Attribute-Based Feature Tracking

Freek Reinders?, Frits H. Post!, and Hans J.W. Spoelder?

! Dept. of Computer Science, Delft University of Technology
email: {k.f.j.reinders, f.h.post}@cs.tudelft.nl
2 Fac. of Sciences, Div. of Physics and Astronomy, Vrije Universiteit
email: hs@nat.vu.nl

Abstract. Visualization of time-dependent data is an enormous task
because of the vast amount of data involved. However, most of the time
the scientist is mainly interested in the evolution of certain features.
Therefore, it suffices to show the evolution of these features. The task
of the visualization system is to extract the features from all frames, to
track the features, i.e. to determine the correspondences between features
in successive frames, and finally to visualize the tracking results.

This paper describes a tracking system that uses feature data to track
the features and to determine their evolution in time. The feature data
consists of basic attributes such as position, size, and mass. For each
set of attributes a number of correspondence functions can be tested
which results in a correspondence factor. This factor makes it possible to
quantify the goodness of the match between two features in successive
time frames. Since the algorithm uses only the feature data instead of
the grid data, it is feasible to perform an extensive multi-pass search for
continuing paths.

Keywords: Time-Dependent Data, Feature Extraction, Attribute-Based
Feature Tracking.

1 Introduction

Numerical simulations are increasingly focusing on the investigation of time-
dependent phenomena. In general this results in a vast amount of data that is
hard to process, interpret, and visualize. Off-line generation of images (using a
global visualization technique) and creation of a playback animation, can give an
overview of the evolution of the data [4]. However, this has a number of deficien-
cies: it cannot be performed interactively since the amount of data is too large
to handle, it leaves the extraction of apparent features to the visual inspection
by the scientist, and it does not give a quantitative description of the evolving
phenomena. In order to overcome these flaws one should use an automatic way
of tracking coherent structures (features) in the data. This requires a match-
ing criterion between features in successive time steps (frames). The problem of
matching two features is also cited as the correspondence problem [3].

Once the correspondence problem is solved, the sequence as a whole can be
described. For each feature a description can be made of its lifespan, describing
it’s motion, growth, interaction with other features, etc. This allows us to select

one feature and visualize the evolution of it, or to detect certain events like
unusual changes or a specific interaction. The tracking process results in entirely
new ways of visualizing evolving phenomena.

The correspondence problem is an issue in several scientific disciplines such
as image processing, computer vision, and scientific visualization. Although each
discipline has its own perspective to the problem, many approaches are similar to
each other. Roughly, the methods can be classified in two categories: image-based
methods and feature-based methods.

In image-based methods, the displacement of coherent structures is deter-
mined on a pixel-to-pixel basis. Examples of image-based techniques are (from
image processing) the maximization of the cross-correlation between two images
[8], and methods (from computer vision) using optical flow [1]. Since these meth-
ods involve an optimization process using the original data, they are suitable for
2D-images, but are inefficient for 3D fields.

In feature-based methods, first feature extraction takes place for each frame.
The resulting features are then matched to the features in subsequent frames.
Features may include points, lines, surfaces, or volumes, and can be extracted
in numerous ways depending on the application domain and the type of feature.
After the extraction, the correspondence problem can be solved using two mech-
anisms: region-matching, or attribute-matching. Region-matching is achieved by
matching the regions of interest, for instance by overlap [2,11,12], or by a linear
affine model [5]. These methods process the (binary) grid-data and consequently
are memory consuming. Contrary to this, attribute-matching [9, 10] only works
with certain attributes describing the features, which is a small set of numbers.
Hence, attribute-matching costs less memory, one can even afford multi-pass
searching for the optimal correspondence between features. However, since the
attributes are a reduced model of a feature, the problem is finding a suitable set
of correspondence criteria.

This paper describes an attribute-based feature tracking system that solves
the correspondence problem based on primary attributes of features, such as
position, size, and mass. The key of the algorithm is the use of a prediction
scheme and the use of a multi-pass search for continuing paths. The process
is highly interactive; the scientist can guide the tracking process by changing
criteria and parameters, resulting in different tracking solutions.

The paper is organized as follows, Section 2 summarizes our feature extrac-
tion procedure, Section 3 defines a number of components of the tracking al-
gorithm, and Section 4 describes the algorithm itself. Then, two applications
are described in Section 5, and finally, some conclusions and topics for future
research are given.

2 Feature Extraction

The first step in feature tracking is the extraction of features from each frame.
Feature extraction is a set of techniques in scientific visualization aiming at
algorithmic, automated extraction of relevant features from data sets [13]. The

tracking algorithm described here works on features that are 3D amorphous
‘objects’ of a size (much) smaller than the data set domain, but larger than a
grid cell. The two essential attributes of such features are position and size. In
principle, these can be obtained with any feature extraction method, but in this
work we have used a method based on selective visualization, which is described
in more detail in [13] and [7].

The result of the feature extraction is a number of features, each quanti-
tatively described by a set of attributes, which can be visualized by an iconic
representation. The collection of the attribute sets of all features is called feature
data. The feature data lifts the original grid data field to a higher level of ab-
straction; data describing the features in contrast to data containing interesting
features. We developed an object-oriented data structure in C**+ which stores
the feature data and which allows operations on the features. The possibility of
manipulating the features as individual entities has important consequences: the
features can be quantitatively compared, and for our tracking purpose the grid
data is not needed anymore.

The transformation from grid data to feature data signifies a data reduction
in the order of 1000. The feature data is a drastically reduced model of the orig-
inal data. Therefore, one has to verify the accuracy of the calculated attributes
before they can be used for tracking. In [7] we showed that the determination
of position and size is very accurate and robust even for noisy data. Thus, the
feature data is reliable and can be used for time tracking.

3 Tracking Components

3.1 Prediction

Our tracking algorithm is based on a simple assumption: features evolve con-
sistently, i.e. their behavior is predictable. This implies that once a path of
an object is found, we can make a prediction to the next frame and search for
features in that frame that correspond to the prediction. A prediction can be
made for the next frame at the end of the path, but also for the preceding frame
at the beginning of the path. This means we can search forward and backward in
time. Figure 1 shows six matched features that form the path of an object (dark
objects), it shows the prediction at the end of the path (transparent object),
and it shows a candidate feature (light object). Clearly, the candidate feature
corresponds very well to the prediction and should be added to the path.

The concept of making a prediction and searching for candidate features
corresponding to this prediction has two major advantages. Firstly, it allows
tracking of fast moving small objects that do not overlap. Secondly, it allows
tracking in two directions of time: forward and backward. Still, a correspondence
must be detected between the prediction and the candidates in the next frame.

3.2 Correspondence functions

In order to detect a correspondence between the prediction and a candidate
feature, we evaluate a number of correspondence functions. These correspondence

=| Feature Viewer |a

:

&< || V2]

|| Rotx_Roty [grrrrrrmm|

Fig. 1. A visualization of a path (dark objects), its prediction (transparent object) and
one of the candidates (light object).

functions C,n. are based on certain consistency rules like consistent growth,
speed, rotation, etcetera. Each function is accompanied by a tolerance T; and a
weight W;. The tolerance allows a deviation from the prediction and the weight
indicates the importance of the function (W; < 0.0 means no evaluation of
the function at all). The correspondence factor returned by a function is 0 <
Ctunc < 1.0 if the candidate deviates from the prediction within the tolerance,
and it is Cync < 0.0 if the deviation is larger then the tolerance (equation 1).
The total correspondence between a prediction and a candidate is expressed as
the weighted sum over all contributing functions (equation 2). The result has
similar behavior as equation 1, hence a positive match between a prediction and
a candidate is found when Corr > 0.0.

1 Exact match

Cfunc = { 0 Limit tolerance (1)
< 0 No match
Nfune v o W,

Corr = 217—1%”;‘; : (2)
Zz’:l i

The number of possible correspondence functions depends on the attribute
sets in a feature. Each attribute set yields a number of correspondence func-
tions. For instance an ellipsoid fit contains information about size, position, and
orientation. Therefore, the accompanying correspondence functions (table 1) are
based on the consistency of growth, speed, and rotational speed. Consistency of
growth is tested by the two volumes V', consistency of speed is tested by the
distance between the two centroids dist(p, c), and the rotational speed is tested
by the dot scalar product of the main-axes of the two ellipsoids = cos(Z(P,¢)).
It should be noted that the semantics of the correspondence functions depend
on the physical phenomena underlying the dynamics of the features.

| Correspondence function | Correspondence factor consistency rule |

IV, — Vel P
——— <=Tyol — 1 _ maxtVp,Ve) consistent growth
ma.x(V},,Vc) vo Cuol 1 T nsistent grow
. dist(p,c
dist(p,c) <= Tpos Cpos =1 — % consistent speed
pos
_ 1-— L(p,cC i
1= lleos(£(p,)| <= Tongie | Cungre = 1 — MBI |- consistent
Tangte rotational speed

Table 1. Correspondence functions linked to the ellipsoid fit attribute set, p = pre-
diction, and ¢ = candidate.

The same correspondence factors are used to determine a confidence index for
a complete path. Each connection (edge) between two features in this path gives
two correspondence factors (forward and backward), except for the connection
to end-nodes and from starting-nodes of the path. These only have one factor
since only a prediction can be made in one direction. The confidence index of a
complete path is calculated as follows:

Conf(path) =1 —¢~7 (3)
edges

with ¢t = Z C;
=1

where 7 is a growth factor (it can be taken equal to the minimal path length
discussed in section 4.1). The confidence factor increases as the length of the
path increases, which is convenient since our confidence in a path increases for
longer paths. The confidence index is used when a choice has to be made between
two paths sharing the same feature.

4 Tracking Algorithm

With the prediction, correspondence factor and confidence index we have all
the components needed for a successful tracking algorithm. In order to obtain
a prediction, we still have to initialize a path before we are able to continue it
with corresponding candidates in consecutive frames.

4.1 Initialization

The initialization of a path is achieved by assuming a correspondence between
two features in two successive frames. This assumption leads to a prediction that
can be compared to candidates in the third frame. If there is a candidate in the

third frame that corresponds to the prediction, a new path is created and the
path is continued into subsequent frames. Since a match in the third frame may
be found coincidentally, an additional test on the resulting path is performed to
ensure genuineness: the path length must be greater than a minimal path length
(normally taken 4 or 5 frames).

Algorithm 1 Initialization, starting a new path

StartPaths()

for_all (frameli])
for_all (unmatched features in frameli])
for_all (candidates in Frame[i+1]) {
assume connection between feature; and candidate;+1
calculate prediction;4i
for_all (candidates in Frame[i+2]) {
if (Correspondence(prediction; 41, candidate;+2))
create new path
ContinuePath(path, frame[i+3])
if (path->length >= MinPathLength)
add path to graph

Furthermore, two options are possible for the candidates: 1) all features in
the next frame are candidates, and 2) only unmatched features in the next frame
are candidates. The first option allows multiple solutions for one feature, but also
requires an exhaustive search. The second choice limits the search because the
number of candidates decreases when more paths are found, but it also removes
a feature as possibility once a feature has been added to a path, i.e. the tracking
solution depends on the order in which the features are tested. The pseudo code
of the initialization is shown in Algorithm 1 (forward tracking). The worst case
complexity of the initialization is of O(nm?2), with n the number of frames and
m the number of features per frame which is usually much less than 100. It
should be noted that the number of unmatched features from which a path is
started, decreases rapidly once a number of paths are found. So in practice the
complexity will be much lower.

Once a path has been initialized, it is continued recursively until the path
ends or until the last frame is reached. Obviously, this scheme may lead to
multiple paths sharing the same feature: e.g. multiple candidates satisfy the
prediction, or a candidate was already added to another path. This happens
especially if the tolerances are relaxed. In case of multiple correspondences the
path with the best confidence index gets the advantage.

4.2 Multiple Passes

The initialization can be performed forward and backward in time. This will yield
different tracking results because the prediction is different in each direction.
Correspondences may be found in one direction, but not in the other direction.
Therefore, it is useful to go back and forth through the frames in several passes.
If a pass is started with an existing tracking solution, the existing paths are
first tested for extension before new paths are initialized. There are two ways to
extend a path: first paths may be joined; if two paths start and end in successive
frames, the two paths may be each other’s continuation. Second, a path may be
extended with unmatched features in the next frame.

Thus, multiple passes can be conducted on an existing correspondence so-
lution. This also allows multiple passes with changed tracking parameters, for
instance with different tolerances. Experience shows that good tracking results
are obtained when the tracking is started with strict tolerances and for each
successive pass relax the tolerances a bit (with only unmatched features as can-
didates). First, the obvious paths are found, and then more indistinct paths are
found, thus the order of the tested features has less influences.

4.3 Feature Graph

.=.§ Graph Wewer

GI 1718 19 20 21 22 23 24 25 26 2F 26 20 30 3 3 3 M W/ I W W 9 40 41 42 43 44 45 46 47 46 49 50 5L 52 53 54 55 56 57 6O 59 k

- \ NN
NN
™

 transY transX [[T IT I

Fig. 2. The feature graph: a node represents a feature in a certain frame and an edge
between two nodes represents a positive correspondence between the two features.

The result of the tracking algorithm can be visualized in a directed graph (Figure
2). The frames are plotted horizontally and the features are plotted vertically.
Each frame is represented as a level in the graph and all features in that frame
are depicted as a node at that level. An edge between two nodes visualizes an
established correspondence between two features. Once two features are matched
they belong to the same object, at two different instances of time. Therefore,
all connecting nodes identify the path of the same object and the features in
this path can be given the same object-id (and color). The path describing the
motion of an object is stored in the graph as a collection of nodes and edges;

also, information is stored about the paths passing through each frame. The
graph data structure holds both path-information and frame-information, i.e.
it provides possibilities to walk through the graph in both longitudinal and
transverse direction.

5 Applications

5.1 Flow Past a Tapered Cylinder

The first application is a flow past a tapered cylinder! consisting of 400 frames of
2.6 Mb each (Plot3D data, grid size 64x64x32, total data size > 1Gb). Features
were extracted from the enthalpy (enthalpy > -0.6997), and for each feature an
ellipsoid fit was calculated and stored in a feature data file (total size 476Kb).
The resulting features are highly interacting regions in the wake of the cylin-
der. After executing six passes with increasing tolerances for the position and
size functions, 280 paths were found and only 329 of the original 4121 features
remained unmatched (more than 92% matched). These unmatched features can
be explained by the fact that the continuation rules do not apply for feature
interaction events such as split/merge. Figure 2 shows a small part of the com-
plete graph, the features are vertically sorted by their size. Black nodes indicate
unmatched features, and colors indicate the different paths. In a second viewer
(the player), the 3D icons of the features can be viewed in a loop over the frames,
or one frame can be selected and viewed (Figure 3). An animation can be found
on the web [6].

1]

| Player Feature Viewer | =

T

D |,

IR
R
SNt

-
—

| Rob oty [IEr=—-rrr]

Fig. 3. Flow past a tapered cylinder.

! Data courtesy NASA Ames Research Center, http://science.nas.nasa.gov/Software/
DataSets/

5.2 Turbulent Vortex Structures

The second application is a CFD sim- (= merane
ulation with turbulent vortex struc-
tures. We obtained the feature data
as described in [11]. The feature data
consisted of 100 frames with for each
vortex structure its position, volume,
and mass attributes. The 100 frames
contain a total of 4903 features (an
average of almost 50 per frame). Af-
ter the tracking 277 paths were found
and only 314 features remained un-
matched. This example was a good
test case for our tracking algorithm,
because of the high average and strongly

varying number of features per frame. ||rox oy [T Dolly
We found that the algorithm had no
problems in processing the data (each Fig. 4. Turbulent vortex structures.

pass took less than a minute on an
SGI Onyx with one 75 MHz R8000 processor and 256 Mb of memory). An ani-
mation of this example can also be found on the web [6].

6 Conclusions and Future Research

Time-dependent data can be analyzed and visualized by the feature tracking
system discussed in this paper. The system first extracts interesting features
from the data, then calculates basic attributes such as position and size for
each feature, and solves the correspondence problem using these attributes. The
solving-algorithm is based on the assumption that features evolve consistently
and therefore their behavior is predictable. Using simple behavioral rules, we
predicte the position and other attributes of each feature in the next frame. This
prediction is used to find matching features in the next frame; all candidates in
that frame are tested for correspondence with the prediction. Correspondence is
found when a number of correspondence functions are satisfied. Each attribute
set is associated with a number of correspondence functions that is tested with
a certain tolerance and weight.

The initialization of a path is achieved by testing all possible connections
until a match is found in the third frame. The resulting path is extended until
no more connections can be found, or the path reaches the last frame. When the
path satisfies a minimal path length it is added to the feature graph and all the
features in the path are given an object-id. This process of finding continuing
paths can be conducted forward and backward in time, thus allowing multiple-
pass searching. A convenient scheme is to start with strict tolerances (finding
obvious paths) and relax the tolerances each pass (finding less obvious paths).
The applications show that this tracking system works fine, even with chaotic
data with many interacting features.

Although the algorithm is currently limited to finding continuing paths, we
believe that it provides a good starting point for finding events like split/merge,
and birth/death (see [9]). Events may be detected by applying a new set of
correspondence functions. In the future, also effort will be put in more sophis-
ticated prediction schemes, other visualization and interaction techniques for
user guided tracking, and tracking based on other attributes, such as skeleton
descriptions.

Acknowledgements

The authors wish to thank dr. Jarke J. van Wijk of TU Eindhoven for the stimu-
lating discussions, and prof. Deborah Silver and Xin Wang of Rutgers University
for the use of their turbulent vortex data.

This work is supported by the Neth erlands Computer Science Research Founda-
tion (SION), with financial support of the Netherlands Organization for Scientific
Research (NWO).

References

1. G. Adiv. Determining 3D Motion and Structure from Optical Flows Generated by
several Moving Objects. IEEE Trans. on PAMI, 7:384-401, 1985.

2. Y. Arnaud, M. Debois, and J. Maizi. Automatic Tracking and Characterization

of African Convective Systems on Meteosat Pictures. J. of Appl. Meteorology,

31:443-453, May 1992.

D.H. Ballard and C.M. Brown. Computer Vision. Prentice-Hall, 1982. Chapter 7.

J. Becker and M. Rumpf. Visualization of Time-Dependent Velocity Fields by

Texture Transport. In D. Bartz, editor, Visualization in Scientific Computing 98,

pages 91-101. Springer Verlag, 1998.

5. D.S. Kalivas and A.A. Sawchuk. A Region Matching Motion Estimation Algorithm.
CVGIP: Image Understanding, 54(2):275-288, Sep 1991.

6. F. Reinders. http://wwwcg.twi.tudelft.nl/~freek /Tracking. Web page with feature
tracking examples.

7. F. Reinders, H.J.W. Spoelder, and F.H. Post. Experiments on the Accuracy of
Feature Extraction. In D. Bartz, editor, Visualization in Scientific Computing ’98,
pages 49-58. Springer Verlag, 1998.

8. W.B. Rossow, A.D. Del Genio, and T. Eichler. Cloud-Tracked Winds from Pioneer
Venus OCPP Images. J. of Atmos. Sci., 47(17):2053-2082, Sep 1990.

9. R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing Features and Tracking
Their Evolution. IEEE Computer, 27(7):20-27, July 1994.

10. I.K. Sethi, N.V. Patel, and J.H. Yoo. A General Approach for Token Correspon-
dence. Pattern Recognition, 27(12):1775-1786, Dec 1994.

11. D. Silver and X. Wang. Volume Tracking. In R. Yagel and G.M. Nielson, editors,
IEEE Proc. Visualization ’96, pages 157-164. Computer Society Press, 1996.

12. D. Silver and X. Wang. Tracking Scalar Features in Unstructured DataSets. In
D. Ebert, H. Hagen, and H. Rushmeier, editors, JEEE Proc. Visualization ’98,
pages 79-86. Computer Society Press, 1998.

13. T. van Walsum, F.H. Post, D. Silver, and F.J. Post. Feature Extraction and Iconic
Visualization. IEEE Trans. on Visualization and Computer Graphics, 2(2):111-
119, 1996.

-~ w

