that the feature compatibil-
ity and intersection energy terms, £ fear and Eisect» have the most
impact on the quality of the synthesized grasp as shown in Fig-
ure 6. Based on the experimental evaluations on our dataset, we set
Waist = 1000, W foqr = 10, Wiseer = 0.3, Wpose = 10 and w4y, = 500.
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Figure 6: Variation of synthesized grasp quality for different val-
ues of (a) Wear and (b) Wigecr-

5.2. Correctness of Prediction
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Figure 7: Prediction accuracy on single versus mixed classes.

From Figure 7, we observe that when the distance threshold
reaches 10 millimeters, we achieve a correctness higher than 50%
for all 6 grasp types. Except for the large-diameter grasp type, we
reach more than 60% and even 80% correctness for certain grasps.
Prediction for the tip pinch grasp has the best performance while
the most difficult grasp to predict is for large diameter objects.
Performance on the other four grasp types are similar. We spec-
ulate two possible reasons for the variation in performance. First,
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(a) (b)

Figure 8: (a) There are many more candidate contact points on
objects with larger surface areas than objects with smaller surface
areas. (b) Candidate contact points on homogeneous surfaces
tend to be similar with respect to one another in terms of local
geometrical features.

the graspable area of large diameter objects (bottles and mugs)
are comparatively larger than other object types which results in
many candidate contact points, as opposed to smaller objects like
the coin (tip pinch) which will have fewer candidate contact points.
Secondly, majority of the candidate contact points for grasping a
cylinder are on the curved side surface, where geometric features
are similar. In comparison, an object like the gun has several dis-
tinct geometric features which are unique to specific hand parts.
Consequently, estimating grasping pose for the category ‘tip pinch’
results in the best performance whereas the accuracy drops signifi-
cantly (~20% for the 0-10 mm threshold) while estimating the pose
for ‘large diameter’.

Figure 8(b) shows candidate contact points for the palm center,
the tip of the thumb and the tip of index finger. For a gun, contact
points for different hand parts are easily recognized and clearly lo-
cated in 3 parts, whereas for a bottle, it is difficult to distinguish the
hand parts, causing interference on the prediction.

We find that the correctness of mixed class (leave-one-out over
all grasp types combined) is still higher than 60% when the thresh-
old is 10 millimeters. The mixed class is better than the single class
of large diameter but worse than the other 5 single classes, leav-
ing us to speculate that learning the interaction model on the mixed
classes have an interfering and adversarial effect on each other.

5.3. Modified Energy Terms

We compare the accuracy of the synthesized hand grasps with and
without our proposed stability term and modified symmetry in the
pose prior using the mixed classes. We plot the comparison in Fig-
ure 9, demonstrating that there is an improvement of ~5% and
~10% on an average in the prediction with the addition of the sta-
bility and the modified symmetry term respectively. The qualitative
improvements in the synthesized grasp from having the new energy
term for stability is shown with an example (Figure 10).

5.4. Simplified Kinematic Hand Model

In our prediction pipeline, the total number of key part plays an
important role on the precision of the synthesized grasps. Having

(© 2017 The Author(s)
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Figure 9: Improved grasp synthesis accuracy due to the addition
of the new energy term for stability and the modified energy term
for symmetry.
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Figure 10: (a) Without Egp, (b) With Egyp, - The addition of the
new energy term leads to more realistic grasp synthesis.

more key parts lead to improved prediction but at the cost of in-
creased computational complexity. We compare two different mod-
els - one with 7 key parts and the other model which considers all
the joints and the finger tips as contact points - 21 in total (Fig-
ure 3). We use leave-one-out method to test the system on a our
proposed dataset.

100
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60

% success

40

20

—— 21 key parts

0 5 10 15 20 25

Error(millimeters)

Figure 11: Prediction accuracy for 7 key parts vs. 21 key parts.

As can be seen from Figure 11, for lower distance thresholds (0-
10 mm) the increment in precision is minimal ~2-5%. On the other
hand, average grasp synthesis estimation for 7 key-parts varies from
~3s for small objects such as coin/chess pieces to ~550-600s for
objects with large surface areas and homogeneous features such as
mug or bottle. The average estimation time rises by a factor of 25
when using the 21 key-part hand model. Thus throughout our ex-
periments, we reported results for the 7 key-part model as it allows
to keep the estimation time tractable.
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6. Conclusion and Future Work

In this work, we proposed a data-driven energy minimization-based
approach for grasp synthesis. Our method predicts grasping poses
consistent with the local geometric features of the object, with a
part-wise reflective symmetry of the hand and ensures object sta-
bility under interaction. We evaluate our proposed approach on a
newly proposed dataset with 6 grasp types containing 111 anno-
tated object models spread over 12 object categories. Our experi-
ments show that our approach is able to synthesize grasps where
60% — 80% of the hand parts are correctly placed within a distance
of 10 millimeters. Upon correctness and runtime analysis, we no-
ticed that prediction accuracy is directly dependent on the scale of
the object.

As future work, we would like to create our own large scale
dataset, complete with grasp (parameterised as joint angles) and
contact point annotations, for objects of daily use. We would also
like to explore the form closure and force closure properties of hand
grasps in detail.
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