Parallel Multipipe Rendering for Very Large
Isosurface Visualization

Tushar Udeshi and Charles D. Hansen*

Department of Computer Science
University of Utah
50 S. Campus Center Drive Rm. 3190
Salt Lake City, Utah
84112-9205
{tudeshi, hansen}@cs.utah.edu

Abstract. In exploratory scientific visualization, isosurfaces are typi-
cally created with an explicit polygonal representation for the surface
using a technique such as Marching Cubes. For even moderate data
sets, Marching Cubes can generate an extraordinary number of poly-
gons, which take time to construct and to render. To address the ren-
dering bottleneck, we have developed a multipipe strategy for parallel
rendering using a combination of CPUs and parallel graphics adaptors.
The multipipe system uses multiple graphics adapters in parallel, the so
called SGI Onyz2 Reality Monster. In this paper, we discuss the issues
of using the multiple pipes in a Sort-Last fashion which out performs a
single graphics adaptor for a surprisingly low number of polygons.

1 Introduction

Many applications generate scalar fields p(z,y,2) which can be viewed by dis-
playing isosurfaces where p(z,y,z) = pigo- Ideally, the value for p;y, is interac-
tively controlled by the user. When the scalar field is stored as a structured set
of point samples, the most common technique for generating a given isosurface is
to create an explicit polygonal representation for the surface using a technique
such as Marching Cubes[8]. This surface is subsequently rendered with an at-
tached graphics hardware accelerator, such as the SGI Infinite Reality. For even
moderate data sets, Marching Cubes can generate an extraordinary number of
polygons, which take time to construct and to render. For very large (i.e., greater
than several million polygons) surfaces the isosurface extraction and rendering
times limit the interactivity. One approach to address this issue is to exploit
parallelism.

The use of parallelism in computer graphics hardware is widely known. Most
current generation graphics adaptors utilize parallelism in their design and im-
plementation[1,2,9]. While these systems are extremely proficient at rendering
geometry with superb rendering capabilities, such as texture mapping, the bot-
tle neck for rendering large polygon sets is the speed at which polygons can be

* Contact Person for this paper

2 Tushar Udeshi, Charles D. Hansen

sent through the graphics pipeline!. Since there is a single thread which can
send polygons to the graphics adaptor, the majority of rendering applications
are serial and implicitly exploit the parallelism inherent in the graphics adaptor.

For scientific visualization of very large data sets, 5123 and higher, paral-
lel isosurface extraction and rendering techniques have been studied[3,6,7,11].
These techniques exploit the large memory and parallelism of massively parallel
computers to deal with the data explosion caused by scientific visualization of
the large simulations running on the same machines. These techniques mimic, in
software, the parallelism in the graphics hardware and achieve speedup although
not at interactive rates. One of the problems with these approachs is the lack of
an attached framebuffer or graphics adaptor for displaying and interacting with
the image.

Clearly what is desired is a combination of these approachs which takes ad-
vantage of the large memory and parallelism provided by large-scale parallel
computers and the interactive rendering capabilities provided by graphics hard-
ware. Fortunately, we have recently seen the convergence of these two with the
SGI ONYX2 which is an SGI Origin 2000 with attached InfiniteReality graphics
adaptors[10]. SGI ONYX2 with multiple InfiniteReality graphics adaptors are
called Reality Monsters. While these promise acceleration based on parallelism
on both the macro scale (multiple graphic adaptors) and the micro scale (inter-
nal to each graphics adaptor), these systems are new and methods for exploiting
them have not been studied. This paper addresses an approach to exploiting the
multiple graphics adaptors for polygon rendering.

2 Parallel Graphics Hardware Approach

One approach to the classification of parallel rendering algorithms is to catego-
rize based upon whether the parallelism is achieved in image-space or in object-
space. However, many recent algorithms obtain performance by utilizing both
image-space and object-space parallelism. A more useful taxonomy for parallel
rendering which classifies rendering methods based on where data are sorted from
object-space to image-space was presented by Molnar et al.[5]. A typical render-
ing process performs some geometric processing followed by some rasterization
processing. Parallelization can take place during the geometric processing, dur-
ing the rasterization processing, as well as pipelined parallelism between the two
stages. At some point, primitives are sorted from object-space to image-space.
Looking at where this sort takes place provides a useful method for classifying
parallel rendering techniques. The sort to screen-space can take place before the
geometric processing, after the geometric processing but before the rasterization,
or after both the geometric processing and the rasterization. These methods are
referred to as Sort-First, Sort-Middle, or Sort-Last.

The Sort-First approach exploits some a priori knowledge about which part
of the screen the primitives will fall. This is utilized to send the primitives, pos-

! For 3D texture mapping based volume rendering, the bottleneck is typically pixel
fill-rate. We limit our application to explicit polygon rendering.

Lecture Notes in Computer Science 3

sibly polygons, to the appropriate processor elements. Frame-to-frame coherence
provides such knowledge. The screen is subdivided in some manner, typically in-
terleaved, and each region is assigned a processing element which performs both
geometry and rasterization without any need for communication. Sort-First suf-
fers from load inbalance for both the geometry processing stage as well as the
rasterization stage if primitives are not evenly distributed across the screen par-
titions.

The Sort-Middle approach needs no @ prior: knowledge and primitives, typ-
ically polygons, are distributed in some fair scheme between all the processing
elements. Each processing element performs the geometric operations on its por-
tion of the data. Following this stage, the transformed primitives are sent to the
processor element responsible for the portion of the screen into which these prim-
itives fall. Sort-Middle is typically well balanced during the geometry processing
stage but suffers from load inbalance during the rasterization stage if primitives
are not evenly distributed across the screen partitions. Additionally, there can
be a communication bottleneck if all geometry processors are sending data to
a single rasterization processor. The SGI Infinite Reality graphics adapter uses
Sort-Middle parallelism internally in its graphics pipeline. Using current tech-
nology, Sort-Middle parallelism cannot be exploited with multiple pipes since
each pipeline is totally independent from the rest.

Sort-Last rendering is sometimes referred to as an image compositing system.
Primitives are distributed in some fair scheme among the processing elements.
Each processing element performs both geometric processing as well as rasteri-
zation independent of all other processor elements. A local image is rendered on
each processor element and the images are composited together to form a final
image. In some systems, only active pixels from each subimage participate in
the compositing phase. Sort-Last behaves particularly well with respect to load
balancing since all primitives are fairly distributed at the beginning. However,
the communication load for the image compositing phase can be quite severe
and requires very high speed networks. In addition, transparency is non-trivial
for Sort-Last systems. Still, the scalability for Sort-Last rendering makes it an
attractive alternative for very large polygonal data sets such are those generated
from large scientific data.

We have implemented a technique for exploiting the parallel (up to eight)
Infinite Reality graphics adapters. One can use a Sort-First style approach by
dividing the image and assigning each graphics adapter a subimage for render-
ing. This approach uses either preculling of visible polygons (software based
frustum culling) or uses the hardware based visibility culling in the graphics
adapters themselves. The problem with software based visibility culling is the
dependency on spatial hierarchies for the underlying surface. For exploratory
scientific visualization where different isosurfaces are generated often and at in-
teractive rates, such pre-processing for each resulting isosurface would be time
prohibitive. The difficulty with using the hardware based visibility culling is
that each graphics adapter needs to process the entire set of polygons for its
subimage. Using a Sort-Last rendering scheme provides a different approach. In

4 Tushar Udeshi, Charles D. Hansen

multipipe Sort-Last rendering, each graphics adapter renders only a portion of
the polygons and the resulting partial images are combined, using depth com-
parison, to produce the final result. This is the approach we have chosen to use
since it provides better interactivity without the burden of preprocessing the
isosurface once it is created.

The basic idea behind our algorithm is to divide the renderable data among
the available graphics adapters, render each subset separately and locally, and
combine the resulting partial images in an incremental fashion. This technique
is strongly related to composition based volume renderers in that each graphics
adapter renders a portion of the final image and these are combined[4]. It is
similar to the composition network approach of Pixel Flow[9].

2.1 Binary Swap

Assume n is the total number of polygons representing an isosurface and p
is the number of graphics adapters. Typically p is a power of two although
this is can be relaxed through simple extensions. We assume the isosurface,
represented as n polygons, exists in shared memory. Each graphics adapter loads
and locally renders n/p polygons. At this point, each graphics adapter has a
partially complete image. These images are then composited onto the graphics
adapter used for the final display. We use the binary-swap[4] method for image
composition which composites the image in logs(p) steps. At each step, the
graphics pipes send the top half of their active image to their partner and receive
the bottom half from their partner. The partners are determined as being 2* away
where 7 is the composting step. Thus when utilizing 8 graphics adapters, for the
first composite the partners are [(0,1), (2,3), (4,5), (6,7)] and for the second
composite the partners are [(0,2), (1,3), (4,6), (5,7)].

Psudo-code of the algorithm follows. Assume p = number of pipes(numbered
0,1,...., p-1), ¢ = the current pipe, H = height of image. For simplicity p is
assumed to be a power of 2.

procedure binaryswap
begin
let h=0
let levels = loga(p)
let height = H
for [= 0,1... (levels-1)
begin
let factor = 2!
let A be a band of the image from h to (h + height)
if (I bit of ¢ is 1) /* odd pipe */
Send lower half of A to pipe (¢ — factor)
Recieve and composite an image from pipe (¢ — factor) onto upper half of A
let h = h + height/Z
else /* even pipe */
Send upper half of A to pipe (q+ factor)
Recieve and composite an image from pipe (¢ + factor) onto lower half of A
endif
let height = height/2
synchronize all pipes /* barrier */
end
send A to display pipe
end

Lecture Notes in Computer Science 5

Composition of the incoming image with the current image is done in hard-
ware making use of the stencil buffer. This is achieved by the following sequence
of steps:

1. Clear the stencil buffer to all zeros

2. Set the stencil operation to replace value to 1 if depth test passes and keep
current value otherwise.

3. Draw depth buffer values. This will set the stencil buffer
4. Set stencil test to pass if stecil value = 1 and enable stencilling.

5. Draw the color buffer values.

This has the effect of maximizing hardware usage and scales better with image
size than performing the composite with the CPUs. The active image is reduced
by half at each step. At the end of logs(p) levels, the active image on each
graphics adapter is composited into the display graphics adapter. Figure 1 shows
the compositing steps from bottom to top. The bottom row shows the results of
rendering the initial polygon distribution on each graphics pipe. The gray areas
in the images are back facing polygons. The three compositing levels are the
next three rows up. The compositing partners are shown with lines between the
compositing levels.

After Rendering

Fig. 1. The compositing levels are along the verticle axis and the graphics adapters
are along the horizontal axis. After the final step (the top most level), the final image
is composed from each of the partial images. (See color plate)

6 Tushar Udeshi, Charles D. Hansen

3 Experiments and Results

We have tested our technique with a variety of large polygon data sets. In this
section, we present the results. In all tests, we compare our technique with the
best (non-compositing) single pipe version. The rendering code is all written in
OpenGL.

For the first example, we wanted to stress the multipipe rendering system
to understand where the tradeoffs were for this technique. Recall, our goal is to
render extremely large polygon data sets such as those one would see generated
from 1GByte data sets. If we lower the number of polygons, we would expect the
overhead from the multiple graphics adapters to limit the speed up. In fact, for
sufficiently small polygon sets, we would expect the single graphics adapter to
out-perform multiple graphics adapters. To test this, we take a 131,000 triangle
isosurface generated from a CT scan. To test the scaling of polygon count, we
instantiated multiple copies of this data, from 2 up to 8 copies. This provided a
series of polygon data sets which varied from 131K to 1M polygons. We rendered
these with 1 to 8 graphics adapters. To mitigate instantaneous timing anomalies,
we rendered each frame 100 times. The results are shown in Figure 2 and Figure 3
for 512 x 512 and 1024 x 1024 images respectively. The X-axis is the size, in
triangles, of the isosurface being rendered. The Y-axis is the time in seconds
for rendering 100 images. As is shown in the plots, for the 1024x1024 image the
single graphics pipe out performs the multple pipes for the isosurface containing
131,000 triangles. This is to be expected since the overhead of reading back
the frame buffers and compositing in the multiple graphics adapters case adds
overhead and the rendering speed of the Infinite Reality graphics adapters can
easily handle that modest number of polygons. However, once the polygon count
increases to 262K triangles, the multiple graphics adapters out perform the single
graphics pipe for all cases. The improvement for multiple graphics pipes steadly
increases as the polygon count increases. One can notice the difference between
the 512x512 and 1024x1024 images. In the 512x512 case, the multiple graphics
adapters are always faster than a single graphics adapter, even on this small
number of polygons! The overhead of reading back and re-writing to the graphics
adapters (the compositing step) for the larger images in the 1024x1024 case
results in slower rendering times for low numbers of polygons. The overhead
predominates for the 131K triangle case. However, as the polygon count increases
to 1M triangles, the overhead becomes less of the overall time and the cost for
rendering a 1024x1024 image reduces to near the cost of a 512x512 image.

For the next example, we extracted the isosurface representing the skin for
the head portion of the visible woman data set (see Figure 1). The isosurface
is composed of 1.4 million triangles. We again instantiated multiple copies of
this data with 2, 3, and 4 copies resulting in 2.8M, 4.2M, and 5.6M polygon
isosurface data sets. Figure 4 and Figure 5 show the results for both 512x512
and 1024x1024 images. Notice that the rendering times are very close with the
512x512 image being slightly faster for rendering with larger numbers of graphics
pipes. This is due to the increased number of steps in the compositing operations
with an increased number of graphics pipes. However, with even a modest 1.4M

Time for 100 images(secs)

Time for 100 images(secs)

Lecture Notes in Computer Science

Binary swap for 512*512
T T

100 T
—— 1pipe
90 2 pipe b
-—- 4pipe
-=- i
8ol 8 pipe i
70+ e
60 e
50 e
40 E
301 -7 1
20+ I e
101 e
0 L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11
of Triangles x 10°
Fig. 2. Times for rendering a 512 x 512 image
Binary swap for 1024*1024
100 T T T
—— 1pipe
90} 2 pipe 1
--—- 4pipe
- 8 pipe
80| e
701 e
60 e
50 e
40 - e
301 - e
201 e
10 L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 1

of Triangles x 10°

Fig. 3. Times for rendering a 1024 x 1024 image

8 Tushar Udeshi, Charles D. Hansen

polygons, 8 graphics adapters outperforms a single graphics adapter by a factor
of 2. For 5.6M polygon data set, 8 graphics pipes outperforms, by 6 times, a
single graphics pipe.

Tables 1 and 2 show the overhead caused due to the binary swap communica-
tion and compositing steps. For a small polygon count of 131,000, the overhead
is fairly high. However for a polygon count of 5.6 M, these steps take less than
10% of the time thus resulting in huge improvements in time compared to the
single pipe case.

Polygon count 131,000 5.6 Million
Image size 512x512(1024x1024|512x512{1024x1024
Total time(secs) [10.4237| 15.305 |241.317| 246.005
Overhead(secs)
communication| 1.248 5.640 1.248 5.640
composite 1.238 2.812 1.238 2.812
total overhead | 2.486 8.452 2.486 8.452
% of total time 23.85% | 55.2% 1.03% 3.04%

Table 1. Overhead for binary-swap and compositing compared to total rendering time
for two pipes. The overhead is constant since it depends on the image size, not on the
number of polygons.

Polygon count 131,000 5.6 Million
Image size 512x512(1024x1024|512x512({1024x1024
Total time(secs) 7.709 | 15.276 |136.846| 140.756
Overhead(secs)
communication| 3.704 9.767 3.704 9.767
composite 1.397 2.381 1.397 2.381
total overhead | 5.101 12.148 5.102 12.148
% of total time 66.2% | 79.5% | 3.72% 8.6%

Table 2. Overhead for binary-swap and compositing compared to total rendering time
for four pipes. The overhead is constant since it depends on the image size, not on the
number of polygouns.

4 Conclusions

We have designed and implemented a multipipe parallel rendering system which
takes advantage of multiple attached graphics adapters on high-end systems.
For large polygon data sets, this method proves more interactive than utilizing

Lecture Notes in Computer Science

Binary swap for 512*512
500 T T T
—— 1 pipe
450 2 pipe 1
-—- 4pipe

4001 ~ -~ 8pipe 1

350 1
7
[53
a

%300 1
[
=]
£

S 2501 1
o
—
8

® 200+ E
£
=

150 1

100 1

50 1

0 L L L L L L L L L
1 15 2 2.5 3 35 4 45 5 55 6

of Triangles x 10°

Fig. 4. Times for rendering a 512 x 512 image for 1.4 to 5.6 million polygons

Binary swap for 1024*1024
T

500 T T
—— 1 pipe
450 2 pipe B
- —- 4pipe
400(-~~~ 8pipe g
3501 4
300 4
F2501 E
£
5200+ 1
g
£
150 A
100 4
50 4
0 L L L L L L L L L
1 15 2 2.5 3 35 4 45 5 55 6

of Triangles x 10°

Fig. 5. Times for rendering a 1024 x 1024 image for 1.4 to 5.6 million polygons

10 Tushar Udeshi, Charles D. Hansen

a single graphics pipe. Surprisingly, the tradeoff for multi-pipe rendering occurs
at less than 200k polygons for a 1024x1024 image. Given the large number of
polygons extracted using typical isosurface methods, this clearly provides accel-
eration through the parallel rendering. We recognize that the cost is significantly
higher yet many sites are taking delivery of such systems and we anticipate the
usefulness of such parallel techniques particularly as data set sizes scale up. Since
the cost of reading back the entire rendering window is fixed, based upon the
Infinite Reality hardware, an enchancement would be to only read back the re-
gion of the image defined by the projection of the bounding box of the polygon
set. Also, if it were possible to copy directly from graphics adapter to graphics
adapter without caching the active images in shared memory, we would expect
to see an increase in performance.

5 Acknowledgments

This work was supported by the University of Utah/SGI Visual Supercomputing
Center, the Center for Simulation of Accidental Fires and Explosions, a DOE
ASCI Level 1 Alliance Center, and the DOE Advanced Visualization Technology
Center, a partnership between Univ of Utah, ANL, and LANL.

References

1. Kurt Akeley. RealityEngine graphics. Computer Graphics, 27:109-116, August
1993. ACM Siggraph 93 Conference Proceedings.

2. Kurt Akeley and Tom Jermoluk. High-performance polygon rendering. Computer
Graphics, 22(4):239-246, August 1988. ACM Siggraph ’88 Conference Proceedings.

3. David A. Ellsworth. A new algorithm for interactive graphics on multicomputers.
IEEE Computer Graphics and Applications, 14(4), July 1994.

4. Kwan-Lui Ma et al. Parallel volume renderer using binary-swap image composition.
IEEE Computer Graphics and Applications, 14(4), July 1994.

5. Steve Molnar et al. A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications, 14(4), July 1994.

6. C. Hansen and P. Hinker. Massively parallel isosurface extraction. In Proceedings
of Visualization 92, pages 77 83, October 1992.

7. C. Hansen, M. Krogh, and W. White. Massively parallel visualization: Parallel
rendering. In Proceedings of SIAM Parallel Computation Conference, February
1995.

8. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. Computer Graphics, 21(4):163-169, July 1987.
ACM Siggraph ’87 Conference Proceedings.

9. Steven Molnar, John Eyles, and John Poulton. Pixelflow: High-speed rendering
using image composition. Computer Graphics, 26(2):231 240, July 1992. ACM
Siggraph 92 Conference Proceedings.

10. John Montrym, Daniel Baum, David Dignam, and Christopher Migdal. Infinitere-
ality: A real-time graphics system. Computer Graphics, 26:293-302, August 1997.
ACM Siggraph '97 Conference Proceedings.

11. F. Ortega, C. Hansen, and J. Ahrens. Fast data parallel polygon rendering. In
Proceedings of Supercomputing ’93, pages 709-718, November 1993.

