
The Gap between Visualization Research and Visualization Software (VisGap) (2021)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

Property-Based Testing for Visualization Development

M. Stegmaier1,∗, D. Engel2,∗ , J. Olbrich1, T. Ropinski2, M. Tichy1

1Ulm University, Institute of Software Engineering and Programming Languages, Germany
2Ulm University, Institute of Media Informatics, Germany

∗equal contribution

Abstract
As the testing capabilities of current visualization software fail to cover a large space of rendering parameters, we propose
to use property-based testing to automatically generate a large set of tests with different parameter sets. By comparing the
resulting renderings for pairs of different parameters, we can verify certain effects to be expected in the rendering upon change
of a specific parameter. This allows for testing visualization algorithms with a large coverage of rendering parameters. Our
proposed approach can also be used in a test-driven manner, meaning the tests can be defined alongside the actual algorithm.
Lastly, we show that by integrating the proposed concepts into the existing regression testing pipeline of Inviwo, we can execute
the property-based testing process in a continuous integration setup. To demonstrate our approach, we describe use cases where
property-based testing can help to find errors during visualization development.

CCS Concepts
• Human-centered computing → Visualization toolkits; • Software and its engineering → Software verification and valida-
tion;

1. Introduction

Testing plays a crucial role in ensuring software quality. When per-
formed manually, it is labor-intensive and time-consuming. For this
reason, it seems natural to automate testing as much as possible.
Automated testing not only saves time, but also contributes to re-
producible tests. In addition, the lower cost of automated testing
compared to manual testing allows testing to be more thorough. In
the context of test-driven development [Bec03], software tests are
written in advance. A software requirement first gets converted to
a test and only afterwards or in parallel the implementation of the
requirement is developed.

While the automatic generation of tests is often straight-forward
in the case of unit tests, it is significantly more difficult to test the
interaction of different modules. This process is called feature in-
teraction testing [PSK∗10] (FIT). One of the difficulties that arise
with FIT, is that through the many possibilities to combine modules
for interaction, the resulting space of possible tests results in a com-
binatorial explosion. However, studies on debugging with feature
interaction testing have shown that while testing the interaction of
features in pairs already significantly increases the error detection
rate, the increase from combining features in pairs to combining
three or more features is insignificant [WK02,KWG04]. Thus, with
pairwise coverage, a good balance between error detection rate and
scalability can be obtained.

Data visualization techniques are used in a wide variety of re-
search fields, such as medicine [KMM∗18], biology [RE07], bio-

chemistry [KKF∗17] and physics [AAA∗19]. As data visualization
demands increase, and researchers as well as practitioners rely on
visualizations to make critical decisions [KOJC13], it is of utmost
importance to verify visualizations for their correctness. This in-
cludes software quality assurance for the development of the ren-
dering algorithms underlying visualizations. While verification and
rigorous testing is applied in a wide range of disciplines in com-
puter science, the adoption of those processes has been rather slow
in visualization [KS08]. This lack of rigorous software testing often
prevents researchers from sharing their visualization prototypes,
negatively impacting the reproducibility and practicality of their
work. We believe the reason for this is that visualization algorithms
are difficult to test due to their large set of parameters and their
often hard to declare impact on the resulting rendering.

In this work, we focus specifically on the verification of the
code implementations underlying visualization algorithms. Unfor-
tunately, very little research has been conducted on appropriate
testing concepts for visualization software. Current visualization
software commonly makes use of unit tests and simple regression
tests. We argue that those types of tests alone are insufficient to
reliably verify the correctness of visualization implementations, as
unit tests fail to capture errors occurring through the interaction of
different software components. Current frameworks try to identify
those integration errors using simple regression tests, where the re-
sulting image of a visualization is compared to a reference image
that was produced when the test was created. The problem with that

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/visgap.20211087 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-5766-7215
https://orcid.org/0000-0002-9067-3748
https://doi.org/10.2312/visgap.20211087

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

(a) color (b) depth

Figure 1: An example of volume clipping. We can test clipping
implementations by verifying that the amount of background pix-
els increases, when increasing a lower bound clipping plane. The
bounding box denotes the original volume borders.

approach is that the visualization is only tested with the parameter
configuration that was used to create the reference image. How-
ever, complex visualization algorithms have many different param-
eters and the current testing methodology may fail to find errors
that only occur with a different configuration. Furthermore, differ-
ent graphics hardware and driver versions have been reported to
produce slightly deviating results, which introduces issues, when
the system that is running the tests is changed.

To alleviate these issues we propose to use the concept
of property-based testing [FB97] for visualization development.
Property-based testing allows for defining certain expectations in
the way a rendering changes, given a certain change in the ren-
dering parameters. For example, we can test the implementation of
volume clipping. Volume clipping is the process of cutting a volu-
metric data set using axis-aligned planes, usually to get insights of
the interior or to hide irrelevant information. Figure 1 shows vol-
ume clipping by increasing the lower bound clipping plane along
the X axis. To test the correctness of a clipping implementation,
we could for example check if shifting the clipping bound along
an axis actually increases the amount of background pixels visi-
ble. Due to its illustrative nature, we use this example throughout
the paper to explain the concepts behind and the implementation of
our approach.

Our implementation is based on Inviwo [JSS∗19], an extensible
visualization framework that allows to build visualization pipelines
in a graphical user interface. Users can directly model the data flow
through a network of functional units, analogous to the visualiza-
tion pipeline. We give a detailed introduction to the relevant parts
of Inviwo in Section 3.2, including its current testing capabilities.
Our implementation of property-based tests in Inviwo is also com-
patible with its current regression test system, and thus contributes
to more reliable implementations within Inviwo. Note that our ef-
forts to cover larger parts of Inviwo with property-based testing are
still ongoing, therefore the focus of this work lies on the underlying
concepts we developed to bring property-based testing to visualiza-
tion development. The use cases we describe are just exemplary of
the wide applicability of our approach.

The remainder of this paper is structured as follows. We first dis-
cuss related work in Section 2, before introducing relevant prereq-
uisites regarding Inviwo and property-based testing in Section 3.
We detail our approach to adapting property-based testing for vi-

sualization development, on the example of Inviwo, in Section 4.
In Section 5 we show possible use cases for our approach before
we conclude in Section 6. Our contributions can be summarized as
follows:

• We propose a concept to integrate property-based tests into visu-
alization development.
• We improve upon the current state of testing implemented in vi-

sualization software, which only covers the parameter space of
the visualization algorithms sparsely, as we sample larger por-
tions of this space efficiently through automatic test generation.
• Our approach is compatible with Inviwo’s existing regression

test system, which enables execution of tests whenever a code
change is pushed to the public repository.

2. Related Work

In this section, we give an overview of prior research related to our
approach, mostly from the field of verifiable visualization.

Verification is the process of assessing the correctness of a nu-
merical solution to a given model [Roy05]. In the context of vi-
sualization, this usually means assessing the correctness of render-
ings against the underlying mathematical models. For example, a
volume visualization algorithm can be considered correct if its re-
sults match the volume rendering integral [Max95]. The visualiza-
tion community has started recognizing the need for verification in
visualization already in the 90s [GU95]. Kirby and Silva [KS08]
also advocate for a common framework for verification in visual-
ization and introduce the term verifiable visualization. The verifica-
tion process is typically divided into solution verification and code
verification [KS08].

Solution verification focuses on evaluating the accuracy of the re-
sulting visualization with regard to the continuous solution given
by the volume rendering equation, and thus investigates the extent
of errors introduced through numerical approximation. Note that
many of the techniques used to verify visualization solutions are
also well known in computer graphics [UWP06].

Etiene et al. [EJR∗13] investigate the correctness of a rendering
with respect to the discretization of the volume rendering integral.
They progressively refine step, grid and pixel sizes to analyze the
convergence towards the continuous solution for direct volume ren-
dering algorithms. In another work [ESN∗09], they also inspect the
convergence rates of iso-surface features like surface normals, area
and curvature for several iso-surface approaches using the method
of manufactured solutions.

Zheng et al. [ZXM10] provide a framework to measure and cor-
rect errors in the reconstruction of projection-based data, like CT.
More specifically they measure and bound the errors introduced
through interpolation of off-grid data samples.

Code verification on the other hand focuses on detecting mistakes
in the source code or the algorithmic implementation. Prior work
on code verification in visualization is rather sparse, despite its
wide-spread use in other disciplines of computer science. We are
not aware of any published papers on the subject, however we can
inspect existing visualization software to get an overview of the
current state of code verification in visualization.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

10

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

Figure 2: The typical components of property-based testing.

Looking at open source visualization software, we found
that VTK [SLM04], VisTrails [CFS∗06], VisIt [Chi12] and In-
viwo [JSS∗19] all use unit tests and regression tests. Unit tests are
used to verify the behaviour of individual code classes or modules,
while regression tests are used to find errors in the integration of
such classes or modules. This is always done by producing a ren-
dering for a fixed set of visualizations, that is then compared to a
reference image produced when creating the test. However, those
regression tests always run with a single parameter configuration
and can miss bugs that only occur for a different set of parameters.
This problem can be solved with property-based testing, which al-
lows for an automatic check of the visualization with many differ-
ent configurations, by using an efficient sampling strategy for the
parameter space.

3. Prerequisites

In the following subsections, we will describe a few prerequisites
regarding Inviwo and property-based testing.

3.1. Property-Based Testing

Property-based testing [FB97] is a testing technique that uses ran-
domly generated test cases to test specified properties. This tech-
nique allows for tests to be written declaratively. This means that
the author of a test case only needs to describe the expected proper-
ties and a tool takes care of generating actual test cases to test those
properties.

The general flow of property-based testing is shown in Figure 2.
Typically, a property-based testing tool allows the definition of in-
put generators, but also provides default generators for common
types such as integers, floats, or lists of integers/floats. The tool uses
the input generators to generate random input data, and tests the
system under test, e.g., an implementation of an algorithm against
this data to see if the specified properties hold true. After a gen-
erated test case identifies an error, i.e., the result does not satisfy
a specified property, the tool simplifies the inputs as long as the
generated test cases still fail. Eventually, this results in a minimal
failing example. This process is called shrinking.

For example, if we wanted to test a sorting algorithm, we could
specify that after sorting a list with our function, the resulting list
should contain the same elements (likely in a different order) as
before sorting. For this example, the tool would generate random
lists and check for each of them the property we specified, i.e.,
that the resulting list must contain the same elements as the input
list. If our implementation fails in handling duplicate values, the
result of sorting the list [4,2,3,1,3] could be [1,2,3,4]. Now, that
we have detected the error with this test case, the shrinking process
removes elements from the list and checks to see if the error still
occurs. After the whole shrinking process, the reported list would
be [3,3] which would erroneously get sorted to [3] by the faulty
implementation. So by shrinking, we have obtained a minimal test
case that already reveals the error in our implementation.

The best known implementation of property-based testing is
QuickCheck [CH00] for the functional programming language
Haskell. In QuickCheck, functions are used to define the expected
properties. For existing types there are default generators that can
generate random values. For user-defined types, as well as for ex-
isting types, QuickCheck allows for specifying custom generators.
Following the success of QuickCheck for Haskell, its concepts have
been adopted by libraries for several mainstream programming lan-
guages, such as C [GKS05], C++ [ee], and Java [PLS19].

In this paper, we describe how we adapt these concepts to en-
able property-based testing for visualization development. To avoid
confusion in the terminology, we refer to the testable properties, in
our case expected image changes, as effects and reserve the word
property for Inviwo properties.

3.2. Inviwo

In this section we briefly introduce Inviwo [JSS∗19] and its parts
and concepts that are relevant to our implementation of property-
based testing, as well as an overview of its existing testing pipeline.
Inviwo is an extensible interactive visualization system that pro-
vides several usage abstraction levels. These abstraction levels
range from developing low-level device-specific C++ code to mod-
eling data-flow interactively at a high-level in Inviwo’s GUI. While
the lower levels are used to extend the system with new capabilities
through modules, the GUI can be used to create visualizations by
using a network editor. The network resembles a directed acyclic
graph with processors as nodes, representing functional units, and
data-flow as edges, transferring data from a processor’s outport to
another processor’s inport. A screenshot of the GUI showing such
a network can be seen in Figure 3. The parameters of an algorithm
which is implemented by a processor can be exposed using prop-
erties (see the window on the right in Figure 3). Processors can
implement functions such as for instance data loading, filtering,
rendering and displaying, allowing users to build custom visual-
ization pipelines interactively using drag-and-drop. Properties of a
processor can be all types of parameters associated to the proces-
sor’s function, ranging from file paths, over lighting parameters to
transfer functions.

Testing in Inviwo is currently implemented through unit tests to
validate individual modules and processors, as well as integration
tests to validate a correct integration of multiple different proces-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

11

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

Figure 3: The GUI to create tests with our implementation. We
can define effects for all compatible properties from the previous
processors of the network. In the case of Clip X Slices we expect
the resulting number of pixels with background depth to be less or
equal, when increasing the lower bound, and greater or equal when
reducing the upper bound. The tested renderings of the clipped vol-
ume can be seen in Figure 6.

sors in common scenarios. Inviwo allows for automatically gen-
erating regression tests from a given network, using the currently
displayed canvas images as references to compare against in test
runs, which are executed on a continuous integration server. Thus,
code changes that break existing functionality can be easily spot-
ted before being merged into the public repository. On top of that,
Inviwo allows for visual debugging inside the GUI by providing
means to inspect common data types at any place in the network by
hovering over an inport or an outport. This allows for easy checking
of intermediate results while developing a visualization.

One major drawback of Inviwo’s current testing capabilities is
that the aforementioned regression tests can only find errors oc-
curring with the property values specified when creating the test.
Therefore, the current approach will miss errors that only occur
with different network parameters, i.e., with different values for the
processors’ properties. This issue is addressed with our presented
approach, which employs property-based testing to also cover this
parameter space with tests.

4. Property-Based Testing in Visualization Development

In this section, we detail our approach to enable property-based
testing in visualization development. We first describe the under-
lying ideas and concepts, and after that we explain how we imple-
mented them.

Figure 4: Illustration of our adaptation of the components of
property-based testing when applied to visualization development.
Our contributions are emphasized in red.

4.1. Ideas & Concepts

Since test-driven development is cumbersome to realize with cur-
rent visualization software, due to the requirement for expected im-
ages, we decided to adapt the concepts of property-based testing to
visualization development. Figure 4 illustrates how we adapt each
part of property-based testing.

It is possible to test processors individually, but normally proces-
sors are not used alone. They are part of a network that consists of
several processors. So to test a processor, its interaction with other
processors must also be tested. Therefore, to generate test cases for
property-based testing, we randomize the properties of the proces-
sors in the network (analogous to the input generators of property-
based testing). While randomizing the properties alone does not
make test cases, we also need a way to specify the effects that we
expect on the resulting images caused by differing values of proper-
ties (analogous to the properties to test of property-based testing).
Our implementation, the Property Analyzer, is conceptually de-
scribed in the following, with additional implementation-specific
details described in Section 4.2.

In order to test an effect on a rendered image, we first investi-
gate aggregated image metrics. For that, we calculate a score for
each generated image, that is, we map the image to some (real
or integral) number. This allows us to perform comparisons such
as equal, less than, greater than, and so on to measure the ef-
fects of a changed property. This can easily be extended with ad-
ditional scores or even with per pixel comparisons. These compar-
isons should be interpreted as the expected effect, obtained when
increasing the value of a property of the processor. For example,
the less than comparison means that an increase in the value of the
property should result in a decrease of the score. If this constraint
is not true, i.e., the score does not decrease, we have identified an
error because the specified effect is not satisfied. For our example

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

12

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

of clipping planes, we determine the number of pixels with a given
depth. The idea is that if there is a background and an object, all the
pixels of the background have the same depth, and thus the number
of pixels with that depth are the pixels that are not obscured by the
object that is in the foreground. Changing the clipping planes will
cause more fragments of the object to be discarded, and thus more
pixels of the background to be visible.

In contrast to the testing methods currently existing in Inviwo,
such as its unit tests, with property-based testing a user does not
explicitly specify the properties of the processors for a test case, but
specifies the expected effects for different values of a property. We
let the user specify which properties should be tested and which ef-
fect in form of a comparison operator is expected by increasing the
property. While property-based testing allows to define additional
(randomized) unit tests, it also allows integration tests. In this con-
text, property-based integration tests have the advantage that they
can be defined from visual expectations alongside a visualization,
using the same network, without the need to write code. As visu-
alization development usually produces an image, it is natural to
test visualization algorithms based on their effects on the resulting
image.

In order for a property to be testable, there must be implementa-
tions for generating and comparing values or components of values.
For the purpose of this paper, we provide default implementations
for properties with a single integer or a single floating point value
or a range of such. Upon testing, we generate up to nine values for
each chosen testable property and combine them into sets of assign-
ments. These nine values include numerical limits of the data type
as well as uniformly chosen random samples within those limits.

In a network there can be several processors, each of which has
several properties. Since several random values are generated for
each of these properties, a huge number of combinations is possi-
ble. By restricting the combinations to pairs, this number is signif-
icantly reduced. For each chosen property we generate tests, such
that each possible pair of values for different properties is in some
test. That means the generated set of tests satisfies pairwise cover-
age. Two tests are comparable, if and only if the expected effects
of the individual properties are non-contradictory, that is, there is
a combined expected effect that implies each individual effect. For
example, in the case of our clipping example, if there is a property
that controls the opacity of the rendered object. A value of 0 would
make the object completely invisible and thus make the clipping
have no effect anymore.

For the generation of pairwise coverage, we use an algorithm for
covering array construction, which in our case constructs an array
containing test cases, so that each pair of random values is covered.
At first, we constructed our covering array using the discrete SLJ
strategy from [SC19]. Typically, the goal of algorithms for con-
structing covering arrays is to keep them as small as possible, and
this algorithm achieves that quite well, but it turned out that these
minimal sets unfortunately also contained only very few compara-
ble pairs of tests.

Since for our purposes, the number of comparable pairs of tests
should be as large as possible (for a fixed number of tests), we de-
veloped our own greedy algorithm which not only aims to keep the

total number of tests low, but simultaneously also aims to maxi-
mize the number of comparable pairs of tests. Let A1,A2, . . . ,At be
the sets of possible assignments for the tested properties, and let
A′i = Ai ∪{⊥}, where ⊥ represents an undefined assignment. We
call the elements of A = A1×·· ·×At (complete) tests and the el-
ements of A′ = A′1× ·· ·×A′t partial tests, and we say a (partial)
test a = (a1, . . . ,at) implies another (partial) test b = (b1, . . . ,bt), if
and only if bi ∈ {⊥,ai} for all i ∈ {1, . . . , t}, and a and b are dis-
joint, if and only if (ai 6= ⊥)∧ (bi 6= ⊥) =⇒ ai = bi for all i. We
say c = (c1, . . . ,ct) arises from extending a with b, where ci = ai if
ai 6=⊥ and ci = bi otherwise. Note that if a and b are disjoint, c im-
plies both a and b. Our general approach is shown in Algorithm 1.
When successively constructing our covering array C⊆A, we first
generate all possible interactions I,

I = {(a1,a2, . . . ,at) ∈ A′ : |{ai 6=⊥ : i ∈ {1, . . . , t}}|= 2},

between two properties, and while there are still unused (pairwise)
interactions (i.e. interactions in I that are not implied by some al-
ready generated test), we construct a new test v∈A′ which initially
is equal to one randomly selected unused interaction. While v is not
complete, we extend it with either a disjoint and not implied unused
interaction or a (not necessarily disjoint) previously created test,
such that the resulting partial test maximizes the sum of weights of
all comparable previously created tests. Here, the weight of a test
is equal to the current number of created tests to which it is not
comparable. This is intended to increase the minimum number of
other generated tests, that a test is comparable to, such that there
are as few tests as possible for which there are no other compara-
ble tests. Also, the weight of unused interactions is multiplied by
a given constant in order to ”encourage” using multiple uncovered
interactions in one test and thereby reduce the total number of tests.
Note that for any incomplete test there is always a (possibly already
used) disjoint interaction, so our algorithm is guaranteed to termi-
nate and output a 2-covering array.

Since there can be many processors in a network, each of which
can have multiple properties, there can be an unmanageable amount
of randomizable values. It would be difficult to determine which
combination of parameters actually caused an identified error. To
solve this, we adapted the concept of shrinking, as introduced in
Section 3.1. When an error is identified, we reset the randomized
properties one by one to their original value and test to see if an
error still occurs. In the end, we will have a minimal set of random-
ized properties that still causes an error.

The concepts described above can easily be adapted to any other
rendering pipeline that exposes its properties in a way that allows
them to be varied programmaticly. In the following we describe our
exemplary implementation of these concepts as an Inviwo proces-
sor.

4.2. Implementation

We have implemented property-based testing in Inviwo by realizing
a processor called PropertyAnalyzer. This processor receives the
image produced by the network that we want to verify, and gathers
the modifiable properties from all processors involved in producing
that image. These gathered properties can then be used to define
tests through the properties of the PropertyAnalyzer processor as

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

13

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

input : Sets of possible assignments A1, . . . ,At ,
weight multiplicator m

output: A 2-covering array
C←∅;
while there is uncovered interaction u do

v← u;
while v /∈ A do

wopt←−∞;
tmp←⊥;
for uncovered interaction u′ do

if disjoint(v,u′)∧¬implies(v,u′)∧m ·
wS(C,extend(v,u′))> wopt then

tmp← extend(v,u′);
wopt← m ·wS(C, tmp);

end
end
for c ∈C do

if wS(C,extend(v,c))> wopt then
tmp← extend(v,c);
wopt← wS(C, tmp);

end
end
v← tmp;

end
C←C∪{v};

end
return C;

Algorithm 1: Our algorithm for the generation of the cover-
ing array. With weight(C,a) = |{c ∈ C : ¬comparable(c,a)}|
being the number of tests in C that are not compara-
ble to a and wS(C,a) being the sum of the weights of
all tests in C that are comparable to a, i.e. wS(C,a) =

∑{weight(c) : c ∈C,comparable(c,a)}

can be seen in Figure 3, which shows the GUI to create tests for our
clipping example. When executing the tests, the PropertyAnalyzer
processor changes the selected properties and verifies whether the
resulting changes in its input image comply with the desired effects
set by the user.

The PropertyAnalyzer further has an image outport. This outport
shows a completely white image if and only if all the tests pass. As
Inviwo’s current regression testing system relies on image compar-
ison to determine the success of a regression test, we can easily use
this image to automatically generate a regression test that executes
our property-based tests. This allows us to include the property-
based tests into Inviwo’s continuous integration pipeline, that ex-
ecutes all tests whenever a code change is pushed to the public
repository.

Currently, we calculate a score for each image arriving at the
PropertyAnalyzer. For now, the score is either the number of pixels
with a given color or the number of background pixels (i.e., those
with depth value of 1). Note, that while our implementation cur-
rently only supports this aggregated score, the system can easily be
extended to pixel-wise comparisons as well.

The test creation GUI has a checkbox and a drop-down menu for

each testable property, which allows the user to specify whether
the property should be included in the testing and what the ex-
pected effect of increasing its value has on the rendering. Possible
choices for the expected effect that an increase of a property’s value
may have on the score include the common numerical comparisons
(=, 6=,<,≤,> and≥), as well as ANY and NOT_COMPARABLE. The
latter two signal that the respective property should have no effect
on the score, and that scores from tests where this property has
different values are not meaningfully comparable, but the network
should be tested with different values for this property nevertheless.
The NOT_COMPARABLE comparison can be used, for example, to
vary both the input data and the camera position. In the clipping
example, we specify that increasing the X position of the lower
bound clipping plane (upper drop-down in Figure 3) should result
in fewer or equal pixels with depth value 1. Similarly we expect
this score to become greater or equal when we increase the upper
bound position (lower drop-down in Figure 3). Our implementation
conveniently generates a textual description of the tests as well, see
Figure 5.

To limit the time of the test run, we also allow for setting a max-
imum number of tests that may be executed. Note that, if this num-
ber is lower than the number of tests that would be created by our
algorithm, the resulting test set does not satisfy pairwise coverage.

As described in Section 4.1, for the generation of pairwise cov-
erage, we first implemented the discrete SLJ strategy from [SC19]
to construct the covering array. This algorithm succeeded in con-
structing a small covering array but since for our purposes, the
number of comparable pairs of tests should be as large as possi-
ble (for a fixed number of tests), we developed and implemented
a greedy algorithm which aims to keep the total number of tests
low, while simultaneously maximizing the number of comparable
pairs of tests. Table 1 shows an exemplary performance comparison
between the discrete SLJ strategy and our algorithm. In particular,
note that the number of comparable test pairs steadily decreases for
the SLJ algorithm when we increase the number of tested proper-
ties, while it generally increases for ours, even when we ensure that
the number of tests is equal for both algorithms.

When there is a pair of tests for which the combined expected
effect contradicts the observed effect, we have found an error, that
is, a case where the network does not behave as specified by the
user. In order for the user to evaluate the errors, we generate a report
document (in HTML) containing all property values as well as the

Figure 5: Our PropertyAnalyzer processor generates a textual de-
scription of the clipping test.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

14

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

#P #I SLJ OURS

#T #C #T #C limited

2 81 81 1177 81 1177 1177
3 243 129 1356 195 3951 2021
4 486 170 974 217 4440 2868
5 810 199 824 348 11827 5362
6 1215 217 407 328 6485 4466
7 1701 232 106 440 13308 6750
8 2268 259 115 485 12361 6945
9 2916 269 49 579 18453 8388

Table 1: Exemplary results of the discrete SLJ strategy and our cov-
ering array algorithm on numerous IntMinMax-properties, whose
comparators were all set to GREATER_EQUAL and LESS_EQUAL
for their lower and upper bounds, respectively. The weight multi-
plicator for ours was set to 5.0. Here, #P and #I are the num-
ber of tested properties and generated interactions, the #T and #C
columns contain the number of generated tests and number of com-
parable test pairs, and the limited column for ours contains
the number of comparable test pairs, when the number of tests is
limited to the number of tests generated by SLJ in the same row.

resulting image for both tests for each error. Figure 6 shows an
excerpt of such a report for a faulty implementation of a clipping
processor. With the generated report, it is easy to compare test runs
to identify errors, however, this report shows all tests that failed.
Especially, in a test-driven scenario this may result in very long,
hard to overview reports.

To deal with this problem, we have also implemented function-
ality to distill, i.e., shrink, the set of tested properties down to a
minimal subset that leads to an error, so that the faulty network part
can be located more easily. This is simply done by successively re-
moving properties from the set of tested properties whenever there
would still be errors when testing the remaining properties. In the
end, the minimal test case reveals at least one error, but not neces-
sarily all errors that were revealed in the original test case. How-
ever, this is not a problem because after fixing the errors that got
revealed by the minimal test case, the tests should be rerun any-
ways and will eventually reveal the other errors in one of the mini-
mal test cases generated by the following test runs. For this reason,
the order in which the properties are removed from the set of tested
properties only affects the order in which errors are revealed but
does not affect which errors will be revealed in the end.

In summary, our implementation allows to automatically gather
all comparable properties that we might want to test. We can eas-
ily define what effect we expect from changing a property’s value,
from within the GUI. Our approach automatically generates a set of
tests that is efficient with regard to error detection rate and presents
the results in a report. By distilling the test results, we can pin-point
errors quickly without having to look through all the failed tests.

5. Use Cases

In this section, we illustrate the effectiveness of property-based
tests for developing visualization techniques. Therefore, we de-

Figure 6: Example for a test report, showing the two property con-
figurations and their associated rendering that made the test fail. In
the middle of the top row, the amount of background pixels is shown
for each configuration and how they should compare according to
the test specification.

scribe several use cases where property-based testing can help
finding implementation errors. The clipping use case described
throughout this paper, is presented in Section 4. Note, that after in-
tegrating the presented property-based test use cases into Inviwo’s
regression test system, they can be verified on the continuous inte-
gration server after every code change pushed to the public reposi-
tory.

5.1. Lighting Parameters

Another excellent use case for property-based testing is varying
lighting parameters to find errors in the rendering algorithm. Al-
though not all parameters of a rendering technique have an easily
testable effect on the resulting image, we can capture some com-
mon effects that should apply to all rendering techniques. In gen-
eral, increasing or decreasing light intensity results in a monotonic
increase or decrease in image brightness respectively.

A specific example with the Phong shading parameters - ambi-
ent, diffuse and specular lighting - is illustrated in Figure 7. A cor-
rectly implemented rendering algorithm using this model should
always produce an image with the same or higher/lower pixel-wise
brightness when increasing/decreasing these parameters. Note that
this effect is true for differences in one of those components at a
time, but not necessarily when comparing two renders where mul-
tiple of the components vary in different directions, i.e., one with
low ambient and high diffuse and another vice versa.

In order to test for that with our implementation, one would
first need to implement pixel-wise comparison. Given that, a test
can be designed using an individual PropertyAnalyzer processor
for each of the lighting parameters, ambient, diffuse and specu-
lar, respectively. Each PropertyAnalyzer verifies the effect for its
lighting property, while setting the others to NOT_COMPARABLE,
in order to avoid tests with parameter sets that vary in multiple
lighting properties simultaneously. Setting the other components to
NOT_COMPARABLE will still generate tests with different values
for those, but avoids the aforementioned issue by excluding com-
parisons where multiple components are changed at the same time.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

15

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

(a) normal (b) low ambient

(c) high diffuse (d) high specular

Figure 7: Increasing or decreasing the brightness of lights and ma-
terials should increase or decrease the brightness in the resulting
image, respectively.

(a) color (b) alpha

(c) Transfer function used for the transparent rendering (left). The opacity
of the selected control point is increased to get the opaque rendering (right).

Figure 8: Increasing or decreasing the opacity of the transfer func-
tion should result in an increase or decrease in alpha, respectively.

5.2. Compositing

Manually finding errors in the integration of light along a ray can
be very difficult, especially when transparency effects are involved.
While it is impossible to test all aspects of this complex task, there
are again common assumptions that we can make, that should ap-
ply to all of our integration approaches. One of those assumptions
is that, when increasing the opacity of the material, as defined by
a transfer function, the resulting image should monotonically in-
crease in opacity. This effect is illustrated in Figure 8.

In order to test that, we can manipulate the transfer function. In
Inviwo transfer functions can be defined as piece-wise linear func-
tions using control points in a widget, as illustrated in Figure 8c.
After implementing an appropriate input generator for the trans-
fer function, the PropertyAnalyzer can generate assignments with
two transfer functions that vary in the opacity of a single control
point. Each pair of renderings is then checked for our assumption,
that a larger opacity in the transfer function should lead to an equal
or higher pixel-wise alpha. Note, that this assumption only holds,
when varying a single control point at a time, that means all other
control points should be set to NOT_COMPARABLE.

5.3. Limitations

However we also found limitations of our approach. When rely-
ing only on the produced rendering to determine the correctness
of an effect, we can miss implementation errors complying with
the desired effects. In the clipping example, our approach would be
unable to detect an error if two axes are switched, because clipping
a different axis still has the same effect on the aggregated image
metrics. Our approach should be used complementary to existing
unit and regression testing strategies, in order to increase their pa-
rameter coverage, but it should not be seen as a replacement for
other types of tests.

6. Conclusion

In this work, we propose the integration of property-based testing
into visualization development. We argue that property-based test-
ing can be used to vastly increase the coverage of different ren-
dering parameters in the testing procedure. This allows us to find
implementation errors quicker and increases the confidence in the
correctness of our implementations. In fact, our proposed property-
based testing implementation can even be used to create visualiza-
tions in a test-driven manner, by defining the tests alongside the ac-
tual algorithm. With this new testing strategy, we offer an easy way
for visualization researchers and developers to create meaningful
tests automatically from within a GUI, just by defining their expec-
tations for parameter changes. By making the testing process easier
and more expressive, we expect to further close the gap between re-
search and software development in the field of visualization.

In the future, we plan to further extend the capabilities of our
implementation through new types of effects, as well as more con-
venient ways to generate multiple, very similar tests on the fly, like
the Phong lighting example from Section 5.1. Another interesting
direction to follow is the development of an interface, that allows
users to interactively choose additional reference images for regres-
sion tests, based on property-based testing parameter generation, as
an easy way to cover a larger parameter space through regression
tests (using image comparison) directly.

Acknowledgments

This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG) under grant 391107954 (Inviwo). The proposed
concepts have been realized using the Inviwo visualization frame-
work (https://inviwo.org).

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

16

https://inviwo.org

M. Stegmaier & D. Engel & J. Olbrich & T. Ropinski & M. Tichy / Property-Based Testing for Visualization Development

References
[AAA∗19] AKIYAMA K., ALBERDI A., ALEF W., ASADA K., AZULAY

R., BACZKO A.-K., BALL D., BALOKOVIĆ M., BARRETT J., BINT-
LEY D., ET AL.: First m87 event horizon telescope results. iv. imaging
the central supermassive black hole. The Astrophysical Journal Letters
875, 1 (2019), L4. doi:10.3847/2041-8213/ab0ec7. 1

[Bec03] BECK K.: Test-driven development: by example. Addison-
Wesley Professional, 2003. 1

[CFS∗06] CALLAHAN S. P., FREIRE J., SANTOS E., SCHEIDEGGER
C. E., SILVA C. T., VO H. T.: Vistrails: Visualization meets data
management. In Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data (New York, NY, USA, 2006),
SIGMOD ’06, Association for Computing Machinery, p. 745–747.
URL: https://doi.org/10.1145/1142473.1142574, doi:
10.1145/1142473.1142574. 3

[CH00] CLAESSEN K., HUGHES J.: Quickcheck: A lightweight tool for
random testing of haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (New
York, NY, USA, 2000), ICFP ’00, Association for Computing Machin-
ery, p. 268–279. URL: https://doi.org/10.1145/351240.
351266, doi:10.1145/351240.351266. 3

[Chi12] CHILDS H.: Visit: An end-user tool for visualizing and analyzing
very large data. 3

[ee] EMIL E: rapidcheck - QuickCheck clone for C++ with the goal of
being simple to use with as little boilerplate as possible. https://
github.com/emil-e/rapidcheck. Accessed: 2021-03-09. 3

[EJR∗13] ETIENE T., JÖNSSON D., ROPINSKI T., SCHEIDEGGER C.,
COMBA J. L., NONATO L. G., KIRBY R. M., YNNERMAN A., SILVA
C. T.: Verifying volume rendering using discretization error analysis.
IEEE transactions on visualization and computer graphics 20, 1 (2013),
140–154. doi:10.1109/TVCG.2013.90. 2

[ESN∗09] ETIENE T., SCHEIDEGGER C., NONATO L. G., KIRBY
R. M., SILVA C.: Verifiable visualization for isosurface extraction. IEEE
Transactions on Visualization and Computer Graphics 15, 6 (2009),
1227–1234. doi:10.1109/TVCG.2009.194. 2

[FB97] FINK G., BISHOP M.: Property-based testing: A new approach
to testing for assurance. SIGSOFT Softw. Eng. Notes 22, 4 (July 1997),
74–80. URL: https://doi.org/10.1145/263244.263267,
doi:10.1145/263244.263267. 2, 3

[GKS05] GODEFROID P., KLARLUND N., SEN K.: Dart: Directed au-
tomated random testing. SIGPLAN Not. 40, 6 (June 2005), 213–223.
URL: https://doi.org/10.1145/1064978.1065036, doi:
10.1145/1064978.1065036. 3

[GU95] GLOBUS A., USELTON S.: Evaluation of visualization software.
ACM SIGGRAPH Computer Graphics 29, 2 (1995), 41–44. doi:10.
1145/204362.204372. 2

[JSS∗19] JÖNSSON D., STENETEG P., SUNDÉN E., ENGLUND R., KOT-
TRAVEL S., FALK M., YNNERMAN A., HOTZ I., ROPINSKI T.: In-
viwo - a visualization system with usage abstraction levels. IEEE Trans-
actions on Visualization and Computer Graphics 26, 11 (2019), 3241–
3254. doi:10.1109/TVCG.2019.2920639. 2, 3

[KKF∗17] KOZLÍKOVÁ B., KRONE M., FALK M., LINDOW N.,
BAADEN M., BAUM D., VIOLA I., PARULEK J., HEGE H.-C.: Visual-
ization of biomolecular structures: State of the art revisited. In Computer
Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 178–204.
doi:10.1111/cgf.13072. 1

[KMM∗18] KREISER J., MEUSCHKE M., MISTELBAUER G., PREIM
B., ROPINSKI T.: A survey of flattening-based medical visualization
techniques. In Computer Graphics Forum (2018), vol. 37, Wiley Online
Library, pp. 597–624. doi:10.1111/cgf.13445. 1

[KOJC13] KERSTEN-OERTEL M., JANNIN P., COLLINS D. L.: The
state of the art of visualization in mixed reality image guided surgery.
Computerized Medical Imaging and Graphics 37, 2 (2013), 98–112.
doi:10.1016/j.compmedimag.2013.01.009. 1

[KS08] KIRBY R. M., SILVA C. T.: The need for verifiable visualization.
IEEE Computer Graphics and Applications 28, 5 (2008), 78–83. doi:
10.1109/MCG.2008.103. 1, 2

[KWG04] KUHN D. R., WALLACE D. R., GALLO A. M.: Software fault
interactions and implications for software testing. IEEE Transactions on
Software Engineering 30, 6 (2004), 418–421. doi:10.1109/TSE.
2004.24. 1

[Max95] MAX N.: Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2 (1995), 99–
108. doi:10.1109/2945.468400. 2

[PLS19] PADHYE R., LEMIEUX C., SEN K.: Jqf: Coverage-guided
property-based testing in java. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (New York,
NY, USA, 2019), ISSTA 2019, Association for Computing Machin-
ery, p. 398–401. URL: https://doi.org/10.1145/3293882.
3339002, doi:10.1145/3293882.3339002. 3

[PSK∗10] PERROUIN G., SEN S., KLEIN J., BAUDRY B., L. TRAON
Y.: Automated and scalable t-wise test case generation strategies for
software product lines. In 2010 Third International Conference on Soft-
ware Testing, Verification and Validation (2010), pp. 459–468. doi:
10.1109/ICST.2010.43. 1

[RE07] RUEDEN C. T., ELICEIRI K. W.: Visualization approaches for
multidimensional biological image data. Biotechniques 43 (2007), S31–
S36. doi:10.2144/000112511. 1

[Roy05] ROY C. J.: Review of code and solution verification procedures
for computational simulation. Journal of Computational Physics 205, 1
(2005), 131–156. doi:10.1016/j.jcp.2004.10.036. 2

[SC19] SARKAR K., COLBOURN C. J.: Two-stage algorithms for cover-
ing array construction. Journal of Combinatorial Designs 27, 8 (2019),
475–505. doi:10.1002/jcd.21657. 5, 6

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The visual-
ization toolkit: an object-oriented approach to 3D graphics. Kitware,
2004. 3

[UWP06] ULBRICHT C., WILKIE A., PURGATHOFER W.: Verification
of physically based rendering algorithms. In Computer Graphics Forum
(2006), vol. 25, Wiley Online Library, pp. 237–255. doi:10.1111/
j.1467-8659.2006.00938.x. 2

[WK02] WALLACE D., KUHN D.: Failure modes in medical device
software: An analysis of 15 years of recall data. International Journal
of Reliability, Quality and Safety Engineering 08 (07 2002). doi:10.
1142/S021853930100058X. 1

[ZXM10] ZHENG Z., XU W., MUELLER K.: Vdvr: Verifiable vol-
ume visualization of projection-based data. IEEE Transactions on Vi-
sualization and Computer Graphics 16, 6 (2010), 1515–1524. doi:
10.1109/TVCG.2010.211. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

17

https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/emil-e/rapidcheck
https://github.com/emil-e/rapidcheck
https://doi.org/10.1109/TVCG.2013.90
https://doi.org/10.1109/TVCG.2009.194
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/204362.204372
https://doi.org/10.1145/204362.204372
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1111/cgf.13072
https://doi.org/10.1111/cgf.13445
https://doi.org/10.1016/j.compmedimag.2013.01.009
https://doi.org/10.1109/MCG.2008.103
https://doi.org/10.1109/MCG.2008.103
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.1109/2945.468400
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1109/ICST.2010.43
https://doi.org/10.1109/ICST.2010.43
https://doi.org/10.2144/000112511
https://doi.org/10.1016/j.jcp.2004.10.036
https://doi.org/10.1002/jcd.21657
https://doi.org/10.1111/j.1467-8659.2006.00938.x
https://doi.org/10.1111/j.1467-8659.2006.00938.x
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1109/TVCG.2010.211
https://doi.org/10.1109/TVCG.2010.211

