
VIPRA – EuroVis Workshop on Visual Process Analytics (2024)
A. Arleo, L. Pufahl, J. Rehse, F. Zerbato, S. van den Elzen, and T. von Landesberger (Organizers)

Visual Journey Analytics:
lessons learned from real-world implementations

R. Brath1 , P. Andersen1 , M. Matusiak1 , and R. Gerber2 .

1Uncharted Software Inc., Canada
2Qualtrics, LLC., United States

Abstract
Process mining and more broadly journey analytics create sequences that can be understood with graph-oriented visual ana-
lytics. We have designed and implemented more than a dozen visual analytics on sequence data in production software over
the last 20 years. We outline a variety of data challenges, user tasks, visualization layouts, node and edge representations, and
interactions, including strengths and weaknesses and potential future research.

CCS Concepts
• Human-centered computing → Field studies; Interaction design process and methods; Visual analytics;

1. Introduction

Visual journey analytics is the visualization and tightly coupled an-
alytics associated with the sequence of steps taken through a pro-
cess to achieve a goal. Journey analytics objectives include valida-
tion of journeys against expectations, deeper understanding of be-
havior, and data-driven decision making. Journey analytic applica-
tions occur in domains such as customer journeys through contact
centers to increase sales or reduce churn; employee journeys for
facilitating HR processes; patient journeys through a diagnosis, op-
eration and recovery; or may occur in non-human processes, such
as a courier shipment, a financial security settlement process, or
an insurance claim process. Journey analytics can go beyond pro-
cess analytics: rather than focus on a sequence of milestones in a
defined process, journey analytics additionally capture behavioral
characteristics of the user interactions and finer grain events be-
tween major milestones. The result of a process optimization may
improve a process but not improve customer experience. Journey
analytics seeks to improve the holistic journey of the user as well
as the process.

The authors have extensive experience in developing visual an-
alytics for journey analysis over the past two decades, with over a
dozen applications deployed across various companies. Their con-
tribution lies in offering a comprehensive overview of these imple-
mentations to identify common challenges in visual journey ana-
lytics.

2. Background

The origins of visual process analysis, in our opinion, reach back
to milestones on Gantt charts [Cla35]; through a lineage of inter-
active event sequences such as LifeLines [PMR∗96] or financial

events [SB13]. In these cases, events are on a timeline, the notion
of a specific sequence of events leading to a target outcome is not
present.

More specifically, process mining extracts common sequences
for users such as process discovery [ZKI19], conformance check-
ing [RPGK22], system enhancement and so on. Research for min-
ing of event sequences for process analysis is increasing. For ex-
ample, 263 health-care process mining research papers reviewed by
De Roock and Martin [DM22] started in 2005, with significant up-
ward trend beginning in 2013. A few use visualization, for example,
inductive visual miner [LFVDA14], commercial process mining
software visualization by Celonis [ATP19], force-directed graphs
[ZPP15], state-diagrams [AG18], and flowcharts [MYB∗18].

There are many visualization techniques feasible, some of which
depict the process sequence e.g. Sankey, chord diagram, force-
directed graph, [SMNP18]; as well as supplementary data, e.g. via
treemap, scatterplot, pie [GGJ∗21, YM22]. Liu et al [LWD∗16]
use linear depictions of sequences with an overview of the most
common high-level paths, and many specific sequences interac-
tively aligned to an event of interest. To deal with high cardinal-
ity, they collapse frequently recurring subsequences (motifs), and
sets of nodes that occur in sequence but vary in order (clusters).
Furthermore, there exist commercial software for visualization of
processes and journeys, including offerings from IBM, Microsoft,
Celonis, Qualtrics, Medallia, CSG Systems, with some examples
shown in Figure 1.

3. Review of Applications

We have faced challenges in aspects such as data, user tasks, and
visualization across multiple real-world applications. We briefly
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Figure 1: Some examples of commercial process visualization from
Microsoft, Medallia, Kitewheel, Qualtrics and IBM.

touch on data and user task challenges before focusing on the spe-
cific issues with visual analytics.

3.1. Journey data challenges

One primary challenge in journey analytics is data discrepancy. An-
alysts anticipate a linear progression of events (e.g., A, B, C, D, E),
however real-world data is far more complicated:

• Joining data: In journey analytics, a key challenge is joining data
from many systems. Along with process data, customer jour-
ney analytics incorporates behavioral data from various channels
(e.g., web, mobile, social), each with its own schema. Aligning
customer identifiers can be problematic, e.g. across channels or
when customers don’t log in on some platforms.

• Temporal frequency: Data from different systems have differ-
ences in delays: some may be near real-time, others batch up-
date hourly or daily. This makes it difficult to use journey ana-
lytics for monitoring, real-decisioning, and throttles analytics to
the slowest data to have appropriately sequenced data.

• Data not organized as steps: For example, data from web traf-
fic is individual pages. Other than the shopping cart process, the
larger journey through steps such as discovery, exploration, con-
sideration, may be difficult to categorize. This requires an exten-
sive effort to either categorize the content upfront so the appro-
priate category is logged, or extensive effort to post-process the
granular data into the higher-level steps.

• Data does not follow sequence: It is not uncommon to have du-
plicate steps, reversals, skips, out-of-order steps and so forth (e.g.
AAABCDE, ABCDCBCDE, ADBCE, ACE). Customers may

reconsider, backtrack and modify a purchase; a patient may be
re-diagnosed; different systems may process events at different
time horizons; and so on. In one application, we abandoned the
notion of an ideal path: fewer than 1% of actual journeys fol-
lowed the analyst’s idealized path.

• Additional step types: Despite the notion of a set of steps, there
inevitably are anomalous steps which may occur in a sequence
(e.g. ABCXE). A container does not move directly from port to
port but goes through an intermediate port transferring from ship
to ship; or a customer does a login; or a patient has a procedure
which does not normally occur in the expected process.

• Unstructured data: How customers, patients, employees feel
about a journey is important to perception of success. Unstruc-
tured data such as surveys provides insights that cannot be un-
covered with a purely metrics oriented approach.

A further challenge is to manage this data at scale, e.g. across mil-
lions of journeys. With current hardware, this scale of data cannot
fit within client-side browser memory, and instead requires server-
side interactive processing of the paths. The result is an incredibly
wide variety of permutations of unique paths.

3.2. Journey analytic tasks

There are many tasks with journey data beyond idealized path and
event confirmation. Key "why" tasks include [BM13]:

• Process discovery: In some cases, analysts have only hypotheses
regarding the process sequence and want visualization to com-
prehend the system.

• Comparison: One may need to see multiple states: e.g. actual
paths vs mental model (conformance checking [RPGK22]); be-
fore and after process modification; evaluation of alternatives
such as a simulation; journey differences in sub-populations, etc.

• Decomposition: One may want a high level journey across the
full customer lifecycle, and successively decompose that to
lower-level journeys, such as customer service journey, and fur-
ther to a payment dispute journey, etc.

• Problems and intervention: Journey visualization can reveal fric-
tion, dormancy, journey switches, or other issues. Visual rep-
resentations aid analysis into root causes of problems with ag-
gregate views. A journey visualization provides a convenient
point of access to intervene in a journey: to modify journeys in
progress, or to modify the process.

• Operations and risk: Many of these processes can be monitored
in real-time, trigger alerts and indicate areas of emergent risk.

• Predictive simulation and optimization: The analytic model can
aid prediction: e.g. forecasting how many email invites will reach
the shopping cart next week; estimating the time before emer-
gency services are overwhelmed during a pandemic. Optimiza-
tion may be used to adjust offerings: e.g. determining the mix of
offers to send to acquire 1000 mortgages and 1000 loans.

3.3. Visual representation of layout

Given the variety of tasks and potential variation in data, we’ve
created a wide variety of different visualizations of the process se-
quence steps, as indicated in Figure 2.

We use diagrams in this paper as most implementations are
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Figure 2: Diagrams of visualization variants. All indicate the same toy dataset, shown under Sequences, with color-coded process steps and
edge-thickness indicating flow volume. Span annotations indicate properties of representations.

confidential (or previously published [KGVW21,HRGK∗21,BJ15,
JLGW14]). All diagrams show data from a process with six unique
steps (A-X), five unique sequences, and flow volume indicated by
edge thickness. The annotations at the bottom of the diagram indi-
cate common properties:

• No duplicate nodes: The first two representations do not dupli-
cate nodes. This aids visually assessing how one arrives and de-
parts from a state as well as summary properties per node. The
unique paths are not recoverable from this representation.

• Only valid paths: The middle three representations explicitly de-
pict only valid sequences. These are useful when one wants to
understand the paths, although duplication of nodes within the
diagram increases cognitive load during path comparison tasks.

• Local subgraph: The right two representations depict only a por-
tion of the paths; around a node or subpath of interest. The con-
text of the larger graph and actual paths are missing.

• Full graph: The first five representations show the full graph.
The overview is useful to understand the full process.

• Left to right flow: Except for the first freeform representation,
most representations attempt to create a left-to-right flow. It is
desirable to have the sequence flow in one direction to align with
the mental model of the users.

These common properties indicate desirable criteria for sequence
visualization. Not all can be achieved in one visualization, and each
representation has pros and cons, as seen in practice.

• Freeform: The freefrom representation is familiar to systems
modelers as it is highly similar to state transition diagrams. It
can be useful for complex systems with feedback loops such as
systems dynamics and biologic processes. These diagrams risk
becoming confusing spaghetti, e.g. force-directed layout algo-
rithms can often result in difficult to comprehend graphs. We
note that human-curated complex graphs can be very high qual-
ity (e.g. [MS12]), but require extensive effort to create.

• Ideal path: The ideal path is explicitly depicted as a left to right
sequence (or top to bottom). Other edges hop, loop or go back-
wards. It is similar to syntax diagrams, railway diagrams and
process flowcharts. This is the only representation that makes the
expected flow visually dominant: the Gestalt effect of continua-
tion is very strong. This representation is liked. Skips, backflows
and deviations can become disorienting, but interactions can hide
these if desired. Furthermore, unique paths are not visible: the

path ABCBCBCBCDE can be constructed but may not exist in
the source data. If there are few backflows and alternative steps,
the ideal path may resemble a Sankey diagram.

• Sequences: is a raw depiction of unique event sequences. Ex-
plicitly showing each path is useful for detailed inspection with-
out aggregation, e.g. examining path properties under one spe-
cific sequence. This method does not scale well to thousands of
unique paths, and visually becomes difficult to compare dupli-
cate nodes, particularly when there are more than 10 or so unique
node types.

• Tree: collapses common nodes at the start of the path. Multiple
trees may exist, as processes do not always start at the same node.
Trees often become wide, although a radial layout can help.

• Directed Acyclic Graph (DAG): collapses common segments
across the graph. Multiple valid DAGs may exist. With many
paths, multiple disconnected DAGs are common. Note nodes
and edges may appear multiple times, e.g. node B occurs three
times, edge AB occurs twice. The DAG can be represented as a
Sankey diagram. This method can be adapted so that each node
only occurs once, but introduces backward flows, causing loops
and losing strict "only valid paths" criteria. This works with few
backwards flows, but can quickly turn into spaghetti diagrams if
many backflows occur.

• Butterfly focuses on a singular node and typically expands one
tier in both directions. It is typically very easy to understand,
although some users are unaware that non-existent paths are rep-
resented (e.g. EBC does not exist). Typically picking any visible
node promotes that node to the center and redraws the butterfly
around the new node. As it is very local (i.e. the neighborhood
around a single node), users may need to traverse around the lo-
cal graph back and forth to gain a broader understanding.

• Expander is an interactive extension of the butterfly. A click ex-
pands one node further. This can be repeated further. Constraints
may be applied such that the primary path only contains valid
paths and invalid branches pruned.

• Geographic: is not shown in the diagram, but some processes
have physical real-world locations, such as ports or hospitals.
These processes can be overlaid on the physical coordinate space
- i.e. depicting the process on a map. Note that maps may be ab-
stracted and the coordinate space adjusted, e.g. to reduce whites-
pace or regularize the layout.

• Adjacency matrix: was not used in any of our applications.
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Figure 3: Visualization layouts for 14 applications.

The use of these layouts in practice in 14 visual analytic appli-
cations is summarized in Figure 3.

3.4. Visual representation of nodes and edges

The previous section discussed the overall layout and used a triv-
ial representation of a box with a letter for nodes. In practice, node
representations can be complex containing a variety of categoric,
quantitative and textual data, as shown for each of our visualiza-
tions in figure 4. The right side shows four diagrammatic node rep-
resentations. Some observations:

• Labels: are used in 13/14 applications. Multiple applications use
more than one label per node indicating additional information
such as metrics or conditions in three applications (as shown in
the green node with the blue glow). Only one application does
not use labels: however it has a complex glyph with attributes
such as outline color, partial fill in the glyph background, and a
compound symbol with partial fill.

• Color: in 13/14 applications denotes data, evenly split between
use of color to encode categoric (C) vs. quantitative (Q) data.

• Size: is a potent visual cue, but can be disruptive to layout. It
works well in the butterfly layout, or constrained to a limited
range. The second example node, a pie chart, uses size twice:
setting overall node size based on total event count; and a smaller
inset for a filtered sub-population.

• Glyphs: are used to represent multivariate data per node. There is
an incredible variety of the glyphs across applications as might
be expected [BKC∗13]. Glyphs can show timeseries associated
with each node, thus depicting graph properties that vary over
time which can be otherwise difficult to depict, e.g. via anima-
tion or small multiples [Jon12]. Glyphs may include various in-
dicators, such as: badges; one or more icons/pictographs with
variants such as separate outline, fill and partial fill; a back-
ground with separate fill and outline; and so on. Multivariate
icons can be challenging to design so that they can easily be
decoded [Bra15].

• Other visual attributes: Glow was used in only one application
to denote an alert. Two applications used a 3D layout with 3D
glyphs; although in one of those applications the 3D was re-
moved when the application was deployed.

Figure 4: Node representations per application including label,
color, size and glyph (if any); with examples on right.

Edges in most applications tend to use simple representations of
flows between nodes. Attributes used for edges include:

• Thickness: is used in 11/14 applications to indicate quantity.
• Color: is used to indicate either categoric data or quantitative

data (e.g. length of time between transitions).
• Length: in one application, edge length was used to indicate the

length of time between transitions (note the variation in edge
length in the Tree diagram).

• Dash: in two applications we used dash patterns to indicate data.

Note that the above diagrams show a trivial dataset and simpli-
fied layout. In practice, the visualizations can be complex: with
more nodes and edges, additional elements in the layout, and a
greater variety of glyphs, such as the example in figure 5.

3.5. Interactions

Interactions are key to making a representation usable for the tasks.
Given the scale of data, there may be significant effort to achieve
interactive response times. Figure 6 shows an application with rich
interaction on datasets with billions of transactions.

• Filter/Collapse/Hide/Etc.: Given the variety of permutations
many of which may not be of interest, UX to control what is
desirable to be seen or not is required. For example, some tasks

Figure 5: A tree layout, organized into swim-lanes and a horizon-
tal time axis; with multivariate glyphs per node.

© 2024 The Authors.
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Figure 6: A full application, with butterfly-variant process visu-
alization, with search, filter, path profiling (left panel), selection of
subpaths (highlight) and drilldown (bottom panel).

need to assess repeat process steps (AAA) or backwards pro-
cess steps (ABCA), while some tasks never consider repeats or
backwards. The starting-point and/or ending-point may be very
important to define, e.g. for a given treatment, start with the first
diagnosis, end with the third prescription.

• Paths: can be overlaid to indicate the actual or predicted paths
forecast; either globally (top overall path) or locally (predicted
paths from a given point forwards).

• Comparison: In a number of cases, the visualization needs to aid
comparison of different states, e.g. before and after a modifica-
tion in the system; change in system behavior between this year
and last year; and so on.

4. Discussion

At least a half dozen of these applications have been deployed for
more than half a decade; one has over 1000 users. Enduring ap-
plications include simpler representations like butterfly, expander,
DAG, and linear. These representations have strong visceral appeal
and are easily understood with minimal explanation. Furthermore,
insight can be derived without needing many clicks. Successful rep-
resentations match user tasks and mental models closely, answering
questions with minimal interaction.

We have seen peer applications (e.g. Figure 1) use similar data
to do similar analyses. Sometimes these peer applications are close
copies (same layout, similar glyph); sometimes they use a different
layout. For example, in one case we used a DAG, and a peer ap-
plication used an expander layout. In another application we used
a butterfly very successfully, and a peer application instead used
a tree. This suggests that there may be potential for a singular vi-
sualization approach across uses (or at a smaller set). Regardless
- given each project has significantly different characteristics (e.g.

Figure 7: Human curated metabolic pathway diagram scales to
highly complex processes.

number of unique steps, number of permutations, range of data per
edge and node, temporal data, breadth of potential analytic tasks) -
each project needs to move through an initial requirements phase to
understand the goals, data, tasks, and so on, and this tends to lead
to a unique solution.

In all cases, these representations have challenges scaling to pro-
cesses with many steps: 40 or more. Permutations are enormous
making it difficult for any full layout to clearly depict these. How-
ever, human curated metabolic pathways diagrams in biology de-
pict complex non-linear processes with thousands of nodes clearly,
e.g. a small portion is shown in Figure 7 [MS12]. These diagrams
use techniques such as edge routing to minimize crosses and occlu-
sion, map-like overview and zoom to details, color-coding and line
styles to aid tracing paths, labels packed densely without contrac-
tion, and so on.

5. Conclusions

In addition to the present challenges of operating at scale, future
research should include developing scalable solutions that cater to
diverse domains. The exploration of a reusable visualization frame-
work holds promise in facilitating cross-domain applicability, en-
abling insight and analyses across disciplinary boundaries. Our ex-
perience with visual journey analytics has indicated strong interest
by analysts and such approaches would not only enhance the effi-
ciency of visualization tools but also foster possible collaboration
and knowledge exchange among disparate fields.

Furthermore, there are a variety of uses we have not yet con-
sidered. Our current focus has primarily involved desktop ap-
plications; however integrating mobile requirements could poten-
tially unlock new avenues for real-time data analysis and decision-
making, thus enriching the utility and effectiveness of visualization
tools in diverse operational settings.
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