
The Gap between Visualization Research and Visualization Software (VisGap) (2021)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

OSPRay Studio: Enabling Multi-Workflow Visualizations with
OSPRay

Isha Sharma Dave DeMarle Alok Hota Bruce Cherniak Johannes Günther

Intel Corporation

Figure 1: Supporting workflows for Scientific, Product, Medical and Architecture Visualization with OSPRay Studio.

Abstract
There are a number of established production ready scientific visualization tools in the field today including ParaView [Aya15],
VisIt [CBW∗11] and EnSight [Ans]. However, often they come with well defined core feature sets, established visual appearance
characteristics, and steep learning curves – especially for software developers. They have vast differences with other rendering
applications such as Blender or Maya (known for their high-quality rendering and 3D content creation uses) in terms of design
and features, and have over time become monolithic in nature with difficult to customize workflows [UFK∗89]. As such a
multi-purpose visualization solution for Scientific, Product, Architectural and Medical Visualization is hard to find. This is a
gap we identify; and with this paper we present the idea of a minimal application called OSPRay Studio, with a flexible design
to support high-quality physically-based rendering and scientific visualization workflows. We will describe the motivation,
design philosophy, features, targeted use-cases and real-world applications along with future opportunities for this application.

CCS Concepts
• Computing methodologies → Rendering; • Software and its engineering → Designing software;

1. Motivation

Besides and within the field of Scientific Visualization there are
a number of specific application domains including Medical Vi-
sualization, Architectural Visualization, Engineering Visualization,

Product Visualization, and Geographic and Climate System Visu-
alization to name a few, see Figure 1 for examples. A number of
systems have been built for both general purpose and domain spe-
cific users.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/visgap.20211086 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7978-3906
https://orcid.org/0000-0002-1040-0417
https://orcid.org/0000-0002-3595-3253
https://doi.org/10.2312/visgap.20211086

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

Each domain has different requirements and expectations for the
visual quality of the images produced by these tools. In Medical
and Engineering Visualization the clarity of interpretation is the
norm, with non-physical color mapping and simple lighting. In Ar-
chitectural and Product Visualization, photorealism with physically
based lighting and materials are required. Often the practitioners
of these fields become committed to specific workflows and as
a result, software tools tend to get enriched mostly with features
complementing that workflow. With long-term institutional devel-
opment the tools grow and become harder to modify, to accommo-
date new and different workflows and new visual aspects.

In all cases, a deluge of data means that large scale parallel data
processing is helpful; and in some cases, it is essential for effective
visualization. At the same time high quality rendering is a com-
putationally expensive proposition that benefits greatly from fine-
grained multi- and many-core parallelism.

OSPRay [WJA∗17] is an intermediate level ray tracing library
with built-in support to take advantage of MPI, thread and SIMD
level parallelism to attain interactive rendering rates on large scale
data sets. It offers “scivis” quality renderings and path traced pho-
torealism. OSPRay is Open Source, has a modular and lightweight
implementation, and is evolving quickly.

A handful of established general purpose visualization tools in-
cluding ParaView [Aya15] and VisIt [CBW∗11] have recently been
extended to incorporate OSPRay. Unfortunately, with their large
code bases, expansive feature sets, and complex development, the
feature set of OSPRay that is exposed in these tools does not keep
pace with that of OSPRay itself.

Hence, the idea of the OSPRay Studio project originated. There
was a strong need for a lightweight end-user application with a set
of commonly used scivis features, that enables different types of
visualization workflows. The design for OSPRay Studio is meant
to support each workflow with a common underlying design. It fur-
ther aims to support many new proof-of-concept workflows and
investigating single solutions that scale from desktop uses to data
centers.

2. Design

OSPRay Studio mainly consists of two components: an application
for defining user-interaction and a library for implementing its in-
ternal scene state. The implementation of both these components
utilizes the design goals mentioned below. Its design philosophy is
a single implementation supporting multiple workflows and it has
originated from its motivation. Following are the four main design
goals of OSPRay Studio:

1. Lightweight
The main implementation should consist of only commonly
used visualization features, enabling multiple workflows with
a single design.

2. Functionality Abstraction
The main object structure for internal scene layout should be in-
dependent of the functionality. By doing so, different functions
can be applied to the same object structure. For example, differ-
ent rendering backends can be used to generate visualizations of

the same scene or different rendering outputs can be generated
from the same scene.

3. Extensibility
The core implementation should be extensible with advanced
features, which contributes to a cleaner overall design by keep-
ing the main implementation to a minimum.

4. Scalability
Rendering capabilities of the application should be scalable, i.e.,
should enable rendering on end-user workstations or laptops
as well as distributed rendering across HPC clusters. For this
goal OSPRay studio currently relies on its rendering backend:
OSPRay.

In the following we discuss some of the design constructs and
concepts implemented in OSPRay Studio together with the goal
they aim to accomplish.

2.1. Abstract Scene Graph

An Abstract Scene Graph (for simplicity we will just use scene
graph from now on) represents the internal scene structure of
OSPRay Studio. It is implemented using a Directed Acyclic Graph
(DAG).

A scene graph consists of scene objects in a DAG representation,
where every object is represented as a node and has at least one
parent (unless it is root). Each node (except for leaf nodes) can
have any number of children. For example, a light object can be
represented as a light node in the scene graph, having a transform
node as parent to define its position in the world.

The scene graph can be rendered using a particular rendering
implementation. Its current and only rendering implementation is
using the OSPRay backend. A rendering implementation is respon-
sible for converting the scene graph to a representation understood
by the rendering backend. Thus, the scene graph is a different scene
structure than its renderer scene hierarchy and allows for loose cou-
pling between the two. This allows for customization of current
scene objects like lights, camera, . . . , and introduction of new ob-
jects in the scene during rendering time. With every change, the
backend scene hierarchy is updated and new frames are received
from OSPRay.

A scene graph makes for a versatile scene representation that
is open for binding with different rendering implementations for
multiple backends and rendering time customizations. It can also
be used to save the current state of the scene. A saved scene graph
can act as a portable visualization state that contains all scene ob-
jects like lights, cameras, etc. In OSPRay Studio we can save the
current scene graph as an .sg file, which contains the scene ob-
jects in JSON-format. With editable .sg files a scene graph can
even be modified offline. This not only allows one to save an oth-
erwise hard to achieve visualization state, but also keeps state of a
concrete scene similar across multiple instances of the application.
A small excerpt from a saved .sg file is shown in Figure 2. It lists
only a single scene object, i.e., a transform, as child of an importer
object.

Because scene graph allows separating the scene hierarchy from
actual rendering implementation, it allows us to fulfill the second
design goal of functionality abstraction.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

2

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

{
"children": [
{
"description": "<no description>",
"name": "imperial_crown_rootXfm",
"subType": "Transform",
"type": 9,
"value": {
"affine": [0.0, 0.0, 0.0],
"linear": {
"x": [1.0, 0.0, 0.0],
"y": [0.0, 1.0, 0.0],
"z": [0.0, 0.0, 1.0]

}
}

}
],
"description": "<no description>",
"filename": "AustrianCrown/impCrown.obj",
"name": "impCrown.obj.obj_importer",
"subType": "importer_obj",
"type": 20

}

Figure 2: Excerpt of an .sg file, which captures the state of the
scene graph in JSON-format.

2.2. Scene Graph Library

The Scene Graph (SG) library consists of different types of node
classes. These classes are used to instantiate nodes for creating a
scene graph. Following are some of the main node classes:

generic This is the base node class from which all other node
classes derive. It provides common node functions such as cre-
ateChild for creating a child of current node or add for
adding some other node to the current node. New node classes
can be derived from the generic node class and enhanced with
special features. For example, the importer base class derives
from it and has further special derived importer classes for spe-
cific file types.

strongly-typed These node types implement specific data types,
e.g., string or int, that hold the corresponding data values.
These nodes are commonly used to specify properties and hold
values for them for other nodes. For example, a float node
for specifying the radius of a sphere can be created and added
to a spheres geometry node, specifying a common property all
spheres.

OSPRay-typed These classes create OSPRay objects internally
and store a handle to them. For example, the perspective camera
node creates an OSPRay perspective camera and sets its value
to the handle of the OSPRay camera object. There is no 1:1 cor-
respondence of the scene graph to the OSPRay scene hierarchy.
Hence not all OSPRay scene object types will have a correspond-
ing SG node class. The idea is to keep the resulting scene graph
loosely coupled with the renderer and to hide the complexity of
OSPRay’s scene hierarchy. Therefore, objects that are not part
of the scene graph but that are needed by OSPRay for rendering,
e.g., GeometricModel or Instance, are created only when the ren-
dering function is invoked, see Figure 3.

The scene graph is a design concept and the SG library provides
its implementation via the node classes and their API. Thus, it ful-
fills the design goal of functionality abstraction.

Figure 3: Difference in scene hierarchy for adding a simple ge-
ometry to the world between OSPRay Studio (left) and OSPRay
(right). In the abstract scene graph representation of OSPRay Stu-
dio we have fewer objects.

2.3. Visitor Paradigm

Visitors are classes that implement functions to be performed on
the scene graph, once it is created. Hence the visitor API also
contributes to the functionality abstraction design goal by keeping
those functions separate from scene graph.

Visitors form part of the design pattern that allows different
operations to be performed on different elements in a hierarchi-
cal object structure. In OSPRay Studio, visitor classes are imple-
mented to perform node-specific tasks on the scene graph during
traversal, which happens in a post-order fashion. They also keep
the node classes relatively lightweight by abstracting functional-
ity from them. An example implementation of a visitor would be
the renderer-specific scene hierarchy generation. OSPRay Studio
currently has one such visitor called RenderScene for creating
the complete OSPRay scene hierarchy. As a second example, the
GenerateImguiWidgets visitor creates widgets with property
editors for scene graph nodes during traversal.

2.4. Lightweight GUI and Widgets

Most visualization use-cases will require a fast graphical user in-
terface (GUI) to modify data or scene properties. To follow the de-
sign goal of keeping the application implementation lightweight,
OSPRay Studio uses Dear ImGui [oco] for creating its GUI and
menus on top of a GLFW window. Dear ImGui is a lightweight
and fast graphical user interface library for C++. It is used for cre-
ating both the main menu and widgets in OSPRay Studio. The main
menu consists of File, Edit and View menu options, each with its
own set of functions like node editing, scene graph viewers, etc.

The main GUI comes with commonly used features, e.g., to al-
low users to import data and clear data, change scene node proper-
ties via editors, or save frame output in different formats. It is also
easy to minimize it, to avoid cluttering the view of the scene, and
users can use keyboard shortcuts for several functions. Overall, the
implementation of the GUI is lightweight and intended to be aug-
mentable or replaceable. It also comes with test scenes to showcase
different features.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

3

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

Widgets provide custom GUI controls for modifying node prop-
erties or for specific actions like animating a scene. They extend
the main GUI and provide feature specific controls, e.g., Transfer
Function widgets can be used alongside Volumetric data to change
the transfer function property and yet do not have to be a part of the
main GUI.

In Figure 4 the main window of the application with some of
the GUI features is shown. The drop-down of the Edit menu option
presents different editors to change scene node properties. One of
them is the Lights editor, where we can alter properties of individ-
ual lights that are in the scene. An Animation widget is loaded by
default only for animated scenes, allowing us to extend the GUI
functionality without cluttering the main GUI. This demonstrates
the extensibility aspect of our design goals and keeps common func-
tionality separated from more advanced features.

Figure 4: OSPRay Studio main GUI with animation wid-
get. The vividly animated Buster Drone scene was created by
LaVADraGoN [LaV16].

2.5. Operation Modes

OSPRay Studio was designed with multiple modes of operation, as
a strategy to enable different use-cases and workflows. Presently
there are three modes:

GUI provides per default an application window with menu
batch allows for quickly writing a single image or sequence of

output images from the command-line terminal
timeseries for rendering temporal data

Each mode enables vital use-cases, which are further discussed
in Section 3. Modes also make proof-of-concept workflows plausi-
ble and hence also contribute to the extensibility design goal. For
example, a future mode could be a Headless mode, which provides
rendering as a service functionality by serving rendering requests
over the network.

2.6. Plugins

Plugins are used for extending both OSPRay’s and OSPRay Stu-
dio’s functionality. For example, rarely used importers with deep

library dependencies can be implemented as a plugin rather than
adding them to the core application, to keep the main application
size small. Plugins also allow experts to add custom functionality
to OSPRay Studio and they are thus a key component for the exten-
sibility design goal. OSPRay Studio comes with an Example Plugin
to show how plugins work. However, no plugin is built or enabled
by default, but should be selected manually. Plugins are built as
shared libraries which can be loaded dynamically at runtime.

2.7. Distributed Rendering with MPI

OSPRay Studio relies on OSPRay’s distributed frame buffer for
cluster scalable distributed rendering [UWA∗19]. There are cur-
rently two modes of scalable rendering. In offload mode, the aggre-
gated compute power of the cluster is used to accelerate rendering
via sort-first technique of relatively small data sets. In distributed
mode the aggregated memory capacity of the cluster brings greater
data scalability via sort-last rendering technique, with the caveat
that photorealism is not supported (because efficient handling of
incoherent secondary rays very challenging with distributed data).
By enabling such distributed rendering with MPI OSPRay Studio
meets the scalability design goal.

3. Case-Studies

OSPRay Studio’s flexible design and lightweight code base en-
abled visualization demos at conferences like ACM SIGGRAPH
and other use-cases by collaborators. Presented below are some
of such case-studies that reflect on the philosophy of supporting
multiple-workflows and might have been challenging on produc-
tion visualization tools.

3.1. NASA FUN3D-based Dataset

Using a new plugin for implementing an importer for NASA’s
FUN3D [NAS] fluid solver output format, we were able to import
large fluid simulation volumes unaltered into OSPRay Studio for
visualization as a timeseries.

NASA’s supersonic retropropulsion simulation for
Mars [EKD∗14] is one of those FUN3D-based datasets. This
dataset simulates the jet flow of a theoretical Mars lander when
braking during entry in Martian atmosphere, see Figure 5. The
simulation data contains 1000 total timesteps, where each timestep
is a large unstructured grid containing 143.4 million vertices,
which define 788.8 million cells and 1.1 million surface poly-
gons forming the lander. Each vertex contains seven simulation
variables.

The FUN3D importer reads from the simulation data into mem-
ory as scene graph volume objects without modifying or pre-
processing the data. The volumes (and other surfaces) are then
rendered with OSPRay interactively with frame rates between 5–
20 fps, depending on transfer function and view. We tested the visu-
alization on an 8-node cluster; each node contained 2 × Intel Xeon
8280L CPUs, 384 GB DRAM and 3 TB PMEM.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

4

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

Figure 5: NASA retropropulsion dataset as rendered using FUN3D
plugin of OSPRay Studio.

3.2. Cloudscape SIGGRAPH 2020 Demo

OSPRay Studio was used as the application front-end for show-
casing the scalable multi-server rendering of a cloudscape during
SIGGRAPH 2020. For this demo the timeseries mode with multiple
framebuffers and the GUI mode with MPI distributed rendering of
OSPRay were used. Two types of clouds were simulated in SideFX
Houdini with VDB volumes: fractus and mediocris clouds. Clouds
have light scattering properties and variable density, making them
a challenging proposition to render and hence the choice for this
demo.

With OSPRay Studio’s timeseries mode we were able to show-
case interactive individual timeseries evolution of 16 different
clouds used in the final cloudscape and quickly manipulate the look
of each timestep, see Figure 6. With main GUI editors, we were
able to change any renderer or scene settings for the look of the
demo. The series of 16 individual clouds consumed 1/2 TB of mem-
ory. To keep all the data readily available, Intel Optane persistent
memory was used.

Figure 6: Timeseries progression of a single fractus cloud from
SIGGRAPH 2020 Demo.

A single large 3D scene in VDB format combining all the clouds
and their instances was created to demonstrate the cloudscape with
distributed rendering, see Figure 7. The final scene was roughly
30 GB large and was rendered with high-quality renderer settings.
We used a 10-node cluster where each node contained 2 × Intel

Xeon 8280L CPUs, 384 GB DRAM and 3 TB PMEM to achieve
interactive frame rates.

Figure 7: The Cloudscape demo of combined VDB cloud volumes
at SIGGRAPH 2020.

3.3. Autonomous Driving Project

OSPRay Studio will be potentially used in the tool-chain for syn-
thetic data-generation for an Autonomous Driving Safety and As-
surance project in collaboration with the German automobile in-
dustry and funded partially by the German Government [KI 20].
The goal of the project is AI validation for Autonomous Driving
systems. A physically-based synthetic data generation pipeline pro-
vides many advantages for this purpose [GGSB19]. Some features
of OSPRay Studio that are used by the toolchain include:

glTF importer for loading large outdoor scenes with architectural
assets, vehicles, vegetation, pedestrians etc.

Photo-realistic rendering of scenes with physically-based materi-
als and global illumination. Animation and skinning of pedestrians
(Figure 8), vehicles etc.

Figure 8: glTF model of a pedestrian with animation and skinning
as rendered in OSPRay Studio.

Image sequences of rendered scene animation generated with
Batch Mode are used as training or validation data for AI models.

Supporting simulation of optical sensors like LIDAR. With
LIDAR light support from OSPRay, we can render any glTF asset
as if it was observed by a LIDAR light source and render as point
cloud in OSPRay Studio. Currently, this generated point cloud data

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

5

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

can be exported as a .pcd file in Batch mode and can be simulta-
neously viewed using the PCD importer which implements support
for viewing PCD files, see Figure 9.

Figure 9: LIDAR output of a glTF scene as viewed in OSPRay
Studio with PCD importer.

Supporting generation of Ground Truth data with a Metadata
plugin which exports metadata information of a glTF scene. By
exporting such information in EXR images as additional layers, we
can effectively generate Ground Truth images for validation, see
Figure 10, which shows a sample EXR image with metadata using
tev (The EXR Viewer [Tom]). The following types of data can be
currently exported:

• in EXR: id (instanceID), objectID, depth, worldPosition
• 3D bounding boxes as JSON export

Figure 10: An EXR image with additional layers to store metadata
of Ground Truth data.

3.4. Bentley Motors Collaboration

As a proof-of-concept for Bentley Motors, OSPRay Studio was
used for a car configurator which enables users to interact with a
realistic car model and select from different customizable options
for their car, see Figure 11. This requires high-fidelity rendering of
the car models with physically-accurate materials and lighting. The
car models are complex and created with authentic 3D data used
to manufacture the vehicle, with no data processing like triangle
decimation etc. Each car model consists of more than 25 million

triangles. User interaction with these complex car models is en-
abled at interactive frame rates with changes to the car taking effect
smoothly.

Figure 11: PoC for using OSPRay Studio in car configuration of
Bentley Vehicles.

Bentley also used OSPRay Studio for their virtual showroom
configuration, with a total of 12 Bentley cars and other high com-
plexity props making the showroom scene well over 330 million
triangles, see Figure 12.

Figure 12: Bentley virtual showroom as rendered in OSPRay Stu-
dio with OSPRay.

3.5. Medical Visualization

OSPRay Studio has been used to demonstrate path traced volume
rendering of medical datasets such as the one shown in Figure 13.
In Medical Imaging, a growing use case is to provide realistic look-
ing volumes or surfaces representing bone, muscle or skin with cus-
tomizable lighting support. When combined with camera anima-
tion this can assist in communication with patients, training mate-
rials and other presentations. OSPRay’s and thus OSPRay Studio’s
support for implicit isosurface rendering within path traced volume
rendering was used to represent bone surfaces in the following ren-
derings.

3.6. Architectural Visualization

The BISTRO scene from Amazon Lumberyard, Open Research
Content Archive (ORCA) [Lum17], is an example of an architec-
tural dataset with photorealistic materials such as cement, glass
etc., illumination from multiple sources such as environment, street

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

6

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

Figure 13: Path traced Volume rendering of Cardiac CT
dataset [CTA20] with iso-surfaces.

bulbs, . . . and complex geometry such as vegetation, bistro cutlery,
. . . . It is 4.1 million triangles for both the interior and exterior
models combined and was rendered in OSPRay Studio, see Fig-
ure 14. This scene demonstrates scalability of interactive photore-
alistic rendering within OSPRay Studio.

Figure 14: Scalable photorealistic rendering of Amazon Lumber-
yard BISTRO scene indoor (top) and outdoor (bottom).

3.7. Engineering Visualization

As a proof-of-concept for an Engineering Visualization use case,
OSPRay Studio application was used for volumetric rendering of
an example silicon layout structure. In Figure 15 we show the ex-
ample structures as rendered in OSPRay Studio using OSPRay and
Open VKL [Inta]. Open VKL is a collection of high-performance
volume computation kernels, for performance-optimized volume
traversal and sampling functionality for a variety of volumetric
data.

Figure 15: Visualization of silicon layout structure through
OSPRay Studio using OSPRay and OpenVKL volume rendering.

3.8. Large Scale Stellar Outburst Simulation

OSPRay Studio was used as the application for rendering of large-
scale volumetric stellar radiation simulation data from Argonne Na-
tional Laboratory and UC Santa Barbara in a SIGGRAPH 2019
Demo. It is a 1.5 TB volumetric data set which was path traced
using OSPRay and Intel Open VKL features with Intel Select So-
lution clusters and Intel Optane DC Persistent Memory in OSPRay
Studio, see Figure 16.

Figure 16: SIGGRAPH 2019 Stellar Radiation Visualization: Vol-
umetric Path Tracing with OSPRay Studio, OSPRay v2.0 and Open
VKL.

4. Conclusion and Future Directions

OSPRay Studio has been instrumental in many PoC workflows as
described by various case studies above and it continues to de-
velop while keeping the design goals in consideration. We have
thus found that such a minimal core implementation, with support-
ing architecture for extensibility, can support a multitude of visual-
ization use-cases by adhering to loose coupling between functional-
ity, object structure and rendering backend. It also makes OSPRay

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

7

I. Sharma, D. DeMarle, A. Hota, B. Cherniak, J. Günther / OSPRay Studio: Enabling Multi-Workflow Visualizations with OSPRay

Studio an open and flexible platform for testing new ideas and fea-
tures with greater ease as compared to other big monolithic solu-
tions. The core implementation, being small, also facilitates easier
learning for a new user and much easier adoption. Hence, it will
continue to push for closing the gap between special purpose ren-
dering applications.

Given its inception is recent, there is scope for adding many fea-
tures. Some potential next features and future direction for devel-
opment include:

Rendering implementation for other backends. For example, im-
plementing an ANARI [Khr] backend for OSPRay Studio. This
could become an alternative to its current OSPRay backend and
provide flexibility for choosing between renderer backends.

Application level distributed rendering for providing scalable so-
lutions for renderers that do not have distributed rendering capabil-
ities.

Quantitative data analysis for visualization. Additional widgets
to support heatmaps, data transformations, and zone picking would
enhance OSPRay Studio as a data analysis tool rather than just a
data presentation tool. Most of its current data operations happen in
the rendering phase, hence we are actively working on more post-
processing options like image operations.

Establishing a service infrastructure around OSPRay Studio’s
PoC Headless Mode. This will enable visualization over the web
and multi-client collaboration for example.

Other improvements include: support for most commonly used
3D/4D data formats, simple movie creations with keyframing,
scivis rendering with materials, support for in-situ visualizations,
bindings for enabling scene graph creation from other language in-
terfaces, e.g., python bindings etc. Some of these features are in
progress.

OSPRay Studio developers are actively working on some of the
future-directions discussed above and as mentioned before it is an
Open Source project and we invite collaboration from all interested
parties via OSPRay Studio GitHub [Intb].

Acknowledgment

Nikolay Zhavoronok and Daniil Fadeev from Intel for sharing sili-
con structure sample models. Sean McDuffee from Intel for creat-
ing cloud assets in SideFX Houdini

References
[Ans] Ansys EnSight. URL: https://www.ansys.com/
products/fluids/ansys-ensight. 1

[Aya15] AYACHIT U.: The ParaView Guide: A Parallel Visualization Ap-
plication. Kitware, Inc., Clifton Park, NY, USA, 2015. 1, 2

[CBW∗11] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH
J., AHERN S., BONNELL K., MILLER M., WEBER G., HARRISON
C., PUGMIRE D., FOGAL T., GARTH C., SANDERSON A., BETHEL
E. W., DURANT M., CAMP D., FAVRE J., RÜBEL O., NAVRATIL P.,
VIVODTZEV F.: VisIt: An end-user tool for visualizing and analyzing
very large data. Proceed SciDAC (01 2011), 1–16. 1, 2

[CTA20] CTA-cardio.nrrd from slicer testing data mirror, May 2020.
URL: https://github.com/Slicer/SlicerTestingData/
releases. 7

[EKD∗14] EDQUIST K. T., KORZUN A. M., DYAKONOV A. A., STU-
DAK J. W., KIPP D. M., DUPZYK I. C.: Development of super-
sonic retropropulsion for future mars entry, descent, and landing sys-
tems. Journal of Spacecraft and Rockets 51, 3 (2014), 650–663. doi:
10.2514/1.A32715. 4

[GGSB19] GÜNTHER J., GRAU O., SHARMA I., BRUECHER B.: Ad-
vantages of physically based rendering for autonomous driving valida-
tion. In Proceedings of the 3. ACM Computer Science in Cars Sympo-
sium (CSCS) (October 2019). 5

[Inta] Intel Open Volume Kernel Library. URL: https://www.
openvkl.org. 7

[Intb] Intel OSPRay Studio. URL: https://github.com/
ospray/ospray_studio. 8

[Khr] Khronos ANARI. URL: https://www.khronos.org/
anari. 8

[KI 20] KI Absicherung – Safe AI for Automated Driving, 2020. URL:
https://www.ki-absicherung-projekt.de/en/. 5

[LaV16] LAVADRAGON: Buster drone, September 2016. URL:
https://sketchfab.com/3d-models/buster-drone-
294e79652f494130ad2ab00a13fdbafd. 4

[Lum17] LUMBERYARD A.: Amazon lumberyard bistro, open research
content archive (ORCA), July 2017. URL: http://developer.
nvidia.com/orca/amazon-lumberyard-bistro. 6

[NAS] FUN3D. URL: https://fun3d.larc.nasa.gov/. 4

[oco] OCORNUT: Dear ImGui. URL: https://github.com/
ocornut/imgui. 3

[Tom] TOM94: tev – The EXR Viewer. URL: https://github.
com/Tom94/tev. 6

[UFK∗89] UPSON C., FAULHABER T. A., KAMINS D., LAIDLAW D.,
SCHLEGEL D., VROOM J., GURWITZ R., VAN DAM A.: The appli-
cation visualization system: a computational environment for scientific
visualization. IEEE Computer Graphics and Applications 9, 4 (1989),
30–42. doi:10.1109/38.31462. 1

[UWA∗19] USHER W., WALD I., AMSTUTZ J., GÜNTHER J., BROWN-
LEE C., PASCUCCI V.: Scalable ray tracing using the distributed
framebuffer. Computer Graphics Forum 38, 3 (2019), 455–466.
URL: https://www.ospray.org, doi:https://doi.org/
10.1111/cgf.13702. 4

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay – A
CPU ray tracing framework for scientific visualization. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 931–940.
doi:10.1109/TVCG.2016.2599041. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

8

https://www.ansys.com/products/fluids/ansys-ensight
https://www.ansys.com/products/fluids/ansys-ensight
https://github.com/Slicer/SlicerTestingData/releases
https://github.com/Slicer/SlicerTestingData/releases
https://doi.org/10.2514/1.A32715
https://doi.org/10.2514/1.A32715
https://www.openvkl.org
https://www.openvkl.org
https://github.com/ospray/ospray_studio
https://github.com/ospray/ospray_studio
https://www.khronos.org/anari
https://www.khronos.org/anari
https://www.ki-absicherung-projekt.de/en/
https://sketchfab.com/3d-models/buster-drone-294e79652f494130ad2ab00a13fdbafd
https://sketchfab.com/3d-models/buster-drone-294e79652f494130ad2ab00a13fdbafd
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://fun3d.larc.nasa.gov/
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/Tom94/tev
https://github.com/Tom94/tev
https://doi.org/10.1109/38.31462
https://www.ospray.org
https://doi.org/https://doi.org/10.1111/cgf.13702
https://doi.org/https://doi.org/10.1111/cgf.13702
https://doi.org/10.1109/TVCG.2016.2599041

