Exploring Instationary Fluid Flows
by Interactive Volume Movies

Thomas Glau

DaimlerChrysler AG, Research and Technology, Virtual Reality Competence Center,
Wilhelm-Runge-Strasse 11, D-89013 Ulm, Germany

Thomas .Glau@DaimlerChrysler.com

Abstract. Volume rendering offers the unique ability to represent inner
object data and to realize enclosed structures “at first glance”. Unlike
software-based methods, the use of more and more available special-
purpose hardware allows volume rendering at interactive frame rates - a
crucial criterion for acceptance in industrial applications, e.g. CFD anal-
ysis. Careful optimizations and the exclusive use of hardware-accelerated
data manipulation facilities even enable volume rendered movies support-
ing real time interactivity. This article presents the most important fea-
tures and implementation issues of an Open/nventor-based stereoscopic,
VR-featured volume rendering system for instationary datasets.

1 Introduction

In 3D fluid flow analysis simulations are usually performed by means of the
finite element approach using locally adapted, unstructured meshes. As a result,
scalar and vector quantities for a large number of cells (varying from 100.000 to
>5.000.000) are generated and need to be made accessible to human perception.

Direct volume rendering proved to be an incomparable tool for getting a
deeper insight into complex datasets. Because of its ability to show the dataset
as a whole, flow structures (features) often can be recognized “at first glance”.
Nevertheless, volume rendering still suffers from computational expense. Hence,
it can be hardly found in widespread industrial applications and it is almost
exclusively used for stationary data analysis.

This article shows how to implement a volume renderer on a high end graph-
ics workstation, fast enough for playing volume movies with full real time in-
teractivity. Interactivity includes performing geometric transformations as well
as feature extraction and data manipulation. By integrating the volume ren-
derer into an existing virtual reality platform, hybrid rendering and stereoscopic
viewing are provided as well as several virtual reality features, e.g. tracking.

Note that simulation and visualization are parts of an iterative procedure: pa-
rameters are modified until certain optimization criteria are fulfilled. Therefore,
fast execution of each process involved in this loop is not only highly desirable,
but rather absolutely essential. Considering this practice we can assume that
in an early optimization phase interactivity is the major requirement for visu-
alization. However, approaching to the final step fidelity turns to be the more



important criterion. The user would neither accept a maximum quality render-
ing at low frame rates nor a high performance system with too much data loss.
Before talking about movies we have to discuss some common details concerning
fast volume rendering and feature extraction techniques.

2 Design issues

Even there are many visualization algorithms for direct volume rendering of un-
structured grids, real-time interactivity is not achieved [6][16]. To realize a today-
usable system meeting the requirements discussed above, the use of hardware-
accelerated 3D textures seems to be the most promising way. In fact, the avail-
ability of this hardware increases permanently while its costs decrease rapidly.
Meanwhile, 3D texture hardware is offered by a few vendors producing PC-
based graphics systems. The OpenGL standard APT enables flexible integration
of volume objects into existing surface rendering systems. As three-dimensional
texturing must be supported by all OpenGIL 1.2 implementations, it actually
becomes a standard feature.

The corresponding rendering approach, slicing, expects scalar volume data
represented as a 3D texture. First, polygonal planes are rendered parallel to the
viewport and stacked along the viewing direction. By mapping the 3D texture
while rendering the polygons, the volume data are sampled along the planes
according to a hardware-accelerated interpolation scheme, usually trilinear in-
terpolation. The textured polygons are blended together in back-to-front order
resulting in the final pixel image [4][14]. Here, the physical model for light trans-
port is simplified according to the used blending operator [8][10].

Naturally, 3D textures are limited to Cartesian-grid data. Hence, we have to
convert the simulation data from the original unstructured FE-grid by a pre-
processing step, expecting some data loss (see chapter 3). After resampling, the
voxel representation offers significant advantages for following postprocessing
steps. Because it can be regarded as the three-dimensional analogue to the pixel
model, a huge number of well-working image processing algorithms can be ex-
tended for use in three dimensions - often in a straightforward manner. This
includes volume enhancement as well as segmentation and pattern recognition
procedures [9].

The maximum resolution of the grid depends on the available texture memory
and on further restrictions concerning the maximum texture size of the under-
lying hardware. Using a SGI ONYX InfiniteReality graphics workstation with
16 MB texture memory and four RM6 raster managers enables simultaneous
visualization up to four 1283 x 16 Bit Luminance-Alpha textures without swap-
ping [1][11]. The luminance component is used for scalar value representation
while the alpha component contains an optional classification tag. Displaying a
dataset in a translucent view is the most important application for volume ren-
dering. But often, the user gets confused with this because of missing depth cues
and shape hints within the gel-like volume. Stereoscopic viewing in perspective
projection avoids this weakness in a convincing fashion. So we emphasize that



stereoscopic viewing is really an essential key feature for serious data analysis
using volume rendering.[2][4][5]

3 Data generation

To generate Cartesian-grid data from the unstructured finite element grid input,
a 3D scan-conversion has to be performed. Here, each FE-cell (hexahedron) is
rasterized individually by slicing it into a set of polygons so that a standard
2D rasterization algorithm can be applied. After the voxel set occupied by the
cell 1s determined, trilinear interpolation is used to obtain voxel data from the
vertex data of the cells. Linear interpolation schemes are usually preferred be-
cause they are fast, first-order continuous and only require data at the vertices
of the bounding cell [7]. Compared to image-order resampling techniques this
object-order method avoids exhaustive cell searching for point location within
the unstructured grid, but the higher the cell-to-voxel ratio becomes, the more
the conversion quality reduces. For higher resolution, the conversion procedure
can be spatially limited to a user-defined subvolume. To speed up the calcula-
tion, the algorithm was parallelized by scheduling chunks of cells to be scan-
converted to all available CPUs. The volumetric dataset shown in Fig. 3 consists
of 190.080 cells and needs 12.5 secs to be scan-converted into 2.097.152 voxels
on a 4xR10000 194 MHZ SGI ONY X-system.

4 Minimizing the Rendering Costs

While rendering, performing the hardware-accelerated texture interpolation is
the most expensive task. To overcome this bottleneck, the polygon stack is usu-
ally clipped to the limits of the texture volume instead of drawing simple rect-
angles (see Fig. 1). Considering the fact that all slicing planes are held parallel
to the screen, the clipping algorithm is less complex compared to the general
case and can be implemented quite easily with a few lines of code shown below:
First, the object transform is applied to both the 3D texture and to each vertex
of the bounding box. Then, the parametric representation and some auxiliary
parameters of all edges are determined:

foreach edge

if (dz !'= 0)
h =dx / dz
k =dy / dz

a=p0.y -k * p0.z
b=p0.x - h * p0.z
zmin = MIN(pO.z, pl.z)
zmax = MAX(pO.z, pl.z)
is_parallel = False
else
is_parallel = True
end



Fig. 1. Slicing a 3D texture (shown as bounding box)

where p0 and pl are the end points of the edge and dr ... dz denote the
differences between them with respect to the appropriate direction. With these
parameters, the intersection points p; of the edges with each plane of the polygon
stack can be easily calculated, provided that the line is not parallel to the zy-
plane and the intersection really exists. Finally, to render the polygon properly
the convex hull of the intersection points has to be determined using a robust
algorithm taken from [17].

foreach plane
z += plane_distance
foreach edge
if (ledge.is parallel && (z >= edge.zmin) && (z <= edge.zmax))
plnvertices].x = z # edge.h + edge.b
plnvertices++].y = z * edge.k + edge.a
end
convex hull(p, nvertices)
render polygon(p, z, nvertices)
end

The calculation procedure for a polygon stack composed of 128 slices takes typ-
ically 1 msec average calculating time on a R10000 194 MHZ CPU and im-
proves rendering speed significantly when applied to non-uniformly scaled tex-
tures. Thus, frame rates of >30 Hz in a 1000x750 window are usually achieved.
Using a software-clipping algorithm produces no load for the geometry engine
and avoids wasting of hardware-supported clipping planes which are mostly lim-
ited to a small number even on high end graphics systems.



5 Feature Extraction

Usually, the user wishes to have a volume composed of features rather than visu-
alizing the raw data. Preserving real time interactivity, threshold segmentation
is performed by manipulating the hardware-accelerated RGBA-Texture-TLook-
Up-Table (LUT) which maps each luminance component to a RGB pseudocolor
and each alpha component to another alpha value, respectively. To gain more
flexibility, a virtual LUT (stored in main memory) is introduced for each single
feature. The RGB LUT values are derived from an HSV colorbar where H origi-
nally moves from 0 ... 1 while S and V are set to unity to get a color spectrum.
The H mapping can be modified by scaling and shifting and is therefore of first
order (see Fig. 2). Unlike color mapping, alpha mapping is of zero order, i. e.
constant over the whole luminance band delimited by the value/width-pair in
Fig. 2. Finally, all tables masking and coloring a single feature (scalar band) are
merged to yield the resulting transfer function.

255
Main LUT
/ Hsv
7777777777777777777777777 Alpha
0 I
255
2.
r//r) 77777 Scale
! A
Value Width Shift Opacity
ol >t 7‘
255 | ; —
LuT2 ! : /

Texture Luminance / Alpha

Fig. 2. LUT Merging. Both scalar band size and coloring of each feature can be adjusted
very intuitively by five parameters shown in the second diagram.



Sometimes 1t is desirable to obtain iso-surfaces but to avoid the expensive
extraction of a triangular mesh. We can achieve a surface-like impression by
choosing a relatively small scalar band around the iso-value which is mapped
to a full opaque, bright color (e.g. yellow). After removing dispensable pieces of
the projection slices by an alpha-test, the polygon stack is depth shaded with
decreasing intensity according to a square function. In addition, specular lighting
improves the spatial impression when moving the object, although the surface
normals of the polygons are considered for lighting calculation rather than the
normals of the real iso-surface.

A more conventional way for volume exploration by clipping planes is also
provided. They are realized by spacemouse-driven rectangles sampling the tex-
ture along the plane using the OpenGL texture coordinate generating function.
Alternatively, OpenGL clipping planes can be applied to cut the polygon stack.
Since texture sampling works with arbitrary geometries, data projection on more
sophisticated surfaces (e.g. human model) is possible. More comprehensive tech-
niques for hardware-assisted clipping and shading can be found in [15]. Further-
more, a dynamic refinement functionality is provided to improve the rendering
quality of motionless volume objects by increasing the number of slicing poly-
gons.

6 Volume Movies

Having implemented a fast 3D texture based volume renderer, generating volume
movies is relatively straightforward. Therefore, texture data for each time step
are kept into main memory. While playing the movie the current data in texture
memory used for rendering are replaced by applying the OpenGL glTexSublm-
age3D extension. Since the download takes about 70 msecs on our hardware,
volume exchange rates of approximately 10 Hz are usually achieved. Note that
all capabilities described above, like clipping planes and feature extraction, are
now available for instationary dataset exploration.

7 Conclusions

This case study describes features and applications of our of hardware-assisted
hybrid rendering system. The 3D texture slicing approach is regarded as the
most advantageous solution currently available for 3D signal analysis, where
insight into the dataset is more important than surface inspection as required
for volume graphics. Here, simplified light models work well because there is
no natural equivalent. Care should be taken when interpreting rendered images
from datasets containing discontinuities, like holes, where trilinear interpolation
yields misleading results along the interface. Furthermore, artefacts may occur
due to perspective distortion if the density of slices doesn’t increase with dis-
tance from the viewer. A number of remarkable properties makes 3D texture
slicing appealing for industrial use: High performance, good-quality rendering,
real time surface visualization, immediate low-level feature extraction, arbitrary



scan geometries, inherent stereo viewing, standard graphics API, compatibility
with existing surface rendering systems and finally - volume movies. For CFD
visualization, this technique requires an additional resampling step but offers
real 3D data analysis and the application of a wide range of postprocessing al-
gorithms already known from the 2D domain. Today, 3D texture hardware is
fairly limited concerning resolution and data depth. Therefore, it is mainly used
either to get a coarse overview over the entire dataset or to get a closer look
at a relatively small subvolume. But considering the fact that 3D texture map-
ping becomes a standard feature, advanced hardware support is expected to be
available soon.

References

1. K. Akeley, Reality Fngine Graphics, ACM Computer Graphics, Proc. SIGGRAPH
93, pp. 109-116, July 1993

2. D. S. Ebert, R. Yagel, J. Scott, Y. Kurzion, Volume Rendering Methods for Compu-
tational Fluid Dynamics Visualization, Visualization ’94, Washington, DC, 1994,
pp. 232-239

3. T. Elvins, A Survey of Algorithms for Volume Visualization, Computer Graphics,
Vol. 26, No. 3, 1992

4. R. Fraser, Interactive Volume Rendering Using Advanced Graphics Architectures,
Silicon Graphics, Inc., Technical Documentation

5. van Gelder, Kim, Direct Volume Rendering with Shading via Three-Dimensional
Textures, Proc. Symp. on Volume Rendering, San Francisco, CA, ACM 1996, pp.
23-29

6. A. Kaufman, Volume Visualization : Principles and Advances, SIGGRAPH 98
Course Notes, Orlando, Florida, 1998

7. D. Kenwright, Visualization Algorithms for Gigabyte Datasets, SIGGRAPH 97
Course Notes, Los Angeles, CA, 1997, pp. 4-1 - 4-31

8. W. Krueger, The Application of Transport Theory to the Visualization of 3-D
Scalar Data Fields, IEEE Visualization 90, pp. 273-280, 1990

9. G. Lohmann, Volumetric Image Analysis, Wiley-Teubner, 1998

10. N. Max, Optical Models for Direct Volume Rendering, IEEE Trans. on Visualization
and Computer Graphics, 1, 2 (1995), pp. 99-108, 1995

11. J. Montrym, D. Baum, D.Dignam, C. Migdal, Infinite Reality : A Real-Time Graph-
ics System, Computer Graphics, Proc. SIGGRAPH 97, pp. 293-303, 1997

12. C. Stein, B. Becker, N. Max, Sorting and hardware assisted rendering for volume
visualization, ACM Symposium on Volume Visualization '94, pp. 83-90, 1994

13. M. Teschner, Ch. Henn, Texture Mapping in Technical, Scientific and Engineering
Visualization, Silicon Graphics, Inc., Technical Documentation

14. R. Westermann, Th. Ertl, Efficiently Using Graphics Hardware in Volume Render-
ing Applications, Proc. SIGGRAPH 98, Orlando, Florida, 1998

15. R. Yagel, D. M. Reed, A. Law, P.-W. Shih, N. Shareef, Hardware Assisted Vol-
ume Rendering of Unstructured Grids by Incremental Slicing, ACM Symposium
on Volume Visualization 96, pp. 55-63, 1996

16. http://cm.bell-labs.com/who/clarkson/

The volume renderer introduced here is part of the wvirtual reality platform DB View,
developed at the Daimler Chrysler Virtual Reality Competence Center. Simulations were
performed by DaimlerChrysler Research and Technology, Dep. FT 1/AK.



Fig.3. Volume rendered temperature dataset inside a car cabin. LUT merging was
applied for feature highlighting.

-

Fig. 4. Iso-Surface generated using a depth shading approach.

Fig. 5. Clipping plane.



