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Abstract. On a curved surface the front of a point wave evolves in con-
centric circles which start to overlap and branch after a certain time.
This evolution is described by the geodesic flow and helps us to under-
stand the geometry of surfaces. In this paper we compute the evolution of
distance circles on polyhedral surfaces and develop a method to visualize
the set of circles, their overlapping, branching, and their temporal evo-
lution simultaneously. We consider the evolution as an interfering wave
on the surface, and extend isometric texture maps to efficiently handle
the branching and overlapping of the wave.

1 Introduction

The study of geodesics and their behaviour under variations helps us to un-
derstand the geometry of curved surfaces. In this paper we try to compute and
visualize aspects of the geodesic flow and related terms like injectivity radius and
conjugate points, and extend these notions to polyhedral surfaces. By avoiding
a formal definition right now some of these terms can be immediately related
with the evolution of a wave front. For example, consider the front of a point
wave on a surface evolving with unit speed. Then the time of the first hit upon
itself is equal to the injectivity radius, unless a previous branching of the front
occurs — the branch point is called conjugate point.

We solve two problems: First, to compute the evolution of the front of a point
wave on a polyhedral surface. At each time the front is a topological circle on
the surface, which may overlap and have singular points resulting from previous
branchings of the front. In a numerical step, each point of the front is moved a
constant distance in orthogonal direction to the curve, i.e. a constant distance
along the geodesic normal to the curve in this point. In section 3 we employ
the concept of straightest geodesics on polyhedral surfaces to give a thorough
definition of the evolution on polyhedral surface and describe its numerics.

The second problem is to visualize the evolution consisting of a set of con-
centric, overlapping, and branched circles on a curved surface. Directly drawing
such circles as curves would lead to overpainting of previous circles, due to the
overlapping, unless transparency is added. As indicated above, the picture of
a point wave allows a better visualization of many geometric characteristics as
easily perceived phenomena, which includes the overlapping and the temporal
evolution. For the visualization of the evolving wave we use isometric texture
maps to avoid metric distortions between texture space and the surface, and we



Fig. 1. Point waves on surfaces develop singularities at so-called conjugate points where
the wave branches. Right figure shows a stack of abstract texels of the branched texture
map, each corresponding to one layer of the wave.

extend these maps to include the multiple covering of some parts of the surface
by different layers of the wave. We define branched texture maps which combine
the notion of global texture maps that cover the whole surface, and local texture
maps, which cover certain polygons. Isometric texture maps on surfaces are used
e.g. in the line integral convolution technique in flow visualization [2].

The numerics and visualization ideas in this paper easily extend to other
applications besides the geodesic flow. For example, the evolution and interfer-
ence of other wave fronts over flat or curved surfaces. More abstract even the
visualization of a homotopy of a curve, i.e. a one-parameter deformation, may be
visualized using the interpretation as an evolving wave front. Waves have been
studied in computer graphics from different aspects. In the animation [5] Max
used bump mapping to perturb the surface of water for simulating waves viewed
from a distance. Fournier and Reeves [4] explicitly model waves using parametric
surfaces which allow simulation of detail structure such as waves curling over.
The present paper describes ideas used in the video Geodesics and Waves [7].

2 Circles on Surfaces and the Geodesic Flow

A point wave in the euclidean plane starts at an origin p and evolves in concentric
circles around p. In a particle model all particles of the wave front move with
constant unit speed along radial rays away from the origin p if we neglect surface
tension. At each time t the outer wave front forms a distance circle o(t) with
center p and radius t.

For the construction of concentric circles on curved surfaces we use a similar
picture. Particles of a wave front move along geodesic rays emanating from the
origin p, therefore the circle at radius ¢ consists of all points at distance ¢ along
a geodesic ray from p. It is one purpose of this paper to compute, study, and
visualize such distance circles. We start with a review of geodesic curves, their
properties, and their extension to polyhedral surfaces.



2.1 Evolution of Distance Circles and Point Waves

Geodesic curves on smooth surfaces are characterized by two equivalent proper-
ties, either as locally shortest curves or as straightest curves. This equivalence
fails on polyhedral surfaces and leads to different concepts of locally shortest
[1][3] and straightest geodesics [6].

Definition 1. On a smooth surface M a curve 7y is a geodesic curve if it is not
curved within the surface. Formally, a smooth curve «y : [a,b] — M with tangent
vector 7', |¥'| =1, and surface normal N is geodesic if v"' is parallel to N.

Since this definition is equivalent to a 2nd-order ordinary differential equa-
tion, geodesics are uniquely determined by an initial point and an initial direc-
tion. This property allows particles with an initial impulse to move on surfaces
along geodesics if there is no tangential acceleration.

Geodesics carry information about the underlying geometry of the surface.
We briefly mention two terms, cut locus and conjugate points, since both have
a strong relation to distance circles and point waves.

2.2 Cut Locus and Conjugate Points

The set of geodesics emanating from a given point p is conveniently described
by the exponential map.

Definition 2. The exponential map at a point p on a smooth surface M asso-
ciates to each tangent vector vinthetangentspaceTp,M a point on a geodesic vy
through v(0) = p with initial direction '(0) = v as follows:

exp, : T,M - M

exp,(v) = 7(1) e

Here v(1) is a point on v at distance |v| from p since v runs at speed |v|.

The exponential map maps small circles around 0 in the tangent space T, M
to distance circles around p on M, i.e. to circular curves on M where all points
have the same distance to p. For a given vector v € T,M the radial lines rv
C Tp,M, r € R, are mapped isometrically to a geodesic ray ~.

In this formalism it is straight forward It is now easy to describe distance
circles around a point p on a surface M. Let V' (0) C T, M be a small neighbour-
hood of 0 € T),M then its image under the exponential map is a neighbourhood
U(p) := exp, V(0) of p. Using polar coordinates (r, ) in V(0) then each vector
v := 71 - (CO8 p, sin ) is uniquely determined by its coordinates (r, ). Its image
under the exponential map given by v, (r) := exp,(r - (cos ¢,sinp)) induces a
polar coordinate system on U(p).

Using the above definitions, the particle model of a wave front in the plane
extends immediately to curved surfaces M. The particles of a wave front start



Fig. 2. Exponential map of geodesics emanating at a point.

at p € M and move with constant speed along geodesics rays emanating at p. If
we normalize the speed to 1 then the wave front at a time ¢ is a distance circle
0; with radius ¢ given by

0y :[0,27] = M
3t () = (1)

In contrast to the euclidean case, the wave front on a curved surface will
usually self intersect after some time ty. There are two possible reasons for the
intersection. First of all, if the surface is not simply connected and has a handle
like a torus, then for each point p there exist two emanating geodesic rays, 7,,
and v,,, with ¢1 # @2 and a time to such that y,, (to) = V4, (to) =: ¢ (which go
around a handle of the surface). At ¢ the wave front hits upon itself and starts
to interfere. The time of the first hit ¢g = min, dist(p, q) is called the injectivity
radius at p. A second type of intersection occurs at so-called conjugate points
of p. At conjugate points ¢ = 7,,(ro) the differential Vexp, does not have
maximal rank, i.e. 9/0pexp,(ro,po) = 0. Here, the wave front branches and
nearby geodesics intersect shortly behind the conjugate point. The branching
occurs in the form of a swallow’s tail, see figures 3 and 7. For ¢ > tgthe polar
coordinates fail to be a coordinate chart.

(2)

2.3 Review of Straightest Geodesics on Polyhedral Surfaces

Straightest geodesics are introduced in [6] to solve the initial value problem
for geodesics on polyhedral surfaces. Since this property is essential for tracing
particles we recall the basic definition:

Definition 3. Let M be a polyhedral surface. A polygonal curve v on M is a
straightest geodesic if for each point p € v the left and right curve angles 6; and
0, at p are equal, see figure 8.

A straightest geodesic in the interior of a face is locally a straight line, and
across an edge it has equal angles on opposite sides. The definition of straightest
geodesics on faces and through edges is identical to the concept of shortest
geodesics, but at vertices the concepts differ.

The most important property of straightest geodesics is the unique solvability
of the initial value property which is not available for shortest geodesics.
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Fig. 3. Front of a point wave branches at conjugates points in the form of a swallow’s
tail. Behind the vertex of a cube the wave splits in two layers, and a third new layer is
generated at the conjugate point. All three layers start to interfere.

Theorem 1 (Discrete Initial Value Problem). Let M be a polyhedral sur-
face and p € M a point with polyhedral tangent vector v € T,M. Then there
ezists a unique straightest geodesic v with

7(0) =p (3)
7'(0)

and the geodesic extends to the boundary of M.

v,

3 Computing Discrete Distance Circles

For the computation of distance circles at a point p on a polyhedral surface
we start with a topological polygonal circle ¢(0) such that all of its vertices
lie at p. Each vertex ¢ € o(0) has a unit tangent vector associated to it, and
therefore the circle o(0) at time ¢, = 0 is completely described by a set of pairs
(gi0,vi0),4 = 1,..,n. For the numerics, it is essential to distribute the tangent
vectors equally spaced in angular direction since they determine the geodesic
along which the particles g; ¢ will move.

In the numerical iteration step from time ¢; to 41, the circle o(t;41) is
obtained by computing the set of vertices and tangent vectors

Qij+1 = 7(4i,j:vi,f)(1) yvi=1,..,n, (4)
Vijr1 = Vg g ,01,5) (1)

where (g, . o, ;) is the straightest geodesic starting at (g, ; v, ;)(0) = gi,; with
initial direction (q, . v; ;)(0) = v; ;. (Compare with figure 4.) Tt should be noted
that (g, ;,0:.:)(0) = V(p,ui0)(tj), i-e. for fixed j all points g; ; lie on a distance
circle with distance t; to p.

Equation 4 is essentially the computation of a segment of a straightest
geodesic for all vertices on the outer circle o(¢;). On the other hand, the distance
between adjacent vertices on the same circle grows exponentially with the radius.



Fig. 4. Set of distance circles with direction of movement (right). Left, the front at
time ¢ + At is generated from the front at time ¢ by computing geodesics with length
At.

Therefore each timestep includes a refinement and coarsening step to maintain
nearly constant distance between adjacent points on each circle. For the inser-
tion of new vertices, say between g; ; and g;+1,j, we connect both points by a
geodesic segment and insert a new vertex on this geodesic. In fact, for a fixed
t;, the circle o(t;) is piecewise geodesic - a natural generalization of piecewise
linear.

When a curve reaches a conjugate point it starts to form a swallow’s tail with
sharp edges. This does not irritate the algorithm since each vertex on the curve
still has a vector attached which uniquely determines its further movement. We
remark that on a polyhedral surface each positively curved vertex is a conjugate
point for all points in a small neighborhood. The resulting branching is studied
on the cube in figures 3 and 9. When approximating a smooth geometry with
a polyhedral surface, we suppress this type of local branching related to the
discretization in favor of the global branching related to the shape of the smooth
surface by using a reasonably fine mesh to distinguish between both types of
branching.

A direct visualization of the set of circles gives reasonable results only for a
small number of circles, see figure 4. In the following section we interpret the
set of concentric circles as an evolving wave and use a resolution independent
visualization based on texture map techniques.

4 Branched Coverings and Textures

4.1 Isometric Texture Maps

Texture maps of a 2-dimensional texture domain onto a general surface are
faced with the problem that the texture images are metrically distorted. These
principle difficulties can be avoided in the case of piecewise linear triangulated
surfaces where one can choose the texture triangles isometric (up to scaling) to
their corresponding surface triangles. Then each texel is isometric to its image
on the surface and no distortion of the texture image occurs. Additionally, this



Fig. 5. Locally isometric texture maps allow 2d-texturing of arbitrary surfaces without
distortion effects. Corresponding triangles in the texture domain and on the surface
are required to be similar up to scaling.

concept allows texture maps on arbitrary triangulated surfaces, as shown in
figure 5. It is implemented in animation systems like Softimage and employed
e.g. in the context of LIC [2].

A major problem of this method arises from the rasterization of the tex-
ture domain since adjacent triangles on the surfaces are not adjacent in texture
space. The texels along the common edge must be synchronized to avoid aliasing
artefact. The use of bilinear texture interpolation even requires synchronization
of texels lying outside the triangle as indicated in figure 6. An extrapolation
scheme would introduce new discontinuities, therefore we prefer the following
direct scheme: let T' be a triangle on the polyhedral surface and ¢ the isomet-
ric map from T to the texture domain. If the point p € T is hit and assigned a
color ¢, then the corresponding texel 71 (p) in ¢ (T') is assigned the new value

_ F(rr(p)) +c(p)
Frr(p)) = #Hi:s(TT(p)) +1

If ¢r(p) is close to the boundary of ¢ (T') then we color the texture image of
the adjacent triangle Ty in the corresponding texel 7r, (p) too. Let (b1, babs) be
the barycentric coordinates of p in the triangle T = (v1,v2,v3). The position
or, (p) near ¢, (T1), and therefore the texel 77, (p), is easily computed using the
triangle (¢T1 (Ul)a ¢y (U2)a ¢y (U3)) using

3
¢1:(p) =Y _ by (v;), (5)
j=1

see figure 6. To assign multiple texels efficiently we calculate all occuring values
¢r(v) in a preprocessing step and later only use equation 5.

4.2 Branched Texture Maps

Two-dimensional textures on surfaces are usually given as a texture map from
a two-dimensional image onto the surface. One distinguishes between global



BP0 omo

0G0

Fig. 6. Texel assignment for isometric texture maps.

texture maps covering the complete surface and local texture maps covering
subsets of the surface. A surface may have multiple textures of each kind. During
the rendering process, the final texture of a surface is computed by blending the
textures associated to a point. The application of local textures requires the
explicit specification of a domain on a surface where the local texture shall be
applied, and it is therefore conceptually different from the use of global texture
maps.

The approach of branched texture maps combines global and local textures
in one concept and avoids the specification of subdomains for local textures in
terms of regions on the surface. We start by covering the complete surface with
a set of base texels, e.g. such a covering may be an isometric texture map as
discussed in the previous section. At rendering time, these texels will contain
the final texture. We associate to each base texel a stack of abstract texels.
Each element of the stack corresponds to a texture layer covering a local region
of the surface, and two different entries correspond to two different layers. For
example, a surface which has two global textures associated would have a stack
of constant height 2 at every point on the surface, and in the case of one global
and one local texture the height would change between 1 and 2.

In contrast to the use of global and local texture maps, we do not allocate
a new global or local texture image for each new layer. Instead whenever the
wave fronts reaches a point on the surface, the corresponding texel stack is
adjusted only at this base texel if necessary. Figure 1 shows some layers and the
corresponding stack at a base texel.

5 Dynamic Computation of a Wave Texture

We divide the simulation of the wave in two major computational steps: first,
the computation of the evolution of the wave front, which consists of geometric
problems described in section 3 and leads to a static set of concentric circles, i.e.
a set of wave fronts. Second, the simulation of the actual flow by animating the



set of wave fronts. The animation is not done on the original set of fronts but on
the level of textures. From the set of fronts, i.e. a set of geometric curves on the
surface, we produce a single branched texture map which associates to each base
texel of the surface a stack of abstract texels. The final animation of the wave is
obtained from the single branched texture map by imposing a period function,
but without any new computation of the wave evolution.

The separation of the numerical step and the use of branched texture maps
makes the animation of moving waves a very cheap computation. To produce
static pictures it is sufficient to color the base texels directly.

5.1 Generating the Branched Texture Map

The set of wave fronts o(t;),j = 1,2, ... computed in section 3 are a discretization
of the exponential map from T, M to M and is now translated into a branched
texture map. First, we construct an isometric texture map covering M once with
so-called base texels and associate to each base texel of M an empty stack of
abstract texels, as shown in figure 1. The height of each stack is not known in
advance and will vary from base texel to base texel. Now we analyze the set of
curves o(t;), and whenever the front has flowed over a base texel we add a new
abstract texel to the stack of this base texel. Each abstract texel is essentially
of the following structure:

struct {float a,t; AbstractTexel next} AbstractTexel.

The task of generating the stack is simple if the maximal distance between
two successive curves is smaller than half the diameter of the smallest texel on
the surface, which can be easily controlled for isometric texture maps. Here we
sample each wavefront which carries the necessary information about angle a
and time ¢. To obtain smooth results, it is essential to hit texels more frequently,
say 4-8 times, and store average values (@, ).

Each sheet of the wave hitting a given base texel corresponds to exactly one
abstract texel above the base texel. A serious problem is the detection of the
sheet corresponding to the current hit. For polyhedral geometries, we avoid this
problem by letting the front detect branch points from the vertex curvature and
split. This allows us to assign to each front segment a unique level identifying
the sheet.

But, when approximating smooth surfaces, we need to distinguish between
the branch points of the smooth geometry and those induced by polyhedral
vertices. In this case, we let each base texel reconstruct the necessary information
for each circle, resp. geodesic, from the time and angle of the current hit. Let mr
be the midpoint of a base texel T' with edge size § and let each abstract texel
have stored average values (@,t). Assume a circle o(a,t) hits the base texel at
a point ¢ corresponding to an angle a, then g belongs to the same layer of the
abstract texel if

distpyr(mr,q) = \/%o(a,t)2 (a—a)’+@t-1°< %



for a threshold é depending on the discretization of the flow.

In practice, we have a lower resolution in time direction and compute fewer
wave fronts with distance of more than a few triangle diameters, and interpolate
between successive fronts as indicated in the left image in figure 4.

6 Summary and Acknowledgments

As an application of the concept of straightest geodesics on polyhedral surfaces,
we have computed concentric circles around a given point. Considering the set
of circles as an evolving wave front by animating the radius offers a natural
visualization approach of the circle homotopy, where geometric properties like
injectivity radius and conjugate points are easily perceived as properties of the
evolving wave. For the visualization we define branched texture maps, which
extend isometric texture maps to (partially) multiply covered surfaces. The vi-
sualization methods presented in this paper may be applied to other problems
such as propagation of general waves and homotopies of curves.

The authors appreciate the cooperation with Martin Steffens and Christian
Teitzel during the production of the video. We thank the anonymous referees for
helpful comments.
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Fig. 7. A point wave on a polyhedrally approximated torus initiated at top branches
at the conjugate point in the form of a swallow’s tail. Visualization of the interference
uses branched texture maps.

Fig. 8. Straightest geodesics are defined to have equal angle on both sides at each
point. On planar faces they are a straight lines, and across edges they have equal angle
on opposite sides. Straightest geodesics can be extended through polyhedral vertices,
a property not available for shortest geodesics.



Fig. 9. A point wave branches at the vertices of a cube which are equivalents of con-
jugate points on smooth surfaces. The section behind a vertex is covered by three
interfering texture layers while other parts are covered once. The zoom shows the tri-
angles and texels on the surface.

Fig. 10. Interference of a point wave at the vertex of a cube and texture layers. The
left picture shows the interference behavior of the wave at the vertex of a cube. The
wave is stored as a branched texture map, where to each point on the surface a stack
of texels is associated. In the right picture the surface texels are colored according to
the height of the texture stack at each point.

Fig. 11. Evolution of distance circles under the geodesic flow on the (highly discretized)
polyhedral model of a pretzel and a torus.



