The Gap between Visualization Research and Visualization Software (VisGap) (2020)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

Framing the challenges of operational and domain usage of volume

visualization methods in ocean science

K. Bemis

Department of Marine and Coastal Sciences, Rutgers University, U.S.A.

Relevance

® Generic vs single
purpose approaches

e Domain specificity

Discovery
® | ocating desired code

e Understanding utility or
specialness

e Unfamiliar interfaces or

presentations

e Accommodation of
experiment design

Adaptability
for Ease of Usage
® Dependencies and
packaging
® Operating systems and
coding environment

Sustainability

e Model for long-term
support
e Code Repositories

Challenges
to

e Code citations

(academic recognition)
® User communities

Reliability
o Test data/procedures
e Consistency
® Validation of Results

® Real world data

Adoption

® Lack of documentatiol

Input/Output Flexibility

e Output viewers

® Recording metadata
and assumptions

Figure 1: Challenges to the adoption of visualization advances by scientific domain experts in ocean science.

Abstract

Several case studies are used to explore why the adoption of visualization software, especially for the visualization of 3D time-
varying ocean data, has lagged behind the development of visualization techniques. The development history of the Silver and
Wang feature tracking for time-varying 3D volume data highlights the challenges of decadal scale development and support.
The experiences of supporting operational use of processing and visualization for the COVIS oceanographic instrument suggest
packaging and version control are far more critical than most users or developers in the ocean science community realize. Initial
efforts to package feature extraction and skeletonization for a domain scientist lead to the realization that ease of configuration
is critical to supporting scientific exploration, experimentation, and illustration. A consideration of the history of marching
cubes focuses attention on the gap between the development of methods and the dissemination of fully mature software. These
challenges can be framed succinctly as Discovery, Relevance, Adaptability for Ease of Usage, Input/Output Flexibility, Relia-
bility, and Sustainability. The lessons learned here suggest the need for a more sustainable funding model, strong expectations
for code dissemination and documentation, attention to the needs of users especially domain scientists, and greater visibility of

code development efforts to end users.
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1. Motivation

In the last 20 years or so, the visualization research community
developed and published significant advances in the ability to vi-
sualize, amongst others, three-dimensional, multivariate, and text-
based data. Much to the disappointment of the community, the
adoption of these visualization methods and tools by their target
audiences (domain scientists, operational organizations, and oth-
ers) has remained slow.

A brief discussion of volume visualization for geoscience illus-
trates the point. Volume data is data with values at every point
in 3D space — or, in practice, data with values at every mesh or
grid point within a 3D spatial domain. With advances in modelling
and computers, geoscientists studying climate, ocean and earth pro-
cesses on local, regional and global scales have increasingly turned
to three-dimensional modelling to explore complex processes such
as ocean circulation, plate tectonics, and weather. Many such pro-
cesses are fundamentally three-dimensional; that is, the processes
behave differently in three-dimensions than in two. Additionally,
the collection of oceanographic and geologic data has exploded
with the advent of ocean gliders, cabled undersea observatories,
and enhanced network capabilities [TWK*19] [KDJ14]. This mod-
elling and data explosion should drive the adoption and exploitation
of volume visualization methods. A recent survey of visualization
techniques used in ocean sciences shows hundreds of techniques
have been developed and applied to ocean data [XLWD19]. How-
ever, investigations into the use of visualization tools by oceanog-
raphers suggest that expense, difficulties in learning, applicability,
and availability have limited adoption of novel visualization tech-
niques [SSVK19] [Edd93].

This paper addresses the challenges of operational and domain
usage of visualization methods, especially volume visualization
methods in the domain of ocean science. Examples from the au-
thor’s work in volume visualization of oceanographic data are used
to illustrate the issues involved. This concrete context shapes the
author’s reflections on why so few novel visualization techniques
show up in the ocean science community and why so many pa-
pers in visualization give little evidence for actual domain science
applicability. Although the context is volume visualization, many
of the issues are general to all visualization, and even all software
development. A framework for discussing the many challenges is
presented. Some potential solutions on a community scale are dis-
cussed.

2. Case Studies
2.1. Feature Tracking — development cycles in an academic lab

In 1996, Silver and Wang [SW96] presented a method to extract
features (or objects) from volume data; this method expanded the
ideas of Samtaney and others [SSZC94]. Initial applications fo-
cused on the merging and splitting of vortices in turbulence simu-
lations [SW97,0M09] and the characterization of bending plumes
in underwater acoustic data [RBKHS98]. Later studies have cited
or used the algorithms in a wide range of fields from blood flow
dynamics [CHO02, Jul15] to remote sensing of vegetative variations
[Mus12]. Nevertheless, the majority of several hundred citations
are from within the visualization community with a minority of

citations, including only a few direct uses of the implementations
of Silver and Wang, in publications outside the visualization com-
munity (that is, in the oceanographic, geoscience or medical litera-
tures). This highlights two gaps between the visualization commu-
nity and the domain science communities: the gap in adoption of
ideas or algorithms and the, even greater, gap in use of implemen-
tations.

The Silver and Wang implementation is largely in C++ code,
which was initially bound into the Advanced Visual Systems (AVS)
environment [AVS] as a user-provided module. Since then, the fea-
ture tracking techniques of Silver and Wang [SW97] have under-
gone many implementations in several different programming en-
vironments. The core of feature tracking has continued to be writ-
ten in C++ while generally leveraging larger visualization environ-
ments, such as Vislt [VI2] and Matlab [Mat]. Standalone C++ ver-
sions have incorporated varying data input capabilities (rectilinear
to unstructured data) and run on various hardware (ordinary desk-
top to parallel processing). The current version links with various
libraries for scientific computing (e.g., VTK [Kit], NetCDF [NC2])
and runs as standalone code. It is independent of any visualization
environment (e.g., AVS), but needs additional software (e.g., Par-
aview [Par] or in-house WebGL viewers) to view the results. The
most recent version of the Silver and Wang feature tracking code
exists on GitHub [FT1]. These development paths reflect the bur-
den on the lab to support the feature tracking implementation that
connects with the burden of adoption placed on the user by require-
ments and dependencies.

This case study focuses on the burden on the lab, which derives
from changes over time and the nature of academic labs. Operat-
ing systems have changed in the decades since the feature track-
ing algorithms were initially developed. Fashions in visualization
environments (including third-party libraries and the functionality
that they provide) have also changed. Development, adaptation to a
specific project, and installation are all eased when using up-to-date
dependencies in popular computing environments, but that requires
long-term maintenance and development work for an implementa-
tion to survive for decades. At the same time, academic labs depend
on an ever-changing cohort of graduate students to do the work and
this requires ongoing funding to cover stipends and tuition. Further-
more, a graduate student needs to focus on career-building projects
(i.e., those leading to publications). Minimal overlap between stu-
dents and common failures of students to fully document their code,
or even leave behind a coherent version of their code, exacerbate
the inherent challenges of long-term development and maintenance
of software in an academic lab.

For users to adopt the Silver and Wang implementation of feature
tracking, that implementation must exist which requires that the lab
support it. This example has focused on the burdens placed on an
academic lab to develop and support implementations with some
mention of the related burdens on the user as software and soft-
ware environments change over time. The structure of academic
labs (turnover of students, need for frequent publications, and de-
pendence on funding) increase the challenges of supporting a par-
ticular implementation over time.
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Figure 2: Proliferating code versions that all do the same thing,
almost but not quite, is a domain scientist’s nightmare. A scien-
tist needs to be able to attribute differences in the behavior of the
phenomena to actual changes rather than code changes. Incorpo-
rating GitHub or other versioning system identifiers into the data
or metadata would be one way to improve attribution of changes.

2.2. COVIS post-processing — an exploration of the challenges
of operational software

The Cabled Observatory Vent Imaging Sonar, known colloquially
as COVIS, has been deployed on the seafloor under more than
1500 m of water first on the NEPTUNE underwater observatory
off British Columbia (operated by Ocean Networks Canada) and
more recently at the Ocean Observatories Initiative’s Cabled Ar-
ray off Oregon, USA to monitor the heat output of hot springs ris-
ing above underwater volcanoes [XBJ17]. When fully operational,
COVIS acquires 8 to 24 data sets per day, each data set forming a
3D volume of backscattering strength (from turbulent fluctuations
in temperature in the rising plumes) or a 2D map of thermal vari-
ance (from combined diffuse and focused venting). The need to
visualize the 3D data has driven a 24-year collaboration between
oceanographers and visualization experts.

Visualizing COVIS data requires a specific sequence of process-
ing steps. Datasets retrieved from offshore (via Ethernet and an un-
derwater telecom cable) need to be transformed from raw acoustic
data (voltage time series saved as complex waveforms) into beam-
formed, calibrated, and (usually) gridded data that describes the
backscattering strength at points in space. The gridded data can
then be directly visualized (isosurfacing and so forth) or further
processed to identify features (such as individual plumes) and char-
acterize the static (volumes, centerlines) and dynamic (vertical di-
lution, temporal evolution) properties.

Algorithmic changes can result from acousticians and geologists
discovering better filters, finding errors in calibration, or determin-
ing new science goals; they can also result from developments in
visualization techniques and implementations. Figure 2 illustrates
some of the versioning complexity in software used to process
and visualize COVIS data. From a scientific viewpoint, algorith-
mic changes or other changes in software can create major inter-
pretation issues. Recently, an apparent increase in heat transport
turned out to be due to a combination of changes in the data pro-
cessing and sonar settings. Transitioning code tracking to software
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versioning packages helps (the COVIS team has begun a GitHub
repository [COV]). Incorporating the GitHub identifier within the
metadata attached to the data will be key increasing interpretability
of changes in phenomena.

Operationally, the COVIS data processing pipeline happens 365
days a year, 8 to 24 times a day (when the file arrives on shore)
as well as on demand (when a user asks for all the data between
Mar 2012 and Jan 2014 or algorithmic changes drive reprocessing
all existing data). Observatory data portals serve raw data, gridded
data and visualization products to the ocean science community.
Operational use demands robust, scriptable software that can han-
dle data glitches while running autonomously, but does not need a
GUI or complex user interface.

The acoustic instrument and technique development and the
oceanographic interpretation and experimentation impose con-
straints on the visualization developments. MATLAB is the soft-
ware environment of choice for acoustics, because of its strong sig-
nal processing capabilities. The COVIS team largely uses a mixture
of Microsoft Windows and Mac OS based computers. So, despite
the long-term collaboration between the COVIS team and the Silver
lab, routine visualization of COVIS data is still primarily done in
MATLAB. This suggests that for the COVIS team to adopt feature
tracking, or any other visualization software, the software needs to
be integrated with MATLAB or be able to run independently on a
variety of platforms.

For the visualization community, these are the key lessons in this
case study: (1) Choices about platforms, languages, and ease of use
will impact how likely a domain scientist or science community
is to adopt a software implementation at least as much as the ef-
fectiveness of the visualization. (2) Scientists, on any scale, do not
make clear common choices in platforms etc. indicating that inter-
operability should be a major consideration. (3) The adoption of
visualization techniques requires that someone invest the time to
implement them in readily usable form. Finally, this scenario also
emphasizes that tracking software versions is actually important to
domain science (even if scientists are bad at it) and efforts to im-
print such metadata into figures directly should be applauded.

2.3. VSK -issues with exploring plume bending

A key aspect of understanding the dynamics of plume-ocean inter-
actions is finding the centerline of plume rise. Post-processing of
the COVIS data in the previous section includes several slice-by-
slice methods of centerline extraction that rely on a pre-specified
region to identify the plume of interest, especially when multiple
plumes are present in the data. In contrast, feature tracking’s extrac-
tion capabilities could characterize multiple plumes in a single pass
while more robustly identifying the plumes present. In an effort to
apply feature extraction and skeletonization techniques to the CO-
VIS data, the feature extraction capability of feature tracking was
combined with an implementation of skeletonization and compiled
for use within MATLAB, where it is known as VSK [VSK]. The
advantage of MATLAB is that input data remains in its native for-
mat and the feature tracking function can be included seamlessly in
the COVIS processing sequence or run on demand.

At least, that was the theory. In practice, the VSK code has not
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Figure 3: Feature extraction at multiple thresholds applied to COVIS data [COV20]. While the orientation of the larger rising plume is
revealed at all three thresholds, the smaller plume and the plume-rock base connections only become apparent at the lower threshold values.
Backscattering strength is given in decibels (dB) relative to the output signal. Seafloor is an independent data set [CCT* 08].

proved useful. First, the threshold used to define the features is
buried in the middle of the code. Second, the user interface focuses
on a choice of multiple techniques and requests the user to find
and load data via browsing. Third, the output focuses on producing
only the orientation of the centerline (azimuth and inclination or vi-
sually a line) rather than the full structure of the plume (the actual
skeleton itself).

Had the development of VSK started with a design study, at least
two distinct tasks or use cases could have been discovered: (1) an
early experimental phase wherein the scientist explores the param-
eter space and (2) a routine analysis phase where long time series
of data would be run autonomously with a standard set of parame-
ters. Each phase places different design requirements on potential
feature extraction, tracking, and skeletonization software.

During the experimental phase, the objective is to explore the
useful feature-defining threshold space as well as other parameters
(thinning and connectivity for skeletons). The backscatter range of
COVIS data can span about five orders of magnitude as the temper-
ature fluctuations in plumes decrease exponentially with dilution
(see Figure 3). Generally, low threshold values represent ambient
ocean, middle values the plume core, and higher values rock, but
the actual values can vary over time and space due to noise, cali-
bration shifts, and actual changes in phenomena. Experimentation
with differing threshold values (Figure 3) is key to establishing an
accurate understanding of the true transfer function. The process of
experimentation involves working with the same small number of
files to establish a best-fit threshold and perhaps adjust the data pre-
processing steps. During the experimental stage, a well-designed
software interface would enable the constant setting of one or a
small number of files but enable rapid and frequent changes in pa-
rameters.

In contrast, the routine analysis phase involves the processing
of a long time series of data files (>5000 files in the COVIS case)
either all at once or as new data is acquired. In this case, the param-
eters will be the same for every file. Nevertheless, a well-designed

software interface should still separate parameters from the code
and support a simple method of feeding in files.

This scenario highlights the importance of design studies to iden-
tify the scientific tasks when software is developed with a particular
collaboration or for a particular domain; the intended tasks will set
the requirements for flexibility and convenience in input specifi-
cations. The exploration of data (where a small number of files is
viewed) will drive distinct requirements to the exploitation of data
(where many files need to be processed). Software developed on a
more generic basis, where specific use cases may be hard to deter-
mine, should anticipate that libraries of functions are more readily
incorporated into workflows than full-scale systems.

2.4. Considering Marching Cubes

Since the marching cubes algorithm for extracting an isosur-
face from three-dimensional volume data was published in 1987
[LC87], a wide variety of implementations and improvements have
been published (see Newman and Yi [NY06] and Custodia and oth-
ers [CPS19] for recent reviews). However, commonly, these ad-
vances exist as one-off implementations for the publication or in-
complete prototypes. The use of these or similar isosurfacing tech-
niques have made it into some widespread software environments,
but some of the most accessible and popular software environments
still lack easily-incorporated isosurfacing capabilities.

Experts in visualization or programming can certainly find
source code or packages in whatever system they prefer and have
the skills to create their own implementations. However, domain
specialists are often novices when it comes to visualization and
maybe even software in general. Ocean operations specialists (e.g.,
those running an oceanographic observatory) may be more inter-
ested in libraries of functions that integrate with existing tools or
cleanly packaged executables. More importantly, such end users do
not generally connect what they are using in commercial visual-
ization environments with the technique development efforts made

(© 2020 The Author(s)
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in the visualization community (especially as commercial software
rarely reveals what, if any, connection exists).

Two concerns should inform discussion in the visualization com-
munity. One is how do end users find software. Relying on word-
of-mouth, random google searches, and visualization conference
attendance will not garner many users. The other is what credit
should apply to academic development of techniques (largely ex-
isting in and on publications and citations) as opposed to the pro-
prietary development of commercial tools.

3. Building a framework

To build a framework to discuss the challenges in broad adoption of
new visualization techniques, this paper started with a series of spe-
cific issues that come from both conversations with domain users
and software developers and from the output of a series of work-
shop on the gaps between development and adoptions in visualiza-
tion [RCM™*20]. The first two columns of Table 1 summarize the
issues in the case studies reviewed above.

From the lessons highlighted in these case studies, we can form
a framework for discussion highlighting the broad areas of Discov-
ery, Relevance, Adaptability of Code for Usage, Input/Output Flex-
ibility, Reliability, and Sustainability. The discussion in the next
section covers why each of these areas is important and uses the
case studies above to illustrate key ideas.

4. Reflecting on Challenges to Adoption
4.1. Discovery

Section 2.4 (Marching Cubes) highlighted issues of the visibility of
visualization tools and techniques, especially outside the visualiza-
tion community. Discovery relates to how users find tools and tech-
niques. For publications, there are search tools like Google Scholar
and Web of Science. But most often users learn of software and vi-
sualization techniques by word-of-mouth or happenstance. Either
they saw it in a talk or a paper or it came up in a conversation or a
professor used it in a course. The EarthCube initiative has started a
list of visualization (and other) tools useful to geoscientists but at
present does not provide a comprehensive survey [Ear].

Another aspect of discovery happens when the user finds too
many tools, especially if each requires some level of learning or
workflow modification. The user needs to weigh the virtues of a
new visualization technique against the effort to install, learn, and
use. Scholarly surveys often tout the virtues of techniques but give
little information on how to find implementations or even if they
exist. In contrast, web-based searches discover more irrelevant or
inapplicable tools than useful ones, especially if the user doesn’t
know that to get fully 3D visualization tools the search term needs
to be "volume visualization" rather than "3D visualization".

4.2. Relevance

Sections 2.3 (VSK) and 2.4 (Marching Cubes) highlighted the
importance of design studies and making explicit design choices
based on the anticipated end users and use cases. Relevance sum-
marizes this connection between user tasks and software specifica-
tions, incorporating an inherent consideration of the intended users’

(© 2020 The Author(s)
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needs. Attendance by the author at visualization conferences led to
the casual observation that few scientific visualization presentations
spend significant time assessing the scientific value (for insight or
illustration) of their visualizations.

Two specific aspects can illustrate why failing to align soft-
ware design with user tasks and needs can create real issues for
domain scientists. First, science is fundamentally an experiment-
driven field. One example is never enough: a process needs to be
repeated with slight changes in input many times to describe the
full breadth of a phenomenon (Figure 3). Second, creating informa-
tive illustrations involves more than aesthetic considerations. For a
domain scientist to want to expend the time and effort to adopt
visualization methods into their workflow, the visualizations need
to illustrate a key phenomenon using their data, provide a (visual)
metric for the phenomenon, or increase scientific understanding of
the phenomenon (Figure 4).

Figure 4: Randomly colored eddies (top) convey only their basic
spatial distribution unlike eddies colored by spin direction (bot-
tom), which give a sense of the distribution of energy and transport
as well. Images based on Liu and others [LSB19].

4.3. Adaptability of Code for Usage

Sections 2.1 (Feature Tracking) and 2.2 (COVIS operations) high-
light the efforts involved in integrating visualization techniques, li-
braries, and tools into existing workflows and the documentation
needed to make such integration possible. Adaptability of Code
for Usage encompasses ease of use and installation issues from
dependencies and packaging to coding environments and the need
for adequate documentation. For domain scientists, wishing to vi-
sualize their data, the time investment in finding a suitable system,
upgrading it to have the right packages, and then compiling the vi-
sualization tool can exceed the utility of the visualization results.
Good documentation, specifying dependencies and clarifying use
can help ease the burden. Direct collaboration or libraries that can
be integrated readily into existing workflows are alternatives. In the
end, either the visualization or the domain scientist will need to in-
vest the time and effort.
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Case Study Specific Issue Challenge Area
Feature tracking Long-term support of implementations in the face of chang- | Sustainability
(Sec. 2.1) ing software environments

Supporting user expectations for ease of installation and use;
Documenting installation procedures, use cases, and changes

Adaptability for Ease of Use

Difficulties discovering or choosing software

Discovery

COVIS operations
(Sec.2.2)

Integrating visualization software into an existing workflow;
Developing suitable software requirements and dependences
for user groups with diverse computing environments

Adaptability of Code for Usage

data

Validating that apparent visual changes are real rather than
software changes, especially from data output after the fact;
Coping with non-standard and potentially inconsistent input

Reliability

(Sec. 2.3)
use

VSK Utilizing effective design studies to determine anticipated
user tasks for data exploration, data exploitation or generic

Relevance

tion

Designing software to task requirements, such as including
appropriate configuration structure to support experimenta-

Input/Output Flexibility

Marching Cubes
(Sec.2.4)

Choosing appropriate implementations for desired end users

Relevance

yond the visualization community;

Creating visibility for techniques and implementations be-

Connection between commercial packages and formal visu-
alization techniques obscure or non-existent

Discovery

Table 1: Organization of issues arising in the case studies

4.4. Input/Output Flexibility

Section 2.3 highlights design considerations such as what con-
figuration structure will best support the users’ tasks from explo-
ration to experimentation to exploitation. Input/Output Flexibil-
ity deals with the flexibility to work with multiple inputs and out-
puts, the importance of recording metadata and algorithmic as-
sumptions, and (again) the need for complete documentation. In
moving from prototypes designed and used by students in computer
science/engineering to operational or routine tools used by geolo-
gists or oceanographers, there is a need to adjust how the human
interacts with the software.

End users should not need to recompile source code to change a
threshold value or the location of the input data files. Scriptability
is a term that summarizes how well all the I/O (Input and Output)
of a particular software can be described external to the program.
Documentation is an important aspect of flexibility. It tells the user
how to change the input information, where the output information
goes, and information needed to interpret the output.

4.5. Reliability

Section 2.2 (COVIS operations) highlights the importance of val-
idating scientific information and touches on operational issues of
consistency and procedural testing. Reliability is about having con-
fidence: confidence that the code will run (especially important in
operational settings) and confidence that the output is correct and
can be interpreted. Addressing reliability means discussing test pro-

cedures, assumptions about data, consistency of output, and valida-
tion of results.

Scientists think about validation of results in terms of assessing
the correctness of the output and asserting the relevance of the test
data to real world data. Real world data is noisy and messy, can vary
in format and sampling details, and include unexpected situations.
If the testing doesn’t include complicated enough data, data with
enough noise, or appropriate edge cases, the actual output with real
world data may be unpredictable or inappropriate.

4.6. Sustainability

Section 2.1 highlights the burdens long-term development and sup-
port of implementations place on academic labs. Sustainability
speaks to the domain scientists’ (and other end-users’) need for
visualization software to keep working over decades, decades in
which software environments, operating systems, and computer
hardware keep changing. Individual labs or researchers struggle to
find funding and time to keep making the (small) changes in imple-
mentations needed to keep code viable within an academic funding
model driven by continued publication of novel techniques and ap-
plications. Even long-term serving of a stable implementation can
be a challenge, although GitHub [Git] has certainly helped here.

Another challenge of sustainability in academic labs is the ir-
regular turnover of graduate students, resulting in gaps and failures
to transfer knowledge. The result for the Silver and Wang feature
tracking is powerful code for tracking features in volume data that

(© 2020 The Author(s)
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is underutilized due to issues in documentation, packaging, and in-
stallation. This study actually took a first-time look at citations to
see how many users there are and who they are; the results sug-
gest that most users are within the visualization community or that
domain scientists do not consistently or appropriately cite imple-
mentations.

5. Concluding thoughts on solutions

Using four case studies, this paper considers why the adoption of
volume visualization software by domain scientists (especially in
ocean science) has lagged behind the development of visualization
techniques. While many of the issues discovered are well-known
issues for any software development project, they still form barri-
ers to adoption of visualization techniques and tools. Other issues
are specific to the needs and capabilities of the ocean science com-
munity. In the end, a visualization developer will weigh the costs
of developing for the ocean science community (greater time in-
vested in development) against the benefits (collaborations, novel
applications, visibility outside of the visualization community).

Reflections on the commonality between case studies suggests
that these challenges can be framed as challenges of Discovery,
Relevance, Adaptability of Code for Usage, Input/Output Flexibil-
ity, Reliability, and Sustainability. This framework provides some
structure for exploring potential solutions.

Responding to challenge of Discovery requires reaching out
beyond the visualization community. Pre-print servers and code
repositories increase access to algorithms, code and implementa-
tions, but do not necessarily make them easier to find, especially
if the potential user has limited knowledge of the appropriate key-
words. One useful direction is the recent efforts of EarthCube in the
geoscience community to combine inventories of tools (and data)
with the infrastructure needed to use them [Ear]. Visualization de-
velopers interested in ocean or earth science users may wish to be-
come involved with that effort. The visualization community could
consider an inventory effort of a broader nature. Greater visibility
to users outside the visualization community might also motivate
greater investment into usability.

By and large, the visualization community knows how to re-
spond to the challenge of Relevance: there is extensive literature
on how to conduct a design study already (e.g., [Munl4]). Even
student projects should incorporate a discussion early on of the in-
tended end users’ tasks and eventual scope: whether the main focus
is technique creation and whether an implementation will be used
only in a visualization research lab, is intended as a generic tool, or
is part of a collaboration with domain scientists.

Responding to the challenges of Adaptability of Code for Usage
and Input/Output Flexibility also hinges recognizing the intended
end-users. Development of visualization techniques and tools for
domain science needs to recognize the capabilities of the domain
scientist: Ocean and geo scientists are generally better at using
software than developing software, so efficiency suggests the in-
vestment into usability will fall on the development or visualiza-
tion side. Communicating what is a key input or key knowledge for
interpretation is a critical part of the conversation between scien-
tist and developer. However, as the case studies above show, while
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long-term collaborations build understanding of what can be visu-
alized for the domain scientist and what should be measured for the
computer scientist, they do not inevitably lead to convenient config-
uration or greater usability. Community or journal expectations of
code and documentation in repositories might encouraging better
attention to documentation.

Responding to the challenge of Reliability requires considering
the specific nature of real data (messy and full of gaps) as well as
following thorough with testing, documenting, and validating re-
sults. Teaching software engineering early in the training of gradu-
ate students pursing visualization could be a successful community
response to the interrelated challenges of Relevance, Adaptability
of Code for Usage, Input/Output Flexibility and Reliability.

The challenges of decadal scale development and support weave
their way through much of this narrative. In the case study on fea-
ture tracking, a more sustainable funding model would potentially
increase the overlap between students leading to less wasted devel-
opment efforts. Within academia, turnover of developers, the need
for novelty in order to publish, and the lack of academic recognition
for the work of packaging and supporting software underlie much
of this conversation.

Responding to the challenge of Sustainability will take change
and effort from both the visualization and domain science commu-
nities. On the one side, the visualization communities could pro-
mote professional standards for packaging, documenting, and test-
ing software (including buy-in by the academic community to teach
such standards) and change expectations for best practices. On the
other side, the domain science communities could better document
their usage of both software packages and novel visualization tech-
niques providing the tracking needed to establish which lines of
visualization research were valuable to the science community.

Making technique and software usage more visible to both the
domain science and visualization communities may be a critical
step in building funding agency support for the development and
maintenance of widely used tools. Routine citations of software
used in domain scientists’ publications would help establish the
scale of the user community. Perhaps software needs a DOI-like
identifier, something that is being adopted for physical rock sam-
ples and various databases [DKT*17] [LKA*™11]. A clearer picture
of usage might also help rebalance the visualization community’s
emphasis on publishing novelty for novelty’s sake with a strong
sense that novelty is of most value when an end-user community
finds the novelty of value in their own applications.
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