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Abstract

High Performance Computing (HPC) always had a close relationship with visualization as we can remember the landmark
report on “Visualization in Scientific Computing”, which was credited to have coined the term Scientific Visualization (SciVis).
K computer, a Japanese flagship HPC system, appeared in 2011 as the most powerful supercomputer in the Top500 list, and as
other similar HPC systems in that ranking, it was designed to enable “Grand Challenge” scientific computing with unprece-
dented scale and size. RIKEN Center for Computational Science (RIKEN R-CCS) operated and provided the K computer’s
computational resources to the HPC community for almost 8 years until it was decommissioned in 2019. Considering that most
of the scientific computing results were publicly presented in the form of visual images and movies, we can infer that the SciVis
was widely applied for assisting the domain scientists with their end-to-end scientific computing workflows. In addition to the
traditional visualization applications, various others large data visualization software development were conducted in order
to tackle the increased size and amount of the simulation outputs. RIKEN R-CCS participated in some of these development
and deployment dealing with several environmental and human factors. Although we have no precise statistics regarding the
visualization software usage, in this paper, we would like to present some findings and lessons learned from the large data
visualization software development in the K computer environment.

CCS Concepts

o Human-centered computing — Visualization systems and tools; e Applied computing — Physical sciences and engineer-
ing; e Computing methodologies — Parallel computing methodologies;

1. Introduction

RIKEN R-CCS is a leadership-class Japanese HPC Center, estab-
lished in 2010, and has led the co-development of the two most
recent Japanese flagship supercomputers, the K computer decom-
missioned in 2019, and Fugaku expected to be operational in 2021.
The K computer was a SPARC64-based HPC system, and origi-
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nated two generations of commercial HPC systems based on such
CPU architecture (Fujitsu PRIMEHPC FX-10 and FX-100), which
were installed at different HPC sites throughout Japan. RIKEN R-
CCS was responsible to operate and to provide computational re-
sources to the designated HPC users, or more specifically, to the
Japanese HPCI (HPC Infrastructure) user community. It is worth
noting that we just provided the computational resources with no
control about how these resources were used. Thus we have no pre-
cise statistics about the software utilized by the users. We gathered
some information from different sources, and found that several ef-
forts have been done on the porting and development of different
large data visualization applications, libraries, and tools. We also
participated in the development and deployment of some of them,
and we listed, in Fig. 1, some of the external factors that influenced
in the visualization software development process.
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Figure 1: Some examples of human and environmental factors that
can influence the visualization software development.
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We could perceive that the specialized hardware environment, in
addition to the restrictions brought by the operational policy (usu-
ally specific to each HPC site), have the potential to impact the
smooth visualization software development, thus impeding to pro-
vide the required visualization capabilities. For the specific case
of the K computer environment, we can cite the CPU architec-
ture (SPARC64) with no ISA compatibility with other traditional
CPU; the provided set of customized compilers, libraries, and tools
with low version number and without including the OSMesa func-
tionality; the runtime access policy to the compute nodes and 1/0
system that impedes interactive in sifu or in transit processing ca-
pabilities [BAA™16]. We should also take into consideration that
different users may have different expectations and goals regarding
visualization. We grouped them into three categories: Users those
just expect the visualization tasks being as simple as possible; Cus-
tomizers as a group of skilled people that works by their own using
available software and information; and Partners as a group of peo-
ple who considers the visualization researchers as collaborators for
assisting their visualization and analysis tasks.

We probably cannot generalize due to the small universe of sam-
ples, but we also observed that the objective of the visualization
tasks as well as the target audience of the visualization results have
a great influence on the expectations regarding the visualization ap-
plications. For instance, there were cases where 2D plots or a sim-
ple slice rendering were considered sufficient when targeting aca-
demic publications, but CG-like rendering and effects as well as im-
mersive rendering were desired when targeting non-researchers and
general public. In this paper, we will focus on the SciVis [McC87]
oriented visualization applications for assisting the end-to-end sci-
entific computing workflow, and those that use partially or totally
the HPC computational resources [BCH12].

2. K computer Environment

The main characteristic of the K computer is probably the SPARC
(Scalable Processor Architecture) [MMMAI11] based CPU with
no instruction set compatibility with other HPC oriented CPU ar-
chitectures at that time, such as the IBM PowerPC and Intel x86.
The K computer was a massively parallel HPC system composed
of 82,944 CPUs (or Nodes) for the computation, and the hard-
ware developer (Fujitsu) provided a customized set of compil-
ers, libraries and tools for the software development, and among
them, we can cite the GCC 4.8.5 based Fujitsu compiler suite
and the lack of the Mesa library (OSMesa functionality). Instead
of providing the Mesa library, Fujitsu opted to provide a “Visu-
alization Library” [OMKO12] by implementing a parallel version
of the Object-based Particle Based Rendering (O-PBR) described
in [SNKTO07], and using the 2-3 Swap [YWMOS] parallel image
composition (Fig. 2). It provided an AVS field (structured data)
and UCD (unstructured data) format data loader for the traditional
post-hoc visualization on the K computer, and also provided an in-
situ visualization API to enable the integration with the simulation
codes. Although we can observe some practical utilization for the
in situ visualization, it requires the “Customizers” skills, and the
main drawback of this library was that it was provided only as a bi-
nary code that impeded further customization or development other
than provided via APL

Initial Viz Environment : Ray Tracing
Fujitsu LuxRender
Visualization Library
: . AVSData |: HIVE (SURFACE)
: + O-PBR : | « GLES 2.0 compatible API
: * 2-3 Swap i | + GLSLAoT compilation
* In situ API B
PBR \
« O-PBR
« I-PBR
« Integrated Full Nodes Power-of- two
- 0-PBR & I-PBR (82,944) (65,536)

Figure 2: Initially available visualization environment, and some
of the attempted visualization software development.

3. Actual HPC Users’ Needs (Fugaku Environment)

Before discussing some of the large data visualization development
done for the K computer environment, we would like to present
a more clear picture about the actual Japanese HPC users’ needs
regarding visualization. It may sound like just an excuse, but we
have almost no interaction with the HPC users in daily usage, and
the main communication channel was the Help Desk, but the vi-
sualization related contacts was almost none, and as a result, we
have not much information about the visualization related activi-
ties done by the K computer users. However, the Fugaku super-
computer development program made a survey questionnaire, with
the Japanese HPCI (High Performance Computing Infrastructure)
users, about the list of open source software expected to be avail-
able in the future Fugaku HPC environment. Table 1 shows only the
visualization related software extracted from the entire list shown
in [Ish19]. From this list, we can infer the existence of groups
with different expectations and target goals: “Users” group look-
ing for ease of use visualization applications; “Customizers” group
looking for libraries and tools for integrating with their simula-
tion codes by taking into consideration the in situ API such as the
ParaView-Catalyst [ABG™15], Vislt-libsim [WFMI11], and In situ
PBR [KNI16]; and the “Developers” group looking for libraries and
tools for their own visualization application developments. From
this list, we will discuss in the next sections, the PBR and OSMesa
based development done for the K computer in addition to the Ray
Tracing approach.

Table 1: Summarized list of the desired visualization oriented open
source software for the Fugaku environment.

Probably “Users” | Probably “Users” | “Developers”
and “Customizers”
GrADS ParaView VTK
GNUPIot Vislt OSMesa
ImageMagick PBR MesaGLUT

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.



J. Nonaka & N. Sakamoto / K computer Visualization Software Development

4. Development for the K computer

During the K computer lifetime, we could observe different at-
tempts to enable large data visualization on this HPC environment,
and we can group them into the following three approaches:

e PBR (Stochastic Rendering)
e Ray Tracing
e OSMesa

4.1. Particle Based Rendering (PBR)

For people outside Japan, the presence of the PBR, in Tab. 1,
may be a surprise, but the wide adoption of Particle Based
Rendering (PBR) [SK12] is probably one of the uniqueness of
the Japanese HPC visualization community. PBR is an order-
independent stochastic rendering technique suitable for structured
and unstructured volume data as well as semi-transparent polygons,
and depending on the particle generation approach, it can be di-
vided into O-PBR (Object-space PBR) and I-PBR (Image-space
PBR). PBVR (Particle Based Volume Rendering) is the main rep-
resentative of O-PBR, and SPT (Stochastic Projected Tetrahedra)
is the main representative of I-PBR. There is also an integrated ap-
proach which combines the O-PBR and I-PBR. We will not enter in
the technical details, but the main characteristic of PBR is the use
of tiny and opaque particles (without alpha or transparency infor-
mation) which enables order independent processing, thus making
highly suitable for massively parallel processing.

Table 2: PBR-based Applications for the K computer

Name Developer
Visualization Library | Fujitsu
Remote Visualization | JAEA

System (Japan Atomic Energy Agency)
Distributed PBVR RIKEN R-CCS and
Fully Parallel PBVR | Kobe University

Fujitsu explained in [OMKO12] that they implemented the ini-
tial version of the PBVR, which is based on the sub-pixel tech-
nique. Although we could observe some practical usages, the target
users were limited to those working with AVS data format, and
requiring only volume rendering. In order to increase the visualiza-
tion capabilities and functionalities, a more recent O-PBR method
based on the repetition technique were implemented by JAEA and
RIKEN R-CCS (in collaboration with Kobe University) as shown in
Tab. 2. The PBVR-based Remote Visualization System [KIM™15]
is a client-server based large data visualization application where
the K computer can be used for the particle generation and the local
PC is used for interactive visual exploration. We have also worked
on a client-server Distributed PBVR system [NSS*17], but we also
developed a fully parallel PBVR [YHSN19b] by using the OSMesa
functionality [NMS™*18] and 234 Compositor [NOF18], a Binary-
Swap based image composition with 2-3-4 scheduling.

4.2. OSMesa Approach

Although Mesa library was not officially supported on the
SPARC64 system, we found two groups of “Customizers” that have
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Figure 3: OSMesa-based post-hoc and in situ KVS visualization
examples of unstructured volume data (hexahedra and prism cells).

worked on this library in order to enable the use of in-situ visualiza-
tion via Vislt-libsim (K computer), and ParaView-Catalyst (Fujistu
FX-10). We were also interested to use the OSMesa functionalities
in order to use the Kyoto Visualization System (KVS) [SK15], a
general purpose visualization framework for both post-hoc and in
situ visualization. The Fujitsu compiler provided for the SPARC64
users were based on GCC 4.8.5 and was only capable of compil-
ing the legacy swrast driver present in the Mesa 9.2.5 as shown
in the Tab. 3. However, the swrast driver only provides the fixed
graphics pipeline functionalities, and the programmable graphics
pipeline features are only provided in recent versions (Gallium soft-
pipe and llvmpipe), and the llvmpipe provides better performance
thanks to the multi-threading, and also higher capabilities by sup-
porting more recent OpenGL features.

Table 3: Mesa drivers for SPARC64 architecture

Driver Version Compiler
Legacy swrast 9.2.5 Fujitsu
Gallium softpipe 13.0.6 GCC6.4.0
Gallium llvmpipe | 13.0.6 GCC 6.4.0

LLVM 3.9.1

The turning point occurred close to the end of the K computer
life cycle, when we could secure a budget for external software
development, and increase the list of open source software capa-
ble of running on the K computer. This includes the GCC 6.4.0
and LLVM 3.9.1 which enabled the use of Mesa with the soft-
pipe and llvmpipe drivers. For the latter, the LLVM was necessary
since it uses the JIT (Just-in-Time) compilation mechanism for han-
dling the user specified shader codes written in GLSL (OpenGL
Shading Language). We can say that this Mesa driver availabil-
ity facilitated the “Customizers” to work with ParaView-Catalyst
and Vislt-libsism after integrating their simulation codes. In ad-
dition, it also helped us to develop in situ visualization appli-
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cations [HSN*18] [YHSN19a] by working with “Partners”. It is
worth noting that only the porting task was conducted, and the nec-
essary extensions for taking advantage of the SIMD vectorization
provided by the CPU were not implemented.

4.3. Ray Tracing Approach

Another important large data visualization software development
for the K computer environment was the Ray Tracing approach. Ini-
tial attempts were started before the availability of OSMesa func-
tionality, and there is a written report about the porting and scal-
ability analysis of the parallel LuxRender [FOR], and we can cite
the SURFACE [FNO14], which was developed at the RIKEN R-
CCS by focusing its use on the K computer environment that also
includes the x86-based post-processing server (Fig. 1). In order to
facilitate the cross-platform compatibility, it was developed by us-
ing OpenGL ES 2.0 compatible API. Since the LLVM-JIT func-
tionality required for processing the GLSL shader code was not
available during the development period, it utilized ahead-of-time
(AOT) compilation approach by employing the Mesa 9.0.1 GLSL
compiler as the front-end in order to generate the Intermediate Rep-
resentation (IR) codes. After that, the own developed source-to-
source translator produces the equivalent C code to be processed by
the back-end Fujitsu compiler to generate a native machine code.

A large data visualization application named HIVE (Heteroge-
neously Integrated Visual-analytics Environment) was later devel-
oped by using the SURFACE rendering engine, and as shown in
Fig. 4. It provided a Web browser based workspace for the inter-
active design of visualization pipeline that can be exported as Lua
script, and this can be used for the batch-based large-scale paral-
lel rendering on the K computer. Visualization examples of using
the full set of compute nodes (82,944) and the largest power-of-two
(216) nodes are shown in Fig. 2. Although the substantial amount of
effort spent in the optimization of the SURFACE and HIVE for the
SPARC64 CPU, especially for taking advantage of the HPC-ACE
SIMD functionality, unfortunately it seems that the SPARC archi-
tecture will no longer be used on the mainstream HPC systems.

5. Some Lessons Learned

Each HPC system and facility can have its own uniqueness and pe-
culiarity, and we probably cannot generalize our observations and
findings for the environmental factors that can influence the visu-
alization software development. Talking specifically on the K com-
puter environment, we learned that you should basically work with
the tools and libraries provided in the beginning of the operational
life cycle, unless you can obtain additional budget for the software
development. We understand that the delivery of scientific visual-
ization to users of the K computer would have been more success-
ful had there been early investment in porting standard graphics
libraries, which could have been used to more easily port a larger
collection of visualization software. However, differently to the tra-
ditional procurement based HPC system acquisition, people who
are not actively participating in the supercomputer R&D project
group have simply no access to the hardware and software system
being designed and developed. We would not enter in the merit of
the choices made by the project group, and as also said in the be-
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Figure 4: HIVE large data visualization application.

ginning, we learned that we should be content with what was pro-
vided, and also to take in mind that there is no guarantee about the
continuity of the hardware architecture.

Focusing on the human factors, we perceived the difficulty of de-
veloping a general purpose visualization solution for the “Users”,
and some difficulties of working with “Customizers” since some-
times they are not seeing us a source of help, but as a kind of
interference. Since each domain scientists can have different de-
sires and needs to solve their problems, we reconfirmed that the
most productive way is to create a win-win relationship working as
“Partners” in order to develop specific visualization solutions for
each case. As we mentioned in the beginning, this is not a general-
ization nor a critique, but a simple observation. Although the size
of the Japanese HPC visualization community is small, we credit
the success of PBR due to the participation of “Partners”, and we
hope it can continue in the Fugaku HPC environment. However, we
are also aware that the remaining question is how to convince the
“Users” and “Customizers” to adopt the developed software pub-
licly available via GitHub or institutional repositories.

6. Conclusions

In this short paper, we presented some of the observations and
lessons learned from the large data visualization software develop-
ment on the K computer environment. Since its successor, Fugaku
supercomputer, will utilize ARM based Fujitsu A64FX CPU with
a wider software ecosystem, it is highly expected to minimize the
problems faced with the environmental factors from the K com-
puter system. Considering that this CPU will also be used by some
models of the Cray supercomputer, and expected to be installed at
some HPC sites outside Japan, we hope that we can move our ef-
forts for developing more useful visualization applications by using
common tools and libraries. We should also note that the HPC fa-
cility itself generates a large amount of data from the electrical and
cooling systems, and with the increasing pressure for an energy effi-
cient operation, in addition to the traditional SciVis, we also expect
some efforts on the InfoVis and ML based visualization software
development in the future.
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